kern_softint.c revision 1.31.4.2 1 /* $NetBSD: kern_softint.c,v 1.31.4.2 2011/04/21 01:42:08 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 *
171 * Future directions
172 *
173 * Provide a cheap way to direct software interrupts to remote
174 * CPUs. Provide a way to enqueue work items into the handler
175 * record, removing additional spl calls (see subr_workqueue.c).
176 */
177
178 #include <sys/cdefs.h>
179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.31.4.2 2011/04/21 01:42:08 rmind Exp $");
180
181 #include <sys/param.h>
182 #include <sys/malloc.h>
183 #include <sys/proc.h>
184 #include <sys/intr.h>
185 #include <sys/mutex.h>
186 #include <sys/kthread.h>
187 #include <sys/evcnt.h>
188 #include <sys/cpu.h>
189 #include <sys/xcall.h>
190
191 #include <net/netisr.h>
192
193 #include <uvm/uvm_extern.h>
194
195 /* This could overlap with signal info in struct lwp. */
196 typedef struct softint {
197 SIMPLEQ_HEAD(, softhand) si_q;
198 struct lwp *si_lwp;
199 struct cpu_info *si_cpu;
200 uintptr_t si_machdep;
201 struct evcnt si_evcnt;
202 struct evcnt si_evcnt_block;
203 int si_active;
204 char si_name[8];
205 char si_name_block[8+6];
206 } softint_t;
207
208 typedef struct softhand {
209 SIMPLEQ_ENTRY(softhand) sh_q;
210 void (*sh_func)(void *);
211 void *sh_arg;
212 softint_t *sh_isr;
213 u_int sh_flags;
214 } softhand_t;
215
216 typedef struct softcpu {
217 struct cpu_info *sc_cpu;
218 softint_t sc_int[SOFTINT_COUNT];
219 softhand_t sc_hand[1];
220 } softcpu_t;
221
222 static void softint_thread(void *);
223
224 u_int softint_bytes = 8192;
225 u_int softint_timing;
226 static u_int softint_max;
227 static kmutex_t softint_lock;
228 static void *softint_netisrs[NETISR_MAX];
229
230 /*
231 * softint_init_isr:
232 *
233 * Initialize a single interrupt level for a single CPU.
234 */
235 static void
236 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
237 {
238 struct cpu_info *ci;
239 softint_t *si;
240 int error;
241
242 si = &sc->sc_int[level];
243 ci = sc->sc_cpu;
244 si->si_cpu = ci;
245
246 SIMPLEQ_INIT(&si->si_q);
247
248 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
249 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
250 "soft%s/%u", desc, ci->ci_index);
251 if (error != 0)
252 panic("softint_init_isr: error %d", error);
253
254 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
255 ci->ci_index);
256 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
257 "softint", si->si_name);
258 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
259 desc, ci->ci_index);
260 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
261 "softint", si->si_name_block);
262
263 si->si_lwp->l_private = si;
264 softint_init_md(si->si_lwp, level, &si->si_machdep);
265 }
266 /*
267 * softint_init:
268 *
269 * Initialize per-CPU data structures. Called from mi_cpu_attach().
270 */
271 void
272 softint_init(struct cpu_info *ci)
273 {
274 static struct cpu_info *first;
275 softcpu_t *sc, *scfirst;
276 softhand_t *sh, *shmax;
277
278 if (first == NULL) {
279 /* Boot CPU. */
280 first = ci;
281 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
282 softint_bytes = round_page(softint_bytes);
283 softint_max = (softint_bytes - sizeof(softcpu_t)) /
284 sizeof(softhand_t);
285 }
286
287 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
288 UVM_KMF_WIRED | UVM_KMF_ZERO);
289 if (sc == NULL)
290 panic("softint_init_cpu: cannot allocate memory");
291
292 ci->ci_data.cpu_softcpu = sc;
293 ci->ci_data.cpu_softints = 0;
294 sc->sc_cpu = ci;
295
296 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
297 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
298 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
299 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
300
301 if (first != ci) {
302 mutex_enter(&softint_lock);
303 scfirst = first->ci_data.cpu_softcpu;
304 sh = sc->sc_hand;
305 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
306 /* Update pointers for this CPU. */
307 for (shmax = sh + softint_max; sh < shmax; sh++) {
308 if (sh->sh_func == NULL)
309 continue;
310 sh->sh_isr =
311 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
312 }
313 mutex_exit(&softint_lock);
314 } else {
315 /*
316 * Establish handlers for legacy net interrupts.
317 * XXX Needs to go away.
318 */
319 #define DONETISR(n, f) \
320 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
321 (void (*)(void *))(f), NULL)
322 #include <net/netisr_dispatch.h>
323 }
324 }
325
326 /*
327 * softint_establish:
328 *
329 * Register a software interrupt handler.
330 */
331 void *
332 softint_establish(u_int flags, void (*func)(void *), void *arg)
333 {
334 CPU_INFO_ITERATOR cii;
335 struct cpu_info *ci;
336 softcpu_t *sc;
337 softhand_t *sh;
338 u_int level, index;
339
340 level = (flags & SOFTINT_LVLMASK);
341 KASSERT(level < SOFTINT_COUNT);
342 KASSERT((flags & SOFTINT_IMPMASK) == 0);
343
344 mutex_enter(&softint_lock);
345
346 /* Find a free slot. */
347 sc = curcpu()->ci_data.cpu_softcpu;
348 for (index = 1; index < softint_max; index++) {
349 if (sc->sc_hand[index].sh_func == NULL)
350 break;
351 }
352 if (index == softint_max) {
353 mutex_exit(&softint_lock);
354 printf("WARNING: softint_establish: table full, "
355 "increase softint_bytes\n");
356 return NULL;
357 }
358
359 /* Set up the handler on each CPU. */
360 if (ncpu < 2) {
361 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
362 sc = curcpu()->ci_data.cpu_softcpu;
363 sh = &sc->sc_hand[index];
364 sh->sh_isr = &sc->sc_int[level];
365 sh->sh_func = func;
366 sh->sh_arg = arg;
367 sh->sh_flags = flags;
368 } else for (CPU_INFO_FOREACH(cii, ci)) {
369 sc = ci->ci_data.cpu_softcpu;
370 sh = &sc->sc_hand[index];
371 sh->sh_isr = &sc->sc_int[level];
372 sh->sh_func = func;
373 sh->sh_arg = arg;
374 sh->sh_flags = flags;
375 }
376
377 mutex_exit(&softint_lock);
378
379 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
380 }
381
382 /*
383 * softint_disestablish:
384 *
385 * Unregister a software interrupt handler. The soft interrupt could
386 * still be active at this point, but the caller commits not to try
387 * and trigger it again once this call is made. The caller must not
388 * hold any locks that could be taken from soft interrupt context,
389 * because we will wait for the softint to complete if it's still
390 * running.
391 */
392 void
393 softint_disestablish(void *arg)
394 {
395 CPU_INFO_ITERATOR cii;
396 struct cpu_info *ci;
397 softcpu_t *sc;
398 softhand_t *sh;
399 uintptr_t offset;
400 uint64_t where;
401 u_int flags;
402
403 offset = (uintptr_t)arg;
404 KASSERT(offset != 0 && offset < softint_bytes);
405
406 /*
407 * Run a cross call so we see up to date values of sh_flags from
408 * all CPUs. Once softint_disestablish() is called, the caller
409 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
410 * it again. So, we are only looking for handler records with
411 * SOFTINT_ACTIVE already set.
412 */
413 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
414 xc_wait(where);
415
416 for (;;) {
417 /* Collect flag values from each CPU. */
418 flags = 0;
419 for (CPU_INFO_FOREACH(cii, ci)) {
420 sc = ci->ci_data.cpu_softcpu;
421 sh = (softhand_t *)((uint8_t *)sc + offset);
422 KASSERT(sh->sh_func != NULL);
423 flags |= sh->sh_flags;
424 }
425 /* Inactive on all CPUs? */
426 if ((flags & SOFTINT_ACTIVE) == 0) {
427 break;
428 }
429 /* Oops, still active. Wait for it to clear. */
430 (void)kpause("softdis", false, 1, NULL);
431 }
432
433 /* Clear the handler on each CPU. */
434 mutex_enter(&softint_lock);
435 for (CPU_INFO_FOREACH(cii, ci)) {
436 sc = ci->ci_data.cpu_softcpu;
437 sh = (softhand_t *)((uint8_t *)sc + offset);
438 KASSERT(sh->sh_func != NULL);
439 sh->sh_func = NULL;
440 }
441 mutex_exit(&softint_lock);
442 }
443
444 /*
445 * softint_schedule:
446 *
447 * Trigger a software interrupt. Must be called from a hardware
448 * interrupt handler, or with preemption disabled (since we are
449 * using the value of curcpu()).
450 */
451 void
452 softint_schedule(void *arg)
453 {
454 softhand_t *sh;
455 softint_t *si;
456 uintptr_t offset;
457 int s;
458
459 KASSERT(kpreempt_disabled());
460
461 /* Find the handler record for this CPU. */
462 offset = (uintptr_t)arg;
463 KASSERT(offset != 0 && offset < softint_bytes);
464 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
465
466 /* If it's already pending there's nothing to do. */
467 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
468 return;
469 }
470
471 /*
472 * Enqueue the handler into the LWP's pending list.
473 * If the LWP is completely idle, then make it run.
474 */
475 s = splhigh();
476 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
477 si = sh->sh_isr;
478 sh->sh_flags |= SOFTINT_PENDING;
479 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
480 if (si->si_active == 0) {
481 si->si_active = 1;
482 softint_trigger(si->si_machdep);
483 }
484 }
485 splx(s);
486 }
487
488 /*
489 * softint_execute:
490 *
491 * Invoke handlers for the specified soft interrupt.
492 * Must be entered at splhigh. Will drop the priority
493 * to the level specified, but returns back at splhigh.
494 */
495 static inline void
496 softint_execute(softint_t *si, lwp_t *l, int s)
497 {
498 softhand_t *sh;
499 bool havelock;
500
501 #ifdef __HAVE_FAST_SOFTINTS
502 KASSERT(si->si_lwp == curlwp);
503 #else
504 /* May be running in user context. */
505 #endif
506 KASSERT(si->si_cpu == curcpu());
507 KASSERT(si->si_lwp->l_wchan == NULL);
508 KASSERT(si->si_active);
509
510 havelock = false;
511
512 /*
513 * Note: due to priority inheritance we may have interrupted a
514 * higher priority LWP. Since the soft interrupt must be quick
515 * and is non-preemptable, we don't bother yielding.
516 */
517
518 while (!SIMPLEQ_EMPTY(&si->si_q)) {
519 /*
520 * Pick the longest waiting handler to run. We block
521 * interrupts but do not lock in order to do this, as
522 * we are protecting against the local CPU only.
523 */
524 sh = SIMPLEQ_FIRST(&si->si_q);
525 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
526 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
527 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
528 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
529 splx(s);
530
531 /* Run the handler. */
532 if (sh->sh_flags & SOFTINT_MPSAFE) {
533 if (havelock) {
534 KERNEL_UNLOCK_ONE(l);
535 havelock = false;
536 }
537 } else if (!havelock) {
538 KERNEL_LOCK(1, l);
539 havelock = true;
540 }
541 (*sh->sh_func)(sh->sh_arg);
542
543 /* Diagnostic: check that spin-locks have not leaked. */
544 KASSERTMSG(curcpu()->ci_mtx_count == 0,
545 ("%s: ci_mtx_count (%d) != 0, sh_func %p\n",
546 __func__, curcpu()->ci_mtx_count, sh->sh_func));
547
548 (void)splhigh();
549 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
550 sh->sh_flags ^= SOFTINT_ACTIVE;
551 }
552
553 if (havelock) {
554 KERNEL_UNLOCK_ONE(l);
555 }
556
557 /*
558 * Unlocked, but only for statistics.
559 * Should be per-CPU to prevent cache ping-pong.
560 */
561 curcpu()->ci_data.cpu_nsoft++;
562
563 KASSERT(si->si_cpu == curcpu());
564 KASSERT(si->si_lwp->l_wchan == NULL);
565 KASSERT(si->si_active);
566 si->si_evcnt.ev_count++;
567 si->si_active = 0;
568 }
569
570 /*
571 * softint_block:
572 *
573 * Update statistics when the soft interrupt blocks.
574 */
575 void
576 softint_block(lwp_t *l)
577 {
578 softint_t *si = l->l_private;
579
580 KASSERT((l->l_pflag & LP_INTR) != 0);
581 si->si_evcnt_block.ev_count++;
582 }
583
584 /*
585 * schednetisr:
586 *
587 * Trigger a legacy network interrupt. XXX Needs to go away.
588 */
589 void
590 schednetisr(int isr)
591 {
592
593 softint_schedule(softint_netisrs[isr]);
594 }
595
596 #ifndef __HAVE_FAST_SOFTINTS
597
598 #ifdef __HAVE_PREEMPTION
599 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
600 #endif
601
602 /*
603 * softint_init_md:
604 *
605 * Slow path: perform machine-dependent initialization.
606 */
607 void
608 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
609 {
610 softint_t *si;
611
612 *machdep = (1 << level);
613 si = l->l_private;
614
615 lwp_lock(l);
616 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
617 lwp_lock(l);
618 /* Cheat and make the KASSERT in softint_thread() happy. */
619 si->si_active = 1;
620 l->l_stat = LSRUN;
621 sched_enqueue(l, false);
622 lwp_unlock(l);
623 }
624
625 /*
626 * softint_trigger:
627 *
628 * Slow path: cause a soft interrupt handler to begin executing.
629 * Called at IPL_HIGH.
630 */
631 void
632 softint_trigger(uintptr_t machdep)
633 {
634 struct cpu_info *ci;
635 lwp_t *l;
636
637 l = curlwp;
638 ci = l->l_cpu;
639 ci->ci_data.cpu_softints |= machdep;
640 if (l == ci->ci_data.cpu_idlelwp) {
641 cpu_need_resched(ci, 0);
642 } else {
643 /* MI equivalent of aston() */
644 cpu_signotify(l);
645 }
646 }
647
648 /*
649 * softint_thread:
650 *
651 * Slow path: MI software interrupt dispatch.
652 */
653 void
654 softint_thread(void *cookie)
655 {
656 softint_t *si;
657 lwp_t *l;
658 int s;
659
660 l = curlwp;
661 si = l->l_private;
662
663 for (;;) {
664 /*
665 * Clear pending status and run it. We must drop the
666 * spl before mi_switch(), since IPL_HIGH may be higher
667 * than IPL_SCHED (and it is not safe to switch at a
668 * higher level).
669 */
670 s = splhigh();
671 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
672 softint_execute(si, l, s);
673 splx(s);
674
675 lwp_lock(l);
676 l->l_stat = LSIDL;
677 mi_switch(l);
678 }
679 }
680
681 /*
682 * softint_picklwp:
683 *
684 * Slow path: called from mi_switch() to pick the highest priority
685 * soft interrupt LWP that needs to run.
686 */
687 lwp_t *
688 softint_picklwp(void)
689 {
690 struct cpu_info *ci;
691 u_int mask;
692 softint_t *si;
693 lwp_t *l;
694
695 ci = curcpu();
696 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
697 mask = ci->ci_data.cpu_softints;
698
699 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
700 l = si[SOFTINT_SERIAL].si_lwp;
701 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
702 l = si[SOFTINT_NET].si_lwp;
703 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
704 l = si[SOFTINT_BIO].si_lwp;
705 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
706 l = si[SOFTINT_CLOCK].si_lwp;
707 } else {
708 panic("softint_picklwp");
709 }
710
711 return l;
712 }
713
714 /*
715 * softint_overlay:
716 *
717 * Slow path: called from lwp_userret() to run a soft interrupt
718 * within the context of a user thread.
719 */
720 void
721 softint_overlay(void)
722 {
723 struct cpu_info *ci;
724 u_int softints, oflag;
725 softint_t *si;
726 pri_t obase;
727 lwp_t *l;
728 int s;
729
730 l = curlwp;
731 KASSERT((l->l_pflag & LP_INTR) == 0);
732
733 /*
734 * Arrange to elevate priority if the LWP blocks. Also, bind LWP
735 * to the CPU. Note: disable kernel preemption before doing that.
736 */
737 s = splhigh();
738 ci = l->l_cpu;
739 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
740
741 obase = l->l_kpribase;
742 l->l_kpribase = PRI_KERNEL_RT;
743 oflag = l->l_pflag;
744 l->l_pflag = oflag | LP_INTR | LP_BOUND;
745
746 while ((softints = ci->ci_data.cpu_softints) != 0) {
747 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
748 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
749 softint_execute(&si[SOFTINT_SERIAL], l, s);
750 continue;
751 }
752 if ((softints & (1 << SOFTINT_NET)) != 0) {
753 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
754 softint_execute(&si[SOFTINT_NET], l, s);
755 continue;
756 }
757 if ((softints & (1 << SOFTINT_BIO)) != 0) {
758 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
759 softint_execute(&si[SOFTINT_BIO], l, s);
760 continue;
761 }
762 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
763 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
764 softint_execute(&si[SOFTINT_CLOCK], l, s);
765 continue;
766 }
767 }
768 l->l_pflag = oflag;
769 l->l_kpribase = obase;
770 splx(s);
771 }
772
773 #else /* !__HAVE_FAST_SOFTINTS */
774
775 /*
776 * softint_thread:
777 *
778 * Fast path: the LWP is switched to without restoring any state,
779 * so we should not arrive here - there is a direct handoff between
780 * the interrupt stub and softint_dispatch().
781 */
782 void
783 softint_thread(void *cookie)
784 {
785
786 panic("softint_thread");
787 }
788
789 /*
790 * softint_dispatch:
791 *
792 * Fast path: entry point from machine-dependent code.
793 */
794 void
795 softint_dispatch(lwp_t *pinned, int s)
796 {
797 struct bintime now;
798 softint_t *si;
799 u_int timing;
800 lwp_t *l;
801
802 KASSERT((pinned->l_pflag & LP_RUNNING) != 0);
803 l = curlwp;
804 si = l->l_private;
805
806 /*
807 * Note the interrupted LWP, and mark the current LWP as running
808 * before proceeding. Although this must as a rule be done with
809 * the LWP locked, at this point no external agents will want to
810 * modify the interrupt LWP's state.
811 */
812 timing = (softint_timing ? LP_TIMEINTR : 0);
813 l->l_switchto = pinned;
814 l->l_stat = LSONPROC;
815 l->l_pflag |= (LP_RUNNING | timing);
816
817 /*
818 * Dispatch the interrupt. If softints are being timed, charge
819 * for it.
820 */
821 if (timing)
822 binuptime(&l->l_stime);
823 softint_execute(si, l, s);
824 if (timing) {
825 binuptime(&now);
826 updatertime(l, &now);
827 l->l_pflag &= ~LP_TIMEINTR;
828 }
829
830 /*
831 * If we blocked while handling the interrupt, the pinned LWP is
832 * gone so switch to the idle LWP. It will select a new LWP to
833 * run.
834 *
835 * We must drop the priority level as switching at IPL_HIGH could
836 * deadlock the system. We have already set si->si_active = 0,
837 * which means another interrupt at this level can be triggered.
838 * That's not be a problem: we are lowering to level 's' which will
839 * prevent softint_dispatch() from being reentered at level 's',
840 * until the priority is finally dropped to IPL_NONE on entry to
841 * the LWP chosen by lwp_exit_switchaway().
842 */
843 l->l_stat = LSIDL;
844 if (l->l_switchto == NULL) {
845 splx(s);
846 pmap_deactivate(l);
847 lwp_exit_switchaway(l);
848 /* NOTREACHED */
849 }
850 l->l_switchto = NULL;
851 l->l_pflag &= ~LP_RUNNING;
852 }
853
854 #endif /* !__HAVE_FAST_SOFTINTS */
855