kern_softint.c revision 1.17 1 /* $NetBSD: kern_softint.c,v 1.17 2008/04/28 15:36:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Generic software interrupt framework.
41 *
42 * Overview
43 *
44 * The soft interrupt framework provides a mechanism to schedule a
45 * low priority callback that runs with thread context. It allows
46 * for dynamic registration of software interrupts, and for fair
47 * queueing and prioritization of those interrupts. The callbacks
48 * can be scheduled to run from nearly any point in the kernel: by
49 * code running with thread context, by code running from a
50 * hardware interrupt handler, and at any interrupt priority
51 * level.
52 *
53 * Priority levels
54 *
55 * Since soft interrupt dispatch can be tied to the underlying
56 * architecture's interrupt dispatch code, it can be limited
57 * both by the capabilities of the hardware and the capabilities
58 * of the interrupt dispatch code itself. The number of priority
59 * levels is restricted to four. In order of priority (lowest to
60 * highest) the levels are: clock, bio, net, serial.
61 *
62 * The names are symbolic and in isolation do not have any direct
63 * connection with a particular kind of device activity: they are
64 * only meant as a guide.
65 *
66 * The four priority levels map directly to scheduler priority
67 * levels, and where the architecture implements 'fast' software
68 * interrupts, they also map onto interrupt priorities. The
69 * interrupt priorities are intended to be hidden from machine
70 * independent code, which should use thread-safe mechanisms to
71 * synchronize with software interrupts (for example: mutexes).
72 *
73 * Capabilities
74 *
75 * Software interrupts run with limited machine context. In
76 * particular, they do not posess any address space context. They
77 * should not try to operate on user space addresses, or to use
78 * virtual memory facilities other than those noted as interrupt
79 * safe.
80 *
81 * Unlike hardware interrupts, software interrupts do have thread
82 * context. They may block on synchronization objects, sleep, and
83 * resume execution at a later time.
84 *
85 * Since software interrupts are a limited resource and run with
86 * higher priority than most other LWPs in the system, all
87 * block-and-resume activity by a software interrupt must be kept
88 * short to allow futher processing at that level to continue. By
89 * extension, code running with process context must take care to
90 * ensure that any lock that may be taken from a software interrupt
91 * can not be held for more than a short period of time.
92 *
93 * The kernel does not allow software interrupts to use facilities
94 * or perform actions that may block for a significant amount of
95 * time. This means that it's not valid for a software interrupt
96 * to sleep on condition variables or wait for resources to become
97 * available (for example, memory).
98 *
99 * Per-CPU operation
100 *
101 * If a soft interrupt is triggered on a CPU, it can only be
102 * dispatched on the same CPU. Each LWP dedicated to handling a
103 * soft interrupt is bound to its home CPU, so if the LWP blocks
104 * and needs to run again, it can only run there. Nearly all data
105 * structures used to manage software interrupts are per-CPU.
106 *
107 * The per-CPU requirement is intended to reduce "ping-pong" of
108 * cache lines between CPUs: lines occupied by data structures
109 * used to manage the soft interrupts, and lines occupied by data
110 * items being passed down to the soft interrupt. As a positive
111 * side effect, this also means that the soft interrupt dispatch
112 * code does not need to to use spinlocks to synchronize.
113 *
114 * Generic implementation
115 *
116 * A generic, low performance implementation is provided that
117 * works across all architectures, with no machine-dependent
118 * modifications needed. This implementation uses the scheduler,
119 * and so has a number of restrictions:
120 *
121 * 1) The software interrupts are not currently preemptive, so
122 * must wait for the currently executing LWP to yield the CPU.
123 * This can introduce latency.
124 *
125 * 2) An expensive context switch is required for a software
126 * interrupt to be handled.
127 *
128 * 'Fast' software interrupts
129 *
130 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
131 * the fast mechanism. Threads running either in the kernel or in
132 * userspace will be interrupted, but will not be preempted. When
133 * the soft interrupt completes execution, the interrupted LWP
134 * is resumed. Interrupt dispatch code must provide the minimum
135 * level of context necessary for the soft interrupt to block and
136 * be resumed at a later time. The machine-dependent dispatch
137 * path looks something like the following:
138 *
139 * softintr()
140 * {
141 * go to IPL_HIGH if necessary for switch;
142 * save any necessary registers in a format that can be
143 * restored by cpu_switchto if the softint blocks;
144 * arrange for cpu_switchto() to restore into the
145 * trampoline function;
146 * identify LWP to handle this interrupt;
147 * switch to the LWP's stack;
148 * switch register stacks, if necessary;
149 * assign new value of curlwp;
150 * call MI softint_dispatch, passing old curlwp and IPL
151 * to execute interrupt at;
152 * switch back to old stack;
153 * switch back to old register stack, if necessary;
154 * restore curlwp;
155 * return to interrupted LWP;
156 * }
157 *
158 * If the soft interrupt blocks, a trampoline function is returned
159 * to in the context of the interrupted LWP, as arranged for by
160 * softint():
161 *
162 * softint_ret()
163 * {
164 * unlock soft interrupt LWP;
165 * resume interrupt processing, likely returning to
166 * interrupted LWP or dispatching another, different
167 * interrupt;
168 * }
169 *
170 * Once the soft interrupt has fired (and even if it has blocked),
171 * no further soft interrupts at that level will be triggered by
172 * MI code until the soft interrupt handler has ceased execution.
173 * If a soft interrupt handler blocks and is resumed, it resumes
174 * execution as a normal LWP (kthread) and gains VM context. Only
175 * when it has completed and is ready to fire again will it
176 * interrupt other threads.
177 *
178 * Future directions
179 *
180 * Provide a cheap way to direct software interrupts to remote
181 * CPUs. Provide a way to enqueue work items into the handler
182 * record, removing additional spl calls (see subr_workqueue.c).
183 */
184
185 #include "opt_preemption.h"
186
187 #include <sys/cdefs.h>
188 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.17 2008/04/28 15:36:01 ad Exp $");
189
190 #include <sys/param.h>
191 #include <sys/malloc.h>
192 #include <sys/proc.h>
193 #include <sys/intr.h>
194 #include <sys/mutex.h>
195 #include <sys/kthread.h>
196 #include <sys/evcnt.h>
197 #include <sys/cpu.h>
198
199 #include <net/netisr.h>
200
201 #include <uvm/uvm_extern.h>
202
203 /* This could overlap with signal info in struct lwp. */
204 typedef struct softint {
205 SIMPLEQ_HEAD(, softhand) si_q;
206 struct lwp *si_lwp;
207 struct cpu_info *si_cpu;
208 uintptr_t si_machdep;
209 struct evcnt si_evcnt;
210 struct evcnt si_evcnt_block;
211 int si_active;
212 char si_name[8];
213 char si_name_block[8+6];
214 } softint_t;
215
216 typedef struct softhand {
217 SIMPLEQ_ENTRY(softhand) sh_q;
218 void (*sh_func)(void *);
219 void *sh_arg;
220 softint_t *sh_isr;
221 u_int sh_pending;
222 u_int sh_flags;
223 } softhand_t;
224
225 typedef struct softcpu {
226 struct cpu_info *sc_cpu;
227 softint_t sc_int[SOFTINT_COUNT];
228 softhand_t sc_hand[1];
229 } softcpu_t;
230
231 static void softint_thread(void *);
232
233 u_int softint_bytes = 8192;
234 u_int softint_timing;
235 static u_int softint_max;
236 static kmutex_t softint_lock;
237 static void *softint_netisrs[32];
238
239 /*
240 * softint_init_isr:
241 *
242 * Initialize a single interrupt level for a single CPU.
243 */
244 static void
245 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
246 {
247 struct cpu_info *ci;
248 softint_t *si;
249 int error;
250
251 si = &sc->sc_int[level];
252 ci = sc->sc_cpu;
253 si->si_cpu = ci;
254
255 SIMPLEQ_INIT(&si->si_q);
256
257 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
258 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
259 "soft%s/%u", desc, ci->ci_index);
260 if (error != 0)
261 panic("softint_init_isr: error %d", error);
262
263 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
264 ci->ci_index);
265 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
266 "softint", si->si_name);
267 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
268 desc, ci->ci_index);
269 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
270 "softint", si->si_name_block);
271
272 si->si_lwp->l_private = si;
273 softint_init_md(si->si_lwp, level, &si->si_machdep);
274 }
275 /*
276 * softint_init:
277 *
278 * Initialize per-CPU data structures. Called from mi_cpu_attach().
279 */
280 void
281 softint_init(struct cpu_info *ci)
282 {
283 static struct cpu_info *first;
284 softcpu_t *sc, *scfirst;
285 softhand_t *sh, *shmax;
286
287 if (first == NULL) {
288 /* Boot CPU. */
289 first = ci;
290 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
291 softint_bytes = round_page(softint_bytes);
292 softint_max = (softint_bytes - sizeof(softcpu_t)) /
293 sizeof(softhand_t);
294 }
295
296 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
297 UVM_KMF_WIRED | UVM_KMF_ZERO);
298 if (sc == NULL)
299 panic("softint_init_cpu: cannot allocate memory");
300
301 ci->ci_data.cpu_softcpu = sc;
302 ci->ci_data.cpu_softints = 0;
303 sc->sc_cpu = ci;
304
305 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
306 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
307 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
308 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
309
310 if (first != ci) {
311 mutex_enter(&softint_lock);
312 scfirst = first->ci_data.cpu_softcpu;
313 sh = sc->sc_hand;
314 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
315 /* Update pointers for this CPU. */
316 for (shmax = sh + softint_max; sh < shmax; sh++) {
317 if (sh->sh_func == NULL)
318 continue;
319 sh->sh_isr =
320 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
321 }
322 mutex_exit(&softint_lock);
323 } else {
324 /*
325 * Establish handlers for legacy net interrupts.
326 * XXX Needs to go away.
327 */
328 #define DONETISR(n, f) \
329 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
330 (void (*)(void *))(f), NULL)
331 #include <net/netisr_dispatch.h>
332 }
333 }
334
335 /*
336 * softint_establish:
337 *
338 * Register a software interrupt handler.
339 */
340 void *
341 softint_establish(u_int flags, void (*func)(void *), void *arg)
342 {
343 CPU_INFO_ITERATOR cii;
344 struct cpu_info *ci;
345 softcpu_t *sc;
346 softhand_t *sh;
347 u_int level, index;
348
349 level = (flags & SOFTINT_LVLMASK);
350 KASSERT(level < SOFTINT_COUNT);
351
352 mutex_enter(&softint_lock);
353
354 /* Find a free slot. */
355 sc = curcpu()->ci_data.cpu_softcpu;
356 for (index = 1; index < softint_max; index++)
357 if (sc->sc_hand[index].sh_func == NULL)
358 break;
359 if (index == softint_max) {
360 mutex_exit(&softint_lock);
361 printf("WARNING: softint_establish: table full, "
362 "increase softint_bytes\n");
363 return NULL;
364 }
365
366 /* Set up the handler on each CPU. */
367 if (ncpu < 2) {
368 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
369 sc = curcpu()->ci_data.cpu_softcpu;
370 sh = &sc->sc_hand[index];
371 sh->sh_isr = &sc->sc_int[level];
372 sh->sh_func = func;
373 sh->sh_arg = arg;
374 sh->sh_flags = flags;
375 sh->sh_pending = 0;
376 } else for (CPU_INFO_FOREACH(cii, ci)) {
377 sc = ci->ci_data.cpu_softcpu;
378 sh = &sc->sc_hand[index];
379 sh->sh_isr = &sc->sc_int[level];
380 sh->sh_func = func;
381 sh->sh_arg = arg;
382 sh->sh_flags = flags;
383 sh->sh_pending = 0;
384 }
385
386 mutex_exit(&softint_lock);
387
388 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
389 }
390
391 /*
392 * softint_disestablish:
393 *
394 * Unregister a software interrupt handler.
395 */
396 void
397 softint_disestablish(void *arg)
398 {
399 CPU_INFO_ITERATOR cii;
400 struct cpu_info *ci;
401 softcpu_t *sc;
402 softhand_t *sh;
403 uintptr_t offset;
404
405 offset = (uintptr_t)arg;
406 KASSERT(offset != 0 && offset < softint_bytes);
407
408 mutex_enter(&softint_lock);
409
410 /* Clear the handler on each CPU. */
411 for (CPU_INFO_FOREACH(cii, ci)) {
412 sc = ci->ci_data.cpu_softcpu;
413 sh = (softhand_t *)((uint8_t *)sc + offset);
414 KASSERT(sh->sh_func != NULL);
415 KASSERT(sh->sh_pending == 0);
416 sh->sh_func = NULL;
417 }
418
419 mutex_exit(&softint_lock);
420 }
421
422 /*
423 * softint_schedule:
424 *
425 * Trigger a software interrupt. Must be called from a hardware
426 * interrupt handler, or with preemption disabled (since we are
427 * using the value of curcpu()).
428 */
429 void
430 softint_schedule(void *arg)
431 {
432 softhand_t *sh;
433 softint_t *si;
434 uintptr_t offset;
435 int s;
436
437 KASSERT(kpreempt_disabled());
438
439 /* Find the handler record for this CPU. */
440 offset = (uintptr_t)arg;
441 KASSERT(offset != 0 && offset < softint_bytes);
442 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
443
444 /* If it's already pending there's nothing to do. */
445 if (sh->sh_pending)
446 return;
447
448 /*
449 * Enqueue the handler into the LWP's pending list.
450 * If the LWP is completely idle, then make it run.
451 */
452 s = splhigh();
453 if (!sh->sh_pending) {
454 si = sh->sh_isr;
455 sh->sh_pending = 1;
456 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
457 if (si->si_active == 0) {
458 si->si_active = 1;
459 softint_trigger(si->si_machdep);
460 }
461 }
462 splx(s);
463 }
464
465 /*
466 * softint_execute:
467 *
468 * Invoke handlers for the specified soft interrupt.
469 * Must be entered at splhigh. Will drop the priority
470 * to the level specified, but returns back at splhigh.
471 */
472 static inline void
473 softint_execute(softint_t *si, lwp_t *l, int s)
474 {
475 softhand_t *sh;
476 bool havelock;
477
478 #ifdef __HAVE_FAST_SOFTINTS
479 KASSERT(si->si_lwp == curlwp);
480 #else
481 /* May be running in user context. */
482 #endif
483 KASSERT(si->si_cpu == curcpu());
484 KASSERT(si->si_lwp->l_wchan == NULL);
485 KASSERT(si->si_active);
486
487 havelock = false;
488
489 /*
490 * Note: due to priority inheritance we may have interrupted a
491 * higher priority LWP. Since the soft interrupt must be quick
492 * and is non-preemptable, we don't bother yielding.
493 */
494
495 while (!SIMPLEQ_EMPTY(&si->si_q)) {
496 /*
497 * Pick the longest waiting handler to run. We block
498 * interrupts but do not lock in order to do this, as
499 * we are protecting against the local CPU only.
500 */
501 sh = SIMPLEQ_FIRST(&si->si_q);
502 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
503 sh->sh_pending = 0;
504 splx(s);
505
506 /* Run the handler. */
507 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
508 KERNEL_LOCK(1, l);
509 havelock = true;
510 }
511 (*sh->sh_func)(sh->sh_arg);
512
513 (void)splhigh();
514 }
515
516 if (havelock) {
517 KERNEL_UNLOCK_ONE(l);
518 }
519
520 /*
521 * Unlocked, but only for statistics.
522 * Should be per-CPU to prevent cache ping-pong.
523 */
524 uvmexp.softs++;
525
526 KASSERT(si->si_cpu == curcpu());
527 KASSERT(si->si_lwp->l_wchan == NULL);
528 KASSERT(si->si_active);
529 si->si_evcnt.ev_count++;
530 si->si_active = 0;
531 }
532
533 /*
534 * softint_block:
535 *
536 * Update statistics when the soft interrupt blocks.
537 */
538 void
539 softint_block(lwp_t *l)
540 {
541 softint_t *si = l->l_private;
542
543 KASSERT((l->l_pflag & LP_INTR) != 0);
544 si->si_evcnt_block.ev_count++;
545 }
546
547 /*
548 * schednetisr:
549 *
550 * Trigger a legacy network interrupt. XXX Needs to go away.
551 */
552 void
553 schednetisr(int isr)
554 {
555
556 softint_schedule(softint_netisrs[isr]);
557 }
558
559 #ifndef __HAVE_FAST_SOFTINTS
560
561 #ifdef PREEMPTION
562 #error PREEMPTION requires __HAVE_FAST_SOFTINTS
563 #endif
564
565 /*
566 * softint_init_md:
567 *
568 * Slow path: perform machine-dependent initialization.
569 */
570 void
571 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
572 {
573 softint_t *si;
574
575 *machdep = (1 << level);
576 si = l->l_private;
577
578 lwp_lock(l);
579 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
580 lwp_lock(l);
581 /* Cheat and make the KASSERT in softint_thread() happy. */
582 si->si_active = 1;
583 l->l_stat = LSRUN;
584 sched_enqueue(l, false);
585 lwp_unlock(l);
586 }
587
588 /*
589 * softint_trigger:
590 *
591 * Slow path: cause a soft interrupt handler to begin executing.
592 * Called at IPL_HIGH.
593 */
594 void
595 softint_trigger(uintptr_t machdep)
596 {
597 struct cpu_info *ci;
598 lwp_t *l;
599
600 l = curlwp;
601 ci = l->l_cpu;
602 ci->ci_data.cpu_softints |= machdep;
603 if (l == ci->ci_data.cpu_idlelwp) {
604 cpu_need_resched(ci, 0);
605 } else {
606 /* MI equivalent of aston() */
607 cpu_signotify(l);
608 }
609 }
610
611 /*
612 * softint_thread:
613 *
614 * Slow path: MI software interrupt dispatch.
615 */
616 void
617 softint_thread(void *cookie)
618 {
619 softint_t *si;
620 lwp_t *l;
621 int s;
622
623 l = curlwp;
624 si = l->l_private;
625
626 for (;;) {
627 /*
628 * Clear pending status and run it. We must drop the
629 * spl before mi_switch(), since IPL_HIGH may be higher
630 * than IPL_SCHED (and it is not safe to switch at a
631 * higher level).
632 */
633 s = splhigh();
634 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
635 softint_execute(si, l, s);
636 splx(s);
637
638 lwp_lock(l);
639 l->l_stat = LSIDL;
640 mi_switch(l);
641 }
642 }
643
644 /*
645 * softint_picklwp:
646 *
647 * Slow path: called from mi_switch() to pick the highest priority
648 * soft interrupt LWP that needs to run.
649 */
650 lwp_t *
651 softint_picklwp(void)
652 {
653 struct cpu_info *ci;
654 u_int mask;
655 softint_t *si;
656 lwp_t *l;
657
658 ci = curcpu();
659 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
660 mask = ci->ci_data.cpu_softints;
661
662 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
663 l = si[SOFTINT_SERIAL].si_lwp;
664 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
665 l = si[SOFTINT_NET].si_lwp;
666 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
667 l = si[SOFTINT_BIO].si_lwp;
668 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
669 l = si[SOFTINT_CLOCK].si_lwp;
670 } else {
671 panic("softint_picklwp");
672 }
673
674 return l;
675 }
676
677 /*
678 * softint_overlay:
679 *
680 * Slow path: called from lwp_userret() to run a soft interrupt
681 * within the context of a user thread.
682 */
683 void
684 softint_overlay(void)
685 {
686 struct cpu_info *ci;
687 u_int softints, oflag;
688 softint_t *si;
689 pri_t obase;
690 lwp_t *l;
691 int s;
692
693 l = curlwp;
694 ci = l->l_cpu;
695 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
696
697 KASSERT((l->l_pflag & LP_INTR) == 0);
698
699 /* Arrange to elevate priority if the LWP blocks. */
700 s = splhigh();
701 obase = l->l_kpribase;
702 l->l_kpribase = PRI_KERNEL_RT;
703 oflag = l->l_pflag;
704 l->l_pflag = oflag | LP_INTR | LP_BOUND;
705 while ((softints = ci->ci_data.cpu_softints) != 0) {
706 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
707 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
708 softint_execute(&si[SOFTINT_SERIAL], l, s);
709 continue;
710 }
711 if ((softints & (1 << SOFTINT_NET)) != 0) {
712 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
713 softint_execute(&si[SOFTINT_NET], l, s);
714 continue;
715 }
716 if ((softints & (1 << SOFTINT_BIO)) != 0) {
717 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
718 softint_execute(&si[SOFTINT_BIO], l, s);
719 continue;
720 }
721 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
722 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
723 softint_execute(&si[SOFTINT_CLOCK], l, s);
724 continue;
725 }
726 }
727 l->l_pflag = oflag;
728 l->l_kpribase = obase;
729 splx(s);
730 }
731
732 #else /* !__HAVE_FAST_SOFTINTS */
733
734 /*
735 * softint_thread:
736 *
737 * Fast path: the LWP is switched to without restoring any state,
738 * so we should not arrive here - there is a direct handoff between
739 * the interrupt stub and softint_dispatch().
740 */
741 void
742 softint_thread(void *cookie)
743 {
744
745 panic("softint_thread");
746 }
747
748 /*
749 * softint_dispatch:
750 *
751 * Fast path: entry point from machine-dependent code.
752 */
753 void
754 softint_dispatch(lwp_t *pinned, int s)
755 {
756 struct bintime now;
757 softint_t *si;
758 u_int timing;
759 lwp_t *l;
760
761 l = curlwp;
762 si = l->l_private;
763
764 /*
765 * Note the interrupted LWP, and mark the current LWP as running
766 * before proceeding. Although this must as a rule be done with
767 * the LWP locked, at this point no external agents will want to
768 * modify the interrupt LWP's state.
769 */
770 timing = (softint_timing ? LW_TIMEINTR : 0);
771 l->l_switchto = pinned;
772 l->l_stat = LSONPROC;
773 l->l_flag |= (LW_RUNNING | timing);
774
775 /*
776 * Dispatch the interrupt. If softints are being timed, charge
777 * for it.
778 */
779 if (timing)
780 binuptime(&l->l_stime);
781 softint_execute(si, l, s);
782 if (timing) {
783 binuptime(&now);
784 updatertime(l, &now);
785 l->l_flag &= ~LW_TIMEINTR;
786 }
787
788 /*
789 * If we blocked while handling the interrupt, the pinned LWP is
790 * gone so switch to the idle LWP. It will select a new LWP to
791 * run.
792 *
793 * We must drop the priority level as switching at IPL_HIGH could
794 * deadlock the system. We have already set si->si_active = 0,
795 * which means another interrupt at this level can be triggered.
796 * That's not be a problem: we are lowering to level 's' which will
797 * prevent softint_dispatch() from being reentered at level 's',
798 * until the priority is finally dropped to IPL_NONE on entry to
799 * the idle loop.
800 */
801 l->l_stat = LSIDL;
802 if (l->l_switchto == NULL) {
803 splx(s);
804 pmap_deactivate(l);
805 lwp_exit_switchaway(l);
806 /* NOTREACHED */
807 }
808 l->l_switchto = NULL;
809 l->l_flag &= ~LW_RUNNING;
810 }
811
812 #endif /* !__HAVE_FAST_SOFTINTS */
813