kern_softint.c revision 1.38 1 /* $NetBSD: kern_softint.c,v 1.38 2011/09/27 01:02:38 jym Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 *
171 * Future directions
172 *
173 * Provide a cheap way to direct software interrupts to remote
174 * CPUs. Provide a way to enqueue work items into the handler
175 * record, removing additional spl calls (see subr_workqueue.c).
176 */
177
178 #include <sys/cdefs.h>
179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.38 2011/09/27 01:02:38 jym Exp $");
180
181 #include <sys/param.h>
182 #include <sys/proc.h>
183 #include <sys/intr.h>
184 #include <sys/mutex.h>
185 #include <sys/kthread.h>
186 #include <sys/evcnt.h>
187 #include <sys/cpu.h>
188 #include <sys/xcall.h>
189
190 #include <net/netisr.h>
191
192 #include <uvm/uvm_extern.h>
193
194 /* This could overlap with signal info in struct lwp. */
195 typedef struct softint {
196 SIMPLEQ_HEAD(, softhand) si_q;
197 struct lwp *si_lwp;
198 struct cpu_info *si_cpu;
199 uintptr_t si_machdep;
200 struct evcnt si_evcnt;
201 struct evcnt si_evcnt_block;
202 int si_active;
203 char si_name[8];
204 char si_name_block[8+6];
205 } softint_t;
206
207 typedef struct softhand {
208 SIMPLEQ_ENTRY(softhand) sh_q;
209 void (*sh_func)(void *);
210 void *sh_arg;
211 softint_t *sh_isr;
212 u_int sh_flags;
213 } softhand_t;
214
215 typedef struct softcpu {
216 struct cpu_info *sc_cpu;
217 softint_t sc_int[SOFTINT_COUNT];
218 softhand_t sc_hand[1];
219 } softcpu_t;
220
221 static void softint_thread(void *);
222
223 u_int softint_bytes = 8192;
224 u_int softint_timing;
225 static u_int softint_max;
226 static kmutex_t softint_lock;
227 static void *softint_netisrs[NETISR_MAX];
228
229 /*
230 * softint_init_isr:
231 *
232 * Initialize a single interrupt level for a single CPU.
233 */
234 static void
235 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
236 {
237 struct cpu_info *ci;
238 softint_t *si;
239 int error;
240
241 si = &sc->sc_int[level];
242 ci = sc->sc_cpu;
243 si->si_cpu = ci;
244
245 SIMPLEQ_INIT(&si->si_q);
246
247 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
248 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
249 "soft%s/%u", desc, ci->ci_index);
250 if (error != 0)
251 panic("softint_init_isr: error %d", error);
252
253 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
254 ci->ci_index);
255 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
256 "softint", si->si_name);
257 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
258 desc, ci->ci_index);
259 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
260 "softint", si->si_name_block);
261
262 si->si_lwp->l_private = si;
263 softint_init_md(si->si_lwp, level, &si->si_machdep);
264 }
265
266 /*
267 * softint_init:
268 *
269 * Initialize per-CPU data structures. Called from mi_cpu_attach().
270 */
271 void
272 softint_init(struct cpu_info *ci)
273 {
274 static struct cpu_info *first;
275 softcpu_t *sc, *scfirst;
276 softhand_t *sh, *shmax;
277
278 if (first == NULL) {
279 /* Boot CPU. */
280 first = ci;
281 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
282 softint_bytes = round_page(softint_bytes);
283 softint_max = (softint_bytes - sizeof(softcpu_t)) /
284 sizeof(softhand_t);
285 }
286
287 /* Use uvm_km(9) for persistent, page-aligned allocation. */
288 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
289 UVM_KMF_WIRED | UVM_KMF_ZERO);
290 if (sc == NULL)
291 panic("softint_init_cpu: cannot allocate memory");
292
293 ci->ci_data.cpu_softcpu = sc;
294 ci->ci_data.cpu_softints = 0;
295 sc->sc_cpu = ci;
296
297 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
298 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
299 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
300 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
301
302 if (first != ci) {
303 mutex_enter(&softint_lock);
304 scfirst = first->ci_data.cpu_softcpu;
305 sh = sc->sc_hand;
306 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
307 /* Update pointers for this CPU. */
308 for (shmax = sh + softint_max; sh < shmax; sh++) {
309 if (sh->sh_func == NULL)
310 continue;
311 sh->sh_isr =
312 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
313 }
314 mutex_exit(&softint_lock);
315 } else {
316 /*
317 * Establish handlers for legacy net interrupts.
318 * XXX Needs to go away.
319 */
320 #define DONETISR(n, f) \
321 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
322 (void (*)(void *))(f), NULL)
323 #include <net/netisr_dispatch.h>
324 }
325 }
326
327 /*
328 * softint_establish:
329 *
330 * Register a software interrupt handler.
331 */
332 void *
333 softint_establish(u_int flags, void (*func)(void *), void *arg)
334 {
335 CPU_INFO_ITERATOR cii;
336 struct cpu_info *ci;
337 softcpu_t *sc;
338 softhand_t *sh;
339 u_int level, index;
340
341 level = (flags & SOFTINT_LVLMASK);
342 KASSERT(level < SOFTINT_COUNT);
343 KASSERT((flags & SOFTINT_IMPMASK) == 0);
344
345 mutex_enter(&softint_lock);
346
347 /* Find a free slot. */
348 sc = curcpu()->ci_data.cpu_softcpu;
349 for (index = 1; index < softint_max; index++) {
350 if (sc->sc_hand[index].sh_func == NULL)
351 break;
352 }
353 if (index == softint_max) {
354 mutex_exit(&softint_lock);
355 printf("WARNING: softint_establish: table full, "
356 "increase softint_bytes\n");
357 return NULL;
358 }
359
360 /* Set up the handler on each CPU. */
361 if (ncpu < 2) {
362 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
363 sc = curcpu()->ci_data.cpu_softcpu;
364 sh = &sc->sc_hand[index];
365 sh->sh_isr = &sc->sc_int[level];
366 sh->sh_func = func;
367 sh->sh_arg = arg;
368 sh->sh_flags = flags;
369 } else for (CPU_INFO_FOREACH(cii, ci)) {
370 sc = ci->ci_data.cpu_softcpu;
371 sh = &sc->sc_hand[index];
372 sh->sh_isr = &sc->sc_int[level];
373 sh->sh_func = func;
374 sh->sh_arg = arg;
375 sh->sh_flags = flags;
376 }
377
378 mutex_exit(&softint_lock);
379
380 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
381 }
382
383 /*
384 * softint_disestablish:
385 *
386 * Unregister a software interrupt handler. The soft interrupt could
387 * still be active at this point, but the caller commits not to try
388 * and trigger it again once this call is made. The caller must not
389 * hold any locks that could be taken from soft interrupt context,
390 * because we will wait for the softint to complete if it's still
391 * running.
392 */
393 void
394 softint_disestablish(void *arg)
395 {
396 CPU_INFO_ITERATOR cii;
397 struct cpu_info *ci;
398 softcpu_t *sc;
399 softhand_t *sh;
400 uintptr_t offset;
401 uint64_t where;
402 u_int flags;
403
404 offset = (uintptr_t)arg;
405 KASSERT(offset != 0 && offset < softint_bytes);
406
407 /*
408 * Run a cross call so we see up to date values of sh_flags from
409 * all CPUs. Once softint_disestablish() is called, the caller
410 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
411 * it again. So, we are only looking for handler records with
412 * SOFTINT_ACTIVE already set.
413 */
414 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
415 xc_wait(where);
416
417 for (;;) {
418 /* Collect flag values from each CPU. */
419 flags = 0;
420 for (CPU_INFO_FOREACH(cii, ci)) {
421 sc = ci->ci_data.cpu_softcpu;
422 sh = (softhand_t *)((uint8_t *)sc + offset);
423 KASSERT(sh->sh_func != NULL);
424 flags |= sh->sh_flags;
425 }
426 /* Inactive on all CPUs? */
427 if ((flags & SOFTINT_ACTIVE) == 0) {
428 break;
429 }
430 /* Oops, still active. Wait for it to clear. */
431 (void)kpause("softdis", false, 1, NULL);
432 }
433
434 /* Clear the handler on each CPU. */
435 mutex_enter(&softint_lock);
436 for (CPU_INFO_FOREACH(cii, ci)) {
437 sc = ci->ci_data.cpu_softcpu;
438 sh = (softhand_t *)((uint8_t *)sc + offset);
439 KASSERT(sh->sh_func != NULL);
440 sh->sh_func = NULL;
441 }
442 mutex_exit(&softint_lock);
443 }
444
445 /*
446 * softint_schedule:
447 *
448 * Trigger a software interrupt. Must be called from a hardware
449 * interrupt handler, or with preemption disabled (since we are
450 * using the value of curcpu()).
451 */
452 void
453 softint_schedule(void *arg)
454 {
455 softhand_t *sh;
456 softint_t *si;
457 uintptr_t offset;
458 int s;
459
460 KASSERT(kpreempt_disabled());
461
462 /* Find the handler record for this CPU. */
463 offset = (uintptr_t)arg;
464 KASSERT(offset != 0 && offset < softint_bytes);
465 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
466
467 /* If it's already pending there's nothing to do. */
468 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
469 return;
470 }
471
472 /*
473 * Enqueue the handler into the LWP's pending list.
474 * If the LWP is completely idle, then make it run.
475 */
476 s = splhigh();
477 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
478 si = sh->sh_isr;
479 sh->sh_flags |= SOFTINT_PENDING;
480 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
481 if (si->si_active == 0) {
482 si->si_active = 1;
483 softint_trigger(si->si_machdep);
484 }
485 }
486 splx(s);
487 }
488
489 /*
490 * softint_execute:
491 *
492 * Invoke handlers for the specified soft interrupt.
493 * Must be entered at splhigh. Will drop the priority
494 * to the level specified, but returns back at splhigh.
495 */
496 static inline void
497 softint_execute(softint_t *si, lwp_t *l, int s)
498 {
499 softhand_t *sh;
500 bool havelock;
501
502 #ifdef __HAVE_FAST_SOFTINTS
503 KASSERT(si->si_lwp == curlwp);
504 #else
505 /* May be running in user context. */
506 #endif
507 KASSERT(si->si_cpu == curcpu());
508 KASSERT(si->si_lwp->l_wchan == NULL);
509 KASSERT(si->si_active);
510
511 havelock = false;
512
513 /*
514 * Note: due to priority inheritance we may have interrupted a
515 * higher priority LWP. Since the soft interrupt must be quick
516 * and is non-preemptable, we don't bother yielding.
517 */
518
519 while (!SIMPLEQ_EMPTY(&si->si_q)) {
520 /*
521 * Pick the longest waiting handler to run. We block
522 * interrupts but do not lock in order to do this, as
523 * we are protecting against the local CPU only.
524 */
525 sh = SIMPLEQ_FIRST(&si->si_q);
526 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
527 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
528 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
529 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
530 splx(s);
531
532 /* Run the handler. */
533 if (sh->sh_flags & SOFTINT_MPSAFE) {
534 if (havelock) {
535 KERNEL_UNLOCK_ONE(l);
536 havelock = false;
537 }
538 } else if (!havelock) {
539 KERNEL_LOCK(1, l);
540 havelock = true;
541 }
542 (*sh->sh_func)(sh->sh_arg);
543
544 /* Diagnostic: check that spin-locks have not leaked. */
545 KASSERTMSG(curcpu()->ci_mtx_count == 0,
546 "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
547 __func__, curcpu()->ci_mtx_count, sh->sh_func);
548
549 (void)splhigh();
550 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
551 sh->sh_flags ^= SOFTINT_ACTIVE;
552 }
553
554 if (havelock) {
555 KERNEL_UNLOCK_ONE(l);
556 }
557
558 /*
559 * Unlocked, but only for statistics.
560 * Should be per-CPU to prevent cache ping-pong.
561 */
562 curcpu()->ci_data.cpu_nsoft++;
563
564 KASSERT(si->si_cpu == curcpu());
565 KASSERT(si->si_lwp->l_wchan == NULL);
566 KASSERT(si->si_active);
567 si->si_evcnt.ev_count++;
568 si->si_active = 0;
569 }
570
571 /*
572 * softint_block:
573 *
574 * Update statistics when the soft interrupt blocks.
575 */
576 void
577 softint_block(lwp_t *l)
578 {
579 softint_t *si = l->l_private;
580
581 KASSERT((l->l_pflag & LP_INTR) != 0);
582 si->si_evcnt_block.ev_count++;
583 }
584
585 /*
586 * schednetisr:
587 *
588 * Trigger a legacy network interrupt. XXX Needs to go away.
589 */
590 void
591 schednetisr(int isr)
592 {
593
594 softint_schedule(softint_netisrs[isr]);
595 }
596
597 #ifndef __HAVE_FAST_SOFTINTS
598
599 #ifdef __HAVE_PREEMPTION
600 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
601 #endif
602
603 /*
604 * softint_init_md:
605 *
606 * Slow path: perform machine-dependent initialization.
607 */
608 void
609 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
610 {
611 softint_t *si;
612
613 *machdep = (1 << level);
614 si = l->l_private;
615
616 lwp_lock(l);
617 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
618 lwp_lock(l);
619 /* Cheat and make the KASSERT in softint_thread() happy. */
620 si->si_active = 1;
621 l->l_stat = LSRUN;
622 sched_enqueue(l, false);
623 lwp_unlock(l);
624 }
625
626 /*
627 * softint_trigger:
628 *
629 * Slow path: cause a soft interrupt handler to begin executing.
630 * Called at IPL_HIGH.
631 */
632 void
633 softint_trigger(uintptr_t machdep)
634 {
635 struct cpu_info *ci;
636 lwp_t *l;
637
638 l = curlwp;
639 ci = l->l_cpu;
640 ci->ci_data.cpu_softints |= machdep;
641 if (l == ci->ci_data.cpu_idlelwp) {
642 cpu_need_resched(ci, 0);
643 } else {
644 /* MI equivalent of aston() */
645 cpu_signotify(l);
646 }
647 }
648
649 /*
650 * softint_thread:
651 *
652 * Slow path: MI software interrupt dispatch.
653 */
654 void
655 softint_thread(void *cookie)
656 {
657 softint_t *si;
658 lwp_t *l;
659 int s;
660
661 l = curlwp;
662 si = l->l_private;
663
664 for (;;) {
665 /*
666 * Clear pending status and run it. We must drop the
667 * spl before mi_switch(), since IPL_HIGH may be higher
668 * than IPL_SCHED (and it is not safe to switch at a
669 * higher level).
670 */
671 s = splhigh();
672 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
673 softint_execute(si, l, s);
674 splx(s);
675
676 lwp_lock(l);
677 l->l_stat = LSIDL;
678 mi_switch(l);
679 }
680 }
681
682 /*
683 * softint_picklwp:
684 *
685 * Slow path: called from mi_switch() to pick the highest priority
686 * soft interrupt LWP that needs to run.
687 */
688 lwp_t *
689 softint_picklwp(void)
690 {
691 struct cpu_info *ci;
692 u_int mask;
693 softint_t *si;
694 lwp_t *l;
695
696 ci = curcpu();
697 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
698 mask = ci->ci_data.cpu_softints;
699
700 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
701 l = si[SOFTINT_SERIAL].si_lwp;
702 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
703 l = si[SOFTINT_NET].si_lwp;
704 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
705 l = si[SOFTINT_BIO].si_lwp;
706 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
707 l = si[SOFTINT_CLOCK].si_lwp;
708 } else {
709 panic("softint_picklwp");
710 }
711
712 return l;
713 }
714
715 /*
716 * softint_overlay:
717 *
718 * Slow path: called from lwp_userret() to run a soft interrupt
719 * within the context of a user thread.
720 */
721 void
722 softint_overlay(void)
723 {
724 struct cpu_info *ci;
725 u_int softints, oflag;
726 softint_t *si;
727 pri_t obase;
728 lwp_t *l;
729 int s;
730
731 l = curlwp;
732 KASSERT((l->l_pflag & LP_INTR) == 0);
733
734 /*
735 * Arrange to elevate priority if the LWP blocks. Also, bind LWP
736 * to the CPU. Note: disable kernel preemption before doing that.
737 */
738 s = splhigh();
739 ci = l->l_cpu;
740 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
741
742 obase = l->l_kpribase;
743 l->l_kpribase = PRI_KERNEL_RT;
744 oflag = l->l_pflag;
745 l->l_pflag = oflag | LP_INTR | LP_BOUND;
746
747 while ((softints = ci->ci_data.cpu_softints) != 0) {
748 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
749 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
750 softint_execute(&si[SOFTINT_SERIAL], l, s);
751 continue;
752 }
753 if ((softints & (1 << SOFTINT_NET)) != 0) {
754 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
755 softint_execute(&si[SOFTINT_NET], l, s);
756 continue;
757 }
758 if ((softints & (1 << SOFTINT_BIO)) != 0) {
759 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
760 softint_execute(&si[SOFTINT_BIO], l, s);
761 continue;
762 }
763 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
764 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
765 softint_execute(&si[SOFTINT_CLOCK], l, s);
766 continue;
767 }
768 }
769 l->l_pflag = oflag;
770 l->l_kpribase = obase;
771 splx(s);
772 }
773
774 #else /* !__HAVE_FAST_SOFTINTS */
775
776 /*
777 * softint_thread:
778 *
779 * Fast path: the LWP is switched to without restoring any state,
780 * so we should not arrive here - there is a direct handoff between
781 * the interrupt stub and softint_dispatch().
782 */
783 void
784 softint_thread(void *cookie)
785 {
786
787 panic("softint_thread");
788 }
789
790 /*
791 * softint_dispatch:
792 *
793 * Fast path: entry point from machine-dependent code.
794 */
795 void
796 softint_dispatch(lwp_t *pinned, int s)
797 {
798 struct bintime now;
799 softint_t *si;
800 u_int timing;
801 lwp_t *l;
802
803 KASSERT((pinned->l_pflag & LP_RUNNING) != 0);
804 l = curlwp;
805 si = l->l_private;
806
807 /*
808 * Note the interrupted LWP, and mark the current LWP as running
809 * before proceeding. Although this must as a rule be done with
810 * the LWP locked, at this point no external agents will want to
811 * modify the interrupt LWP's state.
812 */
813 timing = (softint_timing ? LP_TIMEINTR : 0);
814 l->l_switchto = pinned;
815 l->l_stat = LSONPROC;
816 l->l_pflag |= (LP_RUNNING | timing);
817
818 /*
819 * Dispatch the interrupt. If softints are being timed, charge
820 * for it.
821 */
822 if (timing)
823 binuptime(&l->l_stime);
824 softint_execute(si, l, s);
825 if (timing) {
826 binuptime(&now);
827 updatertime(l, &now);
828 l->l_pflag &= ~LP_TIMEINTR;
829 }
830
831 /*
832 * If we blocked while handling the interrupt, the pinned LWP is
833 * gone so switch to the idle LWP. It will select a new LWP to
834 * run.
835 *
836 * We must drop the priority level as switching at IPL_HIGH could
837 * deadlock the system. We have already set si->si_active = 0,
838 * which means another interrupt at this level can be triggered.
839 * That's not be a problem: we are lowering to level 's' which will
840 * prevent softint_dispatch() from being reentered at level 's',
841 * until the priority is finally dropped to IPL_NONE on entry to
842 * the LWP chosen by lwp_exit_switchaway().
843 */
844 l->l_stat = LSIDL;
845 if (l->l_switchto == NULL) {
846 splx(s);
847 pmap_deactivate(l);
848 lwp_exit_switchaway(l);
849 /* NOTREACHED */
850 }
851 l->l_switchto = NULL;
852 l->l_pflag &= ~LP_RUNNING;
853 }
854
855 #endif /* !__HAVE_FAST_SOFTINTS */
856