kern_softint.c revision 1.31.4.3 1 /* $NetBSD: kern_softint.c,v 1.31.4.3 2011/05/31 03:05:02 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 *
171 * Future directions
172 *
173 * Provide a cheap way to direct software interrupts to remote
174 * CPUs. Provide a way to enqueue work items into the handler
175 * record, removing additional spl calls (see subr_workqueue.c).
176 */
177
178 #include <sys/cdefs.h>
179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.31.4.3 2011/05/31 03:05:02 rmind Exp $");
180
181 #include <sys/param.h>
182 #include <sys/proc.h>
183 #include <sys/intr.h>
184 #include <sys/mutex.h>
185 #include <sys/kthread.h>
186 #include <sys/evcnt.h>
187 #include <sys/cpu.h>
188 #include <sys/xcall.h>
189
190 #include <net/netisr.h>
191
192 #include <uvm/uvm_extern.h>
193
194 /* This could overlap with signal info in struct lwp. */
195 typedef struct softint {
196 SIMPLEQ_HEAD(, softhand) si_q;
197 struct lwp *si_lwp;
198 struct cpu_info *si_cpu;
199 uintptr_t si_machdep;
200 struct evcnt si_evcnt;
201 struct evcnt si_evcnt_block;
202 int si_active;
203 char si_name[8];
204 char si_name_block[8+6];
205 } softint_t;
206
207 typedef struct softhand {
208 SIMPLEQ_ENTRY(softhand) sh_q;
209 void (*sh_func)(void *);
210 void *sh_arg;
211 softint_t *sh_isr;
212 u_int sh_flags;
213 } softhand_t;
214
215 typedef struct softcpu {
216 struct cpu_info *sc_cpu;
217 softint_t sc_int[SOFTINT_COUNT];
218 softhand_t sc_hand[1];
219 } softcpu_t;
220
221 static void softint_thread(void *);
222
223 u_int softint_bytes = 8192;
224 u_int softint_timing;
225 static u_int softint_max;
226 static kmutex_t softint_lock;
227 static void *softint_netisrs[NETISR_MAX];
228
229 /*
230 * softint_init_isr:
231 *
232 * Initialize a single interrupt level for a single CPU.
233 */
234 static void
235 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
236 {
237 struct cpu_info *ci;
238 softint_t *si;
239 int error;
240
241 si = &sc->sc_int[level];
242 ci = sc->sc_cpu;
243 si->si_cpu = ci;
244
245 SIMPLEQ_INIT(&si->si_q);
246
247 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
248 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
249 "soft%s/%u", desc, ci->ci_index);
250 if (error != 0)
251 panic("softint_init_isr: error %d", error);
252
253 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
254 ci->ci_index);
255 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
256 "softint", si->si_name);
257 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
258 desc, ci->ci_index);
259 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
260 "softint", si->si_name_block);
261
262 si->si_lwp->l_private = si;
263 softint_init_md(si->si_lwp, level, &si->si_machdep);
264 }
265 /*
266 * softint_init:
267 *
268 * Initialize per-CPU data structures. Called from mi_cpu_attach().
269 */
270 void
271 softint_init(struct cpu_info *ci)
272 {
273 static struct cpu_info *first;
274 softcpu_t *sc, *scfirst;
275 softhand_t *sh, *shmax;
276
277 if (first == NULL) {
278 /* Boot CPU. */
279 first = ci;
280 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
281 softint_bytes = round_page(softint_bytes);
282 softint_max = (softint_bytes - sizeof(softcpu_t)) /
283 sizeof(softhand_t);
284 }
285
286 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
287 UVM_KMF_WIRED | UVM_KMF_ZERO);
288 if (sc == NULL)
289 panic("softint_init_cpu: cannot allocate memory");
290
291 ci->ci_data.cpu_softcpu = sc;
292 ci->ci_data.cpu_softints = 0;
293 sc->sc_cpu = ci;
294
295 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
296 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
297 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
298 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
299
300 if (first != ci) {
301 mutex_enter(&softint_lock);
302 scfirst = first->ci_data.cpu_softcpu;
303 sh = sc->sc_hand;
304 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
305 /* Update pointers for this CPU. */
306 for (shmax = sh + softint_max; sh < shmax; sh++) {
307 if (sh->sh_func == NULL)
308 continue;
309 sh->sh_isr =
310 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
311 }
312 mutex_exit(&softint_lock);
313 } else {
314 /*
315 * Establish handlers for legacy net interrupts.
316 * XXX Needs to go away.
317 */
318 #define DONETISR(n, f) \
319 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
320 (void (*)(void *))(f), NULL)
321 #include <net/netisr_dispatch.h>
322 }
323 }
324
325 /*
326 * softint_establish:
327 *
328 * Register a software interrupt handler.
329 */
330 void *
331 softint_establish(u_int flags, void (*func)(void *), void *arg)
332 {
333 CPU_INFO_ITERATOR cii;
334 struct cpu_info *ci;
335 softcpu_t *sc;
336 softhand_t *sh;
337 u_int level, index;
338
339 level = (flags & SOFTINT_LVLMASK);
340 KASSERT(level < SOFTINT_COUNT);
341 KASSERT((flags & SOFTINT_IMPMASK) == 0);
342
343 mutex_enter(&softint_lock);
344
345 /* Find a free slot. */
346 sc = curcpu()->ci_data.cpu_softcpu;
347 for (index = 1; index < softint_max; index++) {
348 if (sc->sc_hand[index].sh_func == NULL)
349 break;
350 }
351 if (index == softint_max) {
352 mutex_exit(&softint_lock);
353 printf("WARNING: softint_establish: table full, "
354 "increase softint_bytes\n");
355 return NULL;
356 }
357
358 /* Set up the handler on each CPU. */
359 if (ncpu < 2) {
360 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
361 sc = curcpu()->ci_data.cpu_softcpu;
362 sh = &sc->sc_hand[index];
363 sh->sh_isr = &sc->sc_int[level];
364 sh->sh_func = func;
365 sh->sh_arg = arg;
366 sh->sh_flags = flags;
367 } else for (CPU_INFO_FOREACH(cii, ci)) {
368 sc = ci->ci_data.cpu_softcpu;
369 sh = &sc->sc_hand[index];
370 sh->sh_isr = &sc->sc_int[level];
371 sh->sh_func = func;
372 sh->sh_arg = arg;
373 sh->sh_flags = flags;
374 }
375
376 mutex_exit(&softint_lock);
377
378 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
379 }
380
381 /*
382 * softint_disestablish:
383 *
384 * Unregister a software interrupt handler. The soft interrupt could
385 * still be active at this point, but the caller commits not to try
386 * and trigger it again once this call is made. The caller must not
387 * hold any locks that could be taken from soft interrupt context,
388 * because we will wait for the softint to complete if it's still
389 * running.
390 */
391 void
392 softint_disestablish(void *arg)
393 {
394 CPU_INFO_ITERATOR cii;
395 struct cpu_info *ci;
396 softcpu_t *sc;
397 softhand_t *sh;
398 uintptr_t offset;
399 uint64_t where;
400 u_int flags;
401
402 offset = (uintptr_t)arg;
403 KASSERT(offset != 0 && offset < softint_bytes);
404
405 /*
406 * Run a cross call so we see up to date values of sh_flags from
407 * all CPUs. Once softint_disestablish() is called, the caller
408 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
409 * it again. So, we are only looking for handler records with
410 * SOFTINT_ACTIVE already set.
411 */
412 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
413 xc_wait(where);
414
415 for (;;) {
416 /* Collect flag values from each CPU. */
417 flags = 0;
418 for (CPU_INFO_FOREACH(cii, ci)) {
419 sc = ci->ci_data.cpu_softcpu;
420 sh = (softhand_t *)((uint8_t *)sc + offset);
421 KASSERT(sh->sh_func != NULL);
422 flags |= sh->sh_flags;
423 }
424 /* Inactive on all CPUs? */
425 if ((flags & SOFTINT_ACTIVE) == 0) {
426 break;
427 }
428 /* Oops, still active. Wait for it to clear. */
429 (void)kpause("softdis", false, 1, NULL);
430 }
431
432 /* Clear the handler on each CPU. */
433 mutex_enter(&softint_lock);
434 for (CPU_INFO_FOREACH(cii, ci)) {
435 sc = ci->ci_data.cpu_softcpu;
436 sh = (softhand_t *)((uint8_t *)sc + offset);
437 KASSERT(sh->sh_func != NULL);
438 sh->sh_func = NULL;
439 }
440 mutex_exit(&softint_lock);
441 }
442
443 /*
444 * softint_schedule:
445 *
446 * Trigger a software interrupt. Must be called from a hardware
447 * interrupt handler, or with preemption disabled (since we are
448 * using the value of curcpu()).
449 */
450 void
451 softint_schedule(void *arg)
452 {
453 softhand_t *sh;
454 softint_t *si;
455 uintptr_t offset;
456 int s;
457
458 KASSERT(kpreempt_disabled());
459
460 /* Find the handler record for this CPU. */
461 offset = (uintptr_t)arg;
462 KASSERT(offset != 0 && offset < softint_bytes);
463 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
464
465 /* If it's already pending there's nothing to do. */
466 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
467 return;
468 }
469
470 /*
471 * Enqueue the handler into the LWP's pending list.
472 * If the LWP is completely idle, then make it run.
473 */
474 s = splhigh();
475 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
476 si = sh->sh_isr;
477 sh->sh_flags |= SOFTINT_PENDING;
478 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
479 if (si->si_active == 0) {
480 si->si_active = 1;
481 softint_trigger(si->si_machdep);
482 }
483 }
484 splx(s);
485 }
486
487 /*
488 * softint_execute:
489 *
490 * Invoke handlers for the specified soft interrupt.
491 * Must be entered at splhigh. Will drop the priority
492 * to the level specified, but returns back at splhigh.
493 */
494 static inline void
495 softint_execute(softint_t *si, lwp_t *l, int s)
496 {
497 softhand_t *sh;
498 bool havelock;
499
500 #ifdef __HAVE_FAST_SOFTINTS
501 KASSERT(si->si_lwp == curlwp);
502 #else
503 /* May be running in user context. */
504 #endif
505 KASSERT(si->si_cpu == curcpu());
506 KASSERT(si->si_lwp->l_wchan == NULL);
507 KASSERT(si->si_active);
508
509 havelock = false;
510
511 /*
512 * Note: due to priority inheritance we may have interrupted a
513 * higher priority LWP. Since the soft interrupt must be quick
514 * and is non-preemptable, we don't bother yielding.
515 */
516
517 while (!SIMPLEQ_EMPTY(&si->si_q)) {
518 /*
519 * Pick the longest waiting handler to run. We block
520 * interrupts but do not lock in order to do this, as
521 * we are protecting against the local CPU only.
522 */
523 sh = SIMPLEQ_FIRST(&si->si_q);
524 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
525 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
526 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
527 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
528 splx(s);
529
530 /* Run the handler. */
531 if (sh->sh_flags & SOFTINT_MPSAFE) {
532 if (havelock) {
533 KERNEL_UNLOCK_ONE(l);
534 havelock = false;
535 }
536 } else if (!havelock) {
537 KERNEL_LOCK(1, l);
538 havelock = true;
539 }
540 (*sh->sh_func)(sh->sh_arg);
541
542 /* Diagnostic: check that spin-locks have not leaked. */
543 KASSERTMSG(curcpu()->ci_mtx_count == 0,
544 ("%s: ci_mtx_count (%d) != 0, sh_func %p\n",
545 __func__, curcpu()->ci_mtx_count, sh->sh_func));
546
547 (void)splhigh();
548 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
549 sh->sh_flags ^= SOFTINT_ACTIVE;
550 }
551
552 if (havelock) {
553 KERNEL_UNLOCK_ONE(l);
554 }
555
556 /*
557 * Unlocked, but only for statistics.
558 * Should be per-CPU to prevent cache ping-pong.
559 */
560 curcpu()->ci_data.cpu_nsoft++;
561
562 KASSERT(si->si_cpu == curcpu());
563 KASSERT(si->si_lwp->l_wchan == NULL);
564 KASSERT(si->si_active);
565 si->si_evcnt.ev_count++;
566 si->si_active = 0;
567 }
568
569 /*
570 * softint_block:
571 *
572 * Update statistics when the soft interrupt blocks.
573 */
574 void
575 softint_block(lwp_t *l)
576 {
577 softint_t *si = l->l_private;
578
579 KASSERT((l->l_pflag & LP_INTR) != 0);
580 si->si_evcnt_block.ev_count++;
581 }
582
583 /*
584 * schednetisr:
585 *
586 * Trigger a legacy network interrupt. XXX Needs to go away.
587 */
588 void
589 schednetisr(int isr)
590 {
591
592 softint_schedule(softint_netisrs[isr]);
593 }
594
595 #ifndef __HAVE_FAST_SOFTINTS
596
597 #ifdef __HAVE_PREEMPTION
598 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
599 #endif
600
601 /*
602 * softint_init_md:
603 *
604 * Slow path: perform machine-dependent initialization.
605 */
606 void
607 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
608 {
609 softint_t *si;
610
611 *machdep = (1 << level);
612 si = l->l_private;
613
614 lwp_lock(l);
615 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
616 lwp_lock(l);
617 /* Cheat and make the KASSERT in softint_thread() happy. */
618 si->si_active = 1;
619 l->l_stat = LSRUN;
620 sched_enqueue(l, false);
621 lwp_unlock(l);
622 }
623
624 /*
625 * softint_trigger:
626 *
627 * Slow path: cause a soft interrupt handler to begin executing.
628 * Called at IPL_HIGH.
629 */
630 void
631 softint_trigger(uintptr_t machdep)
632 {
633 struct cpu_info *ci;
634 lwp_t *l;
635
636 l = curlwp;
637 ci = l->l_cpu;
638 ci->ci_data.cpu_softints |= machdep;
639 if (l == ci->ci_data.cpu_idlelwp) {
640 cpu_need_resched(ci, 0);
641 } else {
642 /* MI equivalent of aston() */
643 cpu_signotify(l);
644 }
645 }
646
647 /*
648 * softint_thread:
649 *
650 * Slow path: MI software interrupt dispatch.
651 */
652 void
653 softint_thread(void *cookie)
654 {
655 softint_t *si;
656 lwp_t *l;
657 int s;
658
659 l = curlwp;
660 si = l->l_private;
661
662 for (;;) {
663 /*
664 * Clear pending status and run it. We must drop the
665 * spl before mi_switch(), since IPL_HIGH may be higher
666 * than IPL_SCHED (and it is not safe to switch at a
667 * higher level).
668 */
669 s = splhigh();
670 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
671 softint_execute(si, l, s);
672 splx(s);
673
674 lwp_lock(l);
675 l->l_stat = LSIDL;
676 mi_switch(l);
677 }
678 }
679
680 /*
681 * softint_picklwp:
682 *
683 * Slow path: called from mi_switch() to pick the highest priority
684 * soft interrupt LWP that needs to run.
685 */
686 lwp_t *
687 softint_picklwp(void)
688 {
689 struct cpu_info *ci;
690 u_int mask;
691 softint_t *si;
692 lwp_t *l;
693
694 ci = curcpu();
695 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
696 mask = ci->ci_data.cpu_softints;
697
698 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
699 l = si[SOFTINT_SERIAL].si_lwp;
700 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
701 l = si[SOFTINT_NET].si_lwp;
702 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
703 l = si[SOFTINT_BIO].si_lwp;
704 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
705 l = si[SOFTINT_CLOCK].si_lwp;
706 } else {
707 panic("softint_picklwp");
708 }
709
710 return l;
711 }
712
713 /*
714 * softint_overlay:
715 *
716 * Slow path: called from lwp_userret() to run a soft interrupt
717 * within the context of a user thread.
718 */
719 void
720 softint_overlay(void)
721 {
722 struct cpu_info *ci;
723 u_int softints, oflag;
724 softint_t *si;
725 pri_t obase;
726 lwp_t *l;
727 int s;
728
729 l = curlwp;
730 KASSERT((l->l_pflag & LP_INTR) == 0);
731
732 /*
733 * Arrange to elevate priority if the LWP blocks. Also, bind LWP
734 * to the CPU. Note: disable kernel preemption before doing that.
735 */
736 s = splhigh();
737 ci = l->l_cpu;
738 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
739
740 obase = l->l_kpribase;
741 l->l_kpribase = PRI_KERNEL_RT;
742 oflag = l->l_pflag;
743 l->l_pflag = oflag | LP_INTR | LP_BOUND;
744
745 while ((softints = ci->ci_data.cpu_softints) != 0) {
746 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
747 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
748 softint_execute(&si[SOFTINT_SERIAL], l, s);
749 continue;
750 }
751 if ((softints & (1 << SOFTINT_NET)) != 0) {
752 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
753 softint_execute(&si[SOFTINT_NET], l, s);
754 continue;
755 }
756 if ((softints & (1 << SOFTINT_BIO)) != 0) {
757 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
758 softint_execute(&si[SOFTINT_BIO], l, s);
759 continue;
760 }
761 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
762 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
763 softint_execute(&si[SOFTINT_CLOCK], l, s);
764 continue;
765 }
766 }
767 l->l_pflag = oflag;
768 l->l_kpribase = obase;
769 splx(s);
770 }
771
772 #else /* !__HAVE_FAST_SOFTINTS */
773
774 /*
775 * softint_thread:
776 *
777 * Fast path: the LWP is switched to without restoring any state,
778 * so we should not arrive here - there is a direct handoff between
779 * the interrupt stub and softint_dispatch().
780 */
781 void
782 softint_thread(void *cookie)
783 {
784
785 panic("softint_thread");
786 }
787
788 /*
789 * softint_dispatch:
790 *
791 * Fast path: entry point from machine-dependent code.
792 */
793 void
794 softint_dispatch(lwp_t *pinned, int s)
795 {
796 struct bintime now;
797 softint_t *si;
798 u_int timing;
799 lwp_t *l;
800
801 KASSERT((pinned->l_pflag & LP_RUNNING) != 0);
802 l = curlwp;
803 si = l->l_private;
804
805 /*
806 * Note the interrupted LWP, and mark the current LWP as running
807 * before proceeding. Although this must as a rule be done with
808 * the LWP locked, at this point no external agents will want to
809 * modify the interrupt LWP's state.
810 */
811 timing = (softint_timing ? LP_TIMEINTR : 0);
812 l->l_switchto = pinned;
813 l->l_stat = LSONPROC;
814 l->l_pflag |= (LP_RUNNING | timing);
815
816 /*
817 * Dispatch the interrupt. If softints are being timed, charge
818 * for it.
819 */
820 if (timing)
821 binuptime(&l->l_stime);
822 softint_execute(si, l, s);
823 if (timing) {
824 binuptime(&now);
825 updatertime(l, &now);
826 l->l_pflag &= ~LP_TIMEINTR;
827 }
828
829 /*
830 * If we blocked while handling the interrupt, the pinned LWP is
831 * gone so switch to the idle LWP. It will select a new LWP to
832 * run.
833 *
834 * We must drop the priority level as switching at IPL_HIGH could
835 * deadlock the system. We have already set si->si_active = 0,
836 * which means another interrupt at this level can be triggered.
837 * That's not be a problem: we are lowering to level 's' which will
838 * prevent softint_dispatch() from being reentered at level 's',
839 * until the priority is finally dropped to IPL_NONE on entry to
840 * the LWP chosen by lwp_exit_switchaway().
841 */
842 l->l_stat = LSIDL;
843 if (l->l_switchto == NULL) {
844 splx(s);
845 pmap_deactivate(l);
846 lwp_exit_switchaway(l);
847 /* NOTREACHED */
848 }
849 l->l_switchto = NULL;
850 l->l_pflag &= ~LP_RUNNING;
851 }
852
853 #endif /* !__HAVE_FAST_SOFTINTS */
854