kern_softint.c revision 1.18 1 /* $NetBSD: kern_softint.c,v 1.18 2008/04/28 20:24:03 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 *
171 * Future directions
172 *
173 * Provide a cheap way to direct software interrupts to remote
174 * CPUs. Provide a way to enqueue work items into the handler
175 * record, removing additional spl calls (see subr_workqueue.c).
176 */
177
178 #include "opt_preemption.h"
179
180 #include <sys/cdefs.h>
181 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.18 2008/04/28 20:24:03 martin Exp $");
182
183 #include <sys/param.h>
184 #include <sys/malloc.h>
185 #include <sys/proc.h>
186 #include <sys/intr.h>
187 #include <sys/mutex.h>
188 #include <sys/kthread.h>
189 #include <sys/evcnt.h>
190 #include <sys/cpu.h>
191
192 #include <net/netisr.h>
193
194 #include <uvm/uvm_extern.h>
195
196 /* This could overlap with signal info in struct lwp. */
197 typedef struct softint {
198 SIMPLEQ_HEAD(, softhand) si_q;
199 struct lwp *si_lwp;
200 struct cpu_info *si_cpu;
201 uintptr_t si_machdep;
202 struct evcnt si_evcnt;
203 struct evcnt si_evcnt_block;
204 int si_active;
205 char si_name[8];
206 char si_name_block[8+6];
207 } softint_t;
208
209 typedef struct softhand {
210 SIMPLEQ_ENTRY(softhand) sh_q;
211 void (*sh_func)(void *);
212 void *sh_arg;
213 softint_t *sh_isr;
214 u_int sh_pending;
215 u_int sh_flags;
216 } softhand_t;
217
218 typedef struct softcpu {
219 struct cpu_info *sc_cpu;
220 softint_t sc_int[SOFTINT_COUNT];
221 softhand_t sc_hand[1];
222 } softcpu_t;
223
224 static void softint_thread(void *);
225
226 u_int softint_bytes = 8192;
227 u_int softint_timing;
228 static u_int softint_max;
229 static kmutex_t softint_lock;
230 static void *softint_netisrs[32];
231
232 /*
233 * softint_init_isr:
234 *
235 * Initialize a single interrupt level for a single CPU.
236 */
237 static void
238 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
239 {
240 struct cpu_info *ci;
241 softint_t *si;
242 int error;
243
244 si = &sc->sc_int[level];
245 ci = sc->sc_cpu;
246 si->si_cpu = ci;
247
248 SIMPLEQ_INIT(&si->si_q);
249
250 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
251 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
252 "soft%s/%u", desc, ci->ci_index);
253 if (error != 0)
254 panic("softint_init_isr: error %d", error);
255
256 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
257 ci->ci_index);
258 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
259 "softint", si->si_name);
260 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
261 desc, ci->ci_index);
262 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
263 "softint", si->si_name_block);
264
265 si->si_lwp->l_private = si;
266 softint_init_md(si->si_lwp, level, &si->si_machdep);
267 }
268 /*
269 * softint_init:
270 *
271 * Initialize per-CPU data structures. Called from mi_cpu_attach().
272 */
273 void
274 softint_init(struct cpu_info *ci)
275 {
276 static struct cpu_info *first;
277 softcpu_t *sc, *scfirst;
278 softhand_t *sh, *shmax;
279
280 if (first == NULL) {
281 /* Boot CPU. */
282 first = ci;
283 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
284 softint_bytes = round_page(softint_bytes);
285 softint_max = (softint_bytes - sizeof(softcpu_t)) /
286 sizeof(softhand_t);
287 }
288
289 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
290 UVM_KMF_WIRED | UVM_KMF_ZERO);
291 if (sc == NULL)
292 panic("softint_init_cpu: cannot allocate memory");
293
294 ci->ci_data.cpu_softcpu = sc;
295 ci->ci_data.cpu_softints = 0;
296 sc->sc_cpu = ci;
297
298 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
299 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
300 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
301 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
302
303 if (first != ci) {
304 mutex_enter(&softint_lock);
305 scfirst = first->ci_data.cpu_softcpu;
306 sh = sc->sc_hand;
307 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
308 /* Update pointers for this CPU. */
309 for (shmax = sh + softint_max; sh < shmax; sh++) {
310 if (sh->sh_func == NULL)
311 continue;
312 sh->sh_isr =
313 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
314 }
315 mutex_exit(&softint_lock);
316 } else {
317 /*
318 * Establish handlers for legacy net interrupts.
319 * XXX Needs to go away.
320 */
321 #define DONETISR(n, f) \
322 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
323 (void (*)(void *))(f), NULL)
324 #include <net/netisr_dispatch.h>
325 }
326 }
327
328 /*
329 * softint_establish:
330 *
331 * Register a software interrupt handler.
332 */
333 void *
334 softint_establish(u_int flags, void (*func)(void *), void *arg)
335 {
336 CPU_INFO_ITERATOR cii;
337 struct cpu_info *ci;
338 softcpu_t *sc;
339 softhand_t *sh;
340 u_int level, index;
341
342 level = (flags & SOFTINT_LVLMASK);
343 KASSERT(level < SOFTINT_COUNT);
344
345 mutex_enter(&softint_lock);
346
347 /* Find a free slot. */
348 sc = curcpu()->ci_data.cpu_softcpu;
349 for (index = 1; index < softint_max; index++)
350 if (sc->sc_hand[index].sh_func == NULL)
351 break;
352 if (index == softint_max) {
353 mutex_exit(&softint_lock);
354 printf("WARNING: softint_establish: table full, "
355 "increase softint_bytes\n");
356 return NULL;
357 }
358
359 /* Set up the handler on each CPU. */
360 if (ncpu < 2) {
361 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
362 sc = curcpu()->ci_data.cpu_softcpu;
363 sh = &sc->sc_hand[index];
364 sh->sh_isr = &sc->sc_int[level];
365 sh->sh_func = func;
366 sh->sh_arg = arg;
367 sh->sh_flags = flags;
368 sh->sh_pending = 0;
369 } else for (CPU_INFO_FOREACH(cii, ci)) {
370 sc = ci->ci_data.cpu_softcpu;
371 sh = &sc->sc_hand[index];
372 sh->sh_isr = &sc->sc_int[level];
373 sh->sh_func = func;
374 sh->sh_arg = arg;
375 sh->sh_flags = flags;
376 sh->sh_pending = 0;
377 }
378
379 mutex_exit(&softint_lock);
380
381 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
382 }
383
384 /*
385 * softint_disestablish:
386 *
387 * Unregister a software interrupt handler.
388 */
389 void
390 softint_disestablish(void *arg)
391 {
392 CPU_INFO_ITERATOR cii;
393 struct cpu_info *ci;
394 softcpu_t *sc;
395 softhand_t *sh;
396 uintptr_t offset;
397
398 offset = (uintptr_t)arg;
399 KASSERT(offset != 0 && offset < softint_bytes);
400
401 mutex_enter(&softint_lock);
402
403 /* Clear the handler on each CPU. */
404 for (CPU_INFO_FOREACH(cii, ci)) {
405 sc = ci->ci_data.cpu_softcpu;
406 sh = (softhand_t *)((uint8_t *)sc + offset);
407 KASSERT(sh->sh_func != NULL);
408 KASSERT(sh->sh_pending == 0);
409 sh->sh_func = NULL;
410 }
411
412 mutex_exit(&softint_lock);
413 }
414
415 /*
416 * softint_schedule:
417 *
418 * Trigger a software interrupt. Must be called from a hardware
419 * interrupt handler, or with preemption disabled (since we are
420 * using the value of curcpu()).
421 */
422 void
423 softint_schedule(void *arg)
424 {
425 softhand_t *sh;
426 softint_t *si;
427 uintptr_t offset;
428 int s;
429
430 KASSERT(kpreempt_disabled());
431
432 /* Find the handler record for this CPU. */
433 offset = (uintptr_t)arg;
434 KASSERT(offset != 0 && offset < softint_bytes);
435 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
436
437 /* If it's already pending there's nothing to do. */
438 if (sh->sh_pending)
439 return;
440
441 /*
442 * Enqueue the handler into the LWP's pending list.
443 * If the LWP is completely idle, then make it run.
444 */
445 s = splhigh();
446 if (!sh->sh_pending) {
447 si = sh->sh_isr;
448 sh->sh_pending = 1;
449 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
450 if (si->si_active == 0) {
451 si->si_active = 1;
452 softint_trigger(si->si_machdep);
453 }
454 }
455 splx(s);
456 }
457
458 /*
459 * softint_execute:
460 *
461 * Invoke handlers for the specified soft interrupt.
462 * Must be entered at splhigh. Will drop the priority
463 * to the level specified, but returns back at splhigh.
464 */
465 static inline void
466 softint_execute(softint_t *si, lwp_t *l, int s)
467 {
468 softhand_t *sh;
469 bool havelock;
470
471 #ifdef __HAVE_FAST_SOFTINTS
472 KASSERT(si->si_lwp == curlwp);
473 #else
474 /* May be running in user context. */
475 #endif
476 KASSERT(si->si_cpu == curcpu());
477 KASSERT(si->si_lwp->l_wchan == NULL);
478 KASSERT(si->si_active);
479
480 havelock = false;
481
482 /*
483 * Note: due to priority inheritance we may have interrupted a
484 * higher priority LWP. Since the soft interrupt must be quick
485 * and is non-preemptable, we don't bother yielding.
486 */
487
488 while (!SIMPLEQ_EMPTY(&si->si_q)) {
489 /*
490 * Pick the longest waiting handler to run. We block
491 * interrupts but do not lock in order to do this, as
492 * we are protecting against the local CPU only.
493 */
494 sh = SIMPLEQ_FIRST(&si->si_q);
495 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
496 sh->sh_pending = 0;
497 splx(s);
498
499 /* Run the handler. */
500 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
501 KERNEL_LOCK(1, l);
502 havelock = true;
503 }
504 (*sh->sh_func)(sh->sh_arg);
505
506 (void)splhigh();
507 }
508
509 if (havelock) {
510 KERNEL_UNLOCK_ONE(l);
511 }
512
513 /*
514 * Unlocked, but only for statistics.
515 * Should be per-CPU to prevent cache ping-pong.
516 */
517 uvmexp.softs++;
518
519 KASSERT(si->si_cpu == curcpu());
520 KASSERT(si->si_lwp->l_wchan == NULL);
521 KASSERT(si->si_active);
522 si->si_evcnt.ev_count++;
523 si->si_active = 0;
524 }
525
526 /*
527 * softint_block:
528 *
529 * Update statistics when the soft interrupt blocks.
530 */
531 void
532 softint_block(lwp_t *l)
533 {
534 softint_t *si = l->l_private;
535
536 KASSERT((l->l_pflag & LP_INTR) != 0);
537 si->si_evcnt_block.ev_count++;
538 }
539
540 /*
541 * schednetisr:
542 *
543 * Trigger a legacy network interrupt. XXX Needs to go away.
544 */
545 void
546 schednetisr(int isr)
547 {
548
549 softint_schedule(softint_netisrs[isr]);
550 }
551
552 #ifndef __HAVE_FAST_SOFTINTS
553
554 #ifdef PREEMPTION
555 #error PREEMPTION requires __HAVE_FAST_SOFTINTS
556 #endif
557
558 /*
559 * softint_init_md:
560 *
561 * Slow path: perform machine-dependent initialization.
562 */
563 void
564 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
565 {
566 softint_t *si;
567
568 *machdep = (1 << level);
569 si = l->l_private;
570
571 lwp_lock(l);
572 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
573 lwp_lock(l);
574 /* Cheat and make the KASSERT in softint_thread() happy. */
575 si->si_active = 1;
576 l->l_stat = LSRUN;
577 sched_enqueue(l, false);
578 lwp_unlock(l);
579 }
580
581 /*
582 * softint_trigger:
583 *
584 * Slow path: cause a soft interrupt handler to begin executing.
585 * Called at IPL_HIGH.
586 */
587 void
588 softint_trigger(uintptr_t machdep)
589 {
590 struct cpu_info *ci;
591 lwp_t *l;
592
593 l = curlwp;
594 ci = l->l_cpu;
595 ci->ci_data.cpu_softints |= machdep;
596 if (l == ci->ci_data.cpu_idlelwp) {
597 cpu_need_resched(ci, 0);
598 } else {
599 /* MI equivalent of aston() */
600 cpu_signotify(l);
601 }
602 }
603
604 /*
605 * softint_thread:
606 *
607 * Slow path: MI software interrupt dispatch.
608 */
609 void
610 softint_thread(void *cookie)
611 {
612 softint_t *si;
613 lwp_t *l;
614 int s;
615
616 l = curlwp;
617 si = l->l_private;
618
619 for (;;) {
620 /*
621 * Clear pending status and run it. We must drop the
622 * spl before mi_switch(), since IPL_HIGH may be higher
623 * than IPL_SCHED (and it is not safe to switch at a
624 * higher level).
625 */
626 s = splhigh();
627 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
628 softint_execute(si, l, s);
629 splx(s);
630
631 lwp_lock(l);
632 l->l_stat = LSIDL;
633 mi_switch(l);
634 }
635 }
636
637 /*
638 * softint_picklwp:
639 *
640 * Slow path: called from mi_switch() to pick the highest priority
641 * soft interrupt LWP that needs to run.
642 */
643 lwp_t *
644 softint_picklwp(void)
645 {
646 struct cpu_info *ci;
647 u_int mask;
648 softint_t *si;
649 lwp_t *l;
650
651 ci = curcpu();
652 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
653 mask = ci->ci_data.cpu_softints;
654
655 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
656 l = si[SOFTINT_SERIAL].si_lwp;
657 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
658 l = si[SOFTINT_NET].si_lwp;
659 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
660 l = si[SOFTINT_BIO].si_lwp;
661 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
662 l = si[SOFTINT_CLOCK].si_lwp;
663 } else {
664 panic("softint_picklwp");
665 }
666
667 return l;
668 }
669
670 /*
671 * softint_overlay:
672 *
673 * Slow path: called from lwp_userret() to run a soft interrupt
674 * within the context of a user thread.
675 */
676 void
677 softint_overlay(void)
678 {
679 struct cpu_info *ci;
680 u_int softints, oflag;
681 softint_t *si;
682 pri_t obase;
683 lwp_t *l;
684 int s;
685
686 l = curlwp;
687 ci = l->l_cpu;
688 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
689
690 KASSERT((l->l_pflag & LP_INTR) == 0);
691
692 /* Arrange to elevate priority if the LWP blocks. */
693 s = splhigh();
694 obase = l->l_kpribase;
695 l->l_kpribase = PRI_KERNEL_RT;
696 oflag = l->l_pflag;
697 l->l_pflag = oflag | LP_INTR | LP_BOUND;
698 while ((softints = ci->ci_data.cpu_softints) != 0) {
699 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
700 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
701 softint_execute(&si[SOFTINT_SERIAL], l, s);
702 continue;
703 }
704 if ((softints & (1 << SOFTINT_NET)) != 0) {
705 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
706 softint_execute(&si[SOFTINT_NET], l, s);
707 continue;
708 }
709 if ((softints & (1 << SOFTINT_BIO)) != 0) {
710 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
711 softint_execute(&si[SOFTINT_BIO], l, s);
712 continue;
713 }
714 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
715 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
716 softint_execute(&si[SOFTINT_CLOCK], l, s);
717 continue;
718 }
719 }
720 l->l_pflag = oflag;
721 l->l_kpribase = obase;
722 splx(s);
723 }
724
725 #else /* !__HAVE_FAST_SOFTINTS */
726
727 /*
728 * softint_thread:
729 *
730 * Fast path: the LWP is switched to without restoring any state,
731 * so we should not arrive here - there is a direct handoff between
732 * the interrupt stub and softint_dispatch().
733 */
734 void
735 softint_thread(void *cookie)
736 {
737
738 panic("softint_thread");
739 }
740
741 /*
742 * softint_dispatch:
743 *
744 * Fast path: entry point from machine-dependent code.
745 */
746 void
747 softint_dispatch(lwp_t *pinned, int s)
748 {
749 struct bintime now;
750 softint_t *si;
751 u_int timing;
752 lwp_t *l;
753
754 l = curlwp;
755 si = l->l_private;
756
757 /*
758 * Note the interrupted LWP, and mark the current LWP as running
759 * before proceeding. Although this must as a rule be done with
760 * the LWP locked, at this point no external agents will want to
761 * modify the interrupt LWP's state.
762 */
763 timing = (softint_timing ? LW_TIMEINTR : 0);
764 l->l_switchto = pinned;
765 l->l_stat = LSONPROC;
766 l->l_flag |= (LW_RUNNING | timing);
767
768 /*
769 * Dispatch the interrupt. If softints are being timed, charge
770 * for it.
771 */
772 if (timing)
773 binuptime(&l->l_stime);
774 softint_execute(si, l, s);
775 if (timing) {
776 binuptime(&now);
777 updatertime(l, &now);
778 l->l_flag &= ~LW_TIMEINTR;
779 }
780
781 /*
782 * If we blocked while handling the interrupt, the pinned LWP is
783 * gone so switch to the idle LWP. It will select a new LWP to
784 * run.
785 *
786 * We must drop the priority level as switching at IPL_HIGH could
787 * deadlock the system. We have already set si->si_active = 0,
788 * which means another interrupt at this level can be triggered.
789 * That's not be a problem: we are lowering to level 's' which will
790 * prevent softint_dispatch() from being reentered at level 's',
791 * until the priority is finally dropped to IPL_NONE on entry to
792 * the idle loop.
793 */
794 l->l_stat = LSIDL;
795 if (l->l_switchto == NULL) {
796 splx(s);
797 pmap_deactivate(l);
798 lwp_exit_switchaway(l);
799 /* NOTREACHED */
800 }
801 l->l_switchto = NULL;
802 l->l_flag &= ~LW_RUNNING;
803 }
804
805 #endif /* !__HAVE_FAST_SOFTINTS */
806