kern_softint.c revision 1.38.2.1 1 /* $NetBSD: kern_softint.c,v 1.38.2.1 2013/01/23 00:06:21 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 *
171 * Future directions
172 *
173 * Provide a cheap way to direct software interrupts to remote
174 * CPUs. Provide a way to enqueue work items into the handler
175 * record, removing additional spl calls (see subr_workqueue.c).
176 */
177
178 #include <sys/cdefs.h>
179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.38.2.1 2013/01/23 00:06:21 yamt Exp $");
180
181 #include <sys/param.h>
182 #include <sys/proc.h>
183 #include <sys/intr.h>
184 #include <sys/mutex.h>
185 #include <sys/kthread.h>
186 #include <sys/evcnt.h>
187 #include <sys/cpu.h>
188 #include <sys/xcall.h>
189 #include <sys/pserialize.h>
190
191 #include <net/netisr.h>
192
193 #include <uvm/uvm_extern.h>
194
195 /* This could overlap with signal info in struct lwp. */
196 typedef struct softint {
197 SIMPLEQ_HEAD(, softhand) si_q;
198 struct lwp *si_lwp;
199 struct cpu_info *si_cpu;
200 uintptr_t si_machdep;
201 struct evcnt si_evcnt;
202 struct evcnt si_evcnt_block;
203 int si_active;
204 char si_name[8];
205 char si_name_block[8+6];
206 } softint_t;
207
208 typedef struct softhand {
209 SIMPLEQ_ENTRY(softhand) sh_q;
210 void (*sh_func)(void *);
211 void *sh_arg;
212 softint_t *sh_isr;
213 u_int sh_flags;
214 } softhand_t;
215
216 typedef struct softcpu {
217 struct cpu_info *sc_cpu;
218 softint_t sc_int[SOFTINT_COUNT];
219 softhand_t sc_hand[1];
220 } softcpu_t;
221
222 static void softint_thread(void *);
223
224 u_int softint_bytes = 8192;
225 u_int softint_timing;
226 static u_int softint_max;
227 static kmutex_t softint_lock;
228 static void *softint_netisrs[NETISR_MAX];
229
230 /*
231 * softint_init_isr:
232 *
233 * Initialize a single interrupt level for a single CPU.
234 */
235 static void
236 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
237 {
238 struct cpu_info *ci;
239 softint_t *si;
240 int error;
241
242 si = &sc->sc_int[level];
243 ci = sc->sc_cpu;
244 si->si_cpu = ci;
245
246 SIMPLEQ_INIT(&si->si_q);
247
248 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
249 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
250 "soft%s/%u", desc, ci->ci_index);
251 if (error != 0)
252 panic("softint_init_isr: error %d", error);
253
254 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
255 ci->ci_index);
256 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
257 "softint", si->si_name);
258 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
259 desc, ci->ci_index);
260 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
261 "softint", si->si_name_block);
262
263 si->si_lwp->l_private = si;
264 softint_init_md(si->si_lwp, level, &si->si_machdep);
265 }
266
267 /*
268 * softint_init:
269 *
270 * Initialize per-CPU data structures. Called from mi_cpu_attach().
271 */
272 void
273 softint_init(struct cpu_info *ci)
274 {
275 static struct cpu_info *first;
276 softcpu_t *sc, *scfirst;
277 softhand_t *sh, *shmax;
278
279 if (first == NULL) {
280 /* Boot CPU. */
281 first = ci;
282 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
283 softint_bytes = round_page(softint_bytes);
284 softint_max = (softint_bytes - sizeof(softcpu_t)) /
285 sizeof(softhand_t);
286 }
287
288 /* Use uvm_km(9) for persistent, page-aligned allocation. */
289 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
290 UVM_KMF_WIRED | UVM_KMF_ZERO);
291 if (sc == NULL)
292 panic("softint_init_cpu: cannot allocate memory");
293
294 ci->ci_data.cpu_softcpu = sc;
295 ci->ci_data.cpu_softints = 0;
296 sc->sc_cpu = ci;
297
298 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
299 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
300 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
301 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
302
303 if (first != ci) {
304 mutex_enter(&softint_lock);
305 scfirst = first->ci_data.cpu_softcpu;
306 sh = sc->sc_hand;
307 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
308 /* Update pointers for this CPU. */
309 for (shmax = sh + softint_max; sh < shmax; sh++) {
310 if (sh->sh_func == NULL)
311 continue;
312 sh->sh_isr =
313 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
314 }
315 mutex_exit(&softint_lock);
316 } else {
317 /*
318 * Establish handlers for legacy net interrupts.
319 * XXX Needs to go away.
320 */
321 #define DONETISR(n, f) \
322 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
323 (void (*)(void *))(f), NULL)
324 #include <net/netisr_dispatch.h>
325 }
326 }
327
328 /*
329 * softint_establish:
330 *
331 * Register a software interrupt handler.
332 */
333 void *
334 softint_establish(u_int flags, void (*func)(void *), void *arg)
335 {
336 CPU_INFO_ITERATOR cii;
337 struct cpu_info *ci;
338 softcpu_t *sc;
339 softhand_t *sh;
340 u_int level, index;
341
342 level = (flags & SOFTINT_LVLMASK);
343 KASSERT(level < SOFTINT_COUNT);
344 KASSERT((flags & SOFTINT_IMPMASK) == 0);
345
346 mutex_enter(&softint_lock);
347
348 /* Find a free slot. */
349 sc = curcpu()->ci_data.cpu_softcpu;
350 for (index = 1; index < softint_max; index++) {
351 if (sc->sc_hand[index].sh_func == NULL)
352 break;
353 }
354 if (index == softint_max) {
355 mutex_exit(&softint_lock);
356 printf("WARNING: softint_establish: table full, "
357 "increase softint_bytes\n");
358 return NULL;
359 }
360
361 /* Set up the handler on each CPU. */
362 if (ncpu < 2) {
363 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
364 sc = curcpu()->ci_data.cpu_softcpu;
365 sh = &sc->sc_hand[index];
366 sh->sh_isr = &sc->sc_int[level];
367 sh->sh_func = func;
368 sh->sh_arg = arg;
369 sh->sh_flags = flags;
370 } else for (CPU_INFO_FOREACH(cii, ci)) {
371 sc = ci->ci_data.cpu_softcpu;
372 sh = &sc->sc_hand[index];
373 sh->sh_isr = &sc->sc_int[level];
374 sh->sh_func = func;
375 sh->sh_arg = arg;
376 sh->sh_flags = flags;
377 }
378
379 mutex_exit(&softint_lock);
380
381 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
382 }
383
384 /*
385 * softint_disestablish:
386 *
387 * Unregister a software interrupt handler. The soft interrupt could
388 * still be active at this point, but the caller commits not to try
389 * and trigger it again once this call is made. The caller must not
390 * hold any locks that could be taken from soft interrupt context,
391 * because we will wait for the softint to complete if it's still
392 * running.
393 */
394 void
395 softint_disestablish(void *arg)
396 {
397 CPU_INFO_ITERATOR cii;
398 struct cpu_info *ci;
399 softcpu_t *sc;
400 softhand_t *sh;
401 uintptr_t offset;
402 uint64_t where;
403 u_int flags;
404
405 offset = (uintptr_t)arg;
406 KASSERT(offset != 0 && offset < softint_bytes);
407
408 /*
409 * Run a cross call so we see up to date values of sh_flags from
410 * all CPUs. Once softint_disestablish() is called, the caller
411 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
412 * it again. So, we are only looking for handler records with
413 * SOFTINT_ACTIVE already set.
414 */
415 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
416 xc_wait(where);
417
418 for (;;) {
419 /* Collect flag values from each CPU. */
420 flags = 0;
421 for (CPU_INFO_FOREACH(cii, ci)) {
422 sc = ci->ci_data.cpu_softcpu;
423 sh = (softhand_t *)((uint8_t *)sc + offset);
424 KASSERT(sh->sh_func != NULL);
425 flags |= sh->sh_flags;
426 }
427 /* Inactive on all CPUs? */
428 if ((flags & SOFTINT_ACTIVE) == 0) {
429 break;
430 }
431 /* Oops, still active. Wait for it to clear. */
432 (void)kpause("softdis", false, 1, NULL);
433 }
434
435 /* Clear the handler on each CPU. */
436 mutex_enter(&softint_lock);
437 for (CPU_INFO_FOREACH(cii, ci)) {
438 sc = ci->ci_data.cpu_softcpu;
439 sh = (softhand_t *)((uint8_t *)sc + offset);
440 KASSERT(sh->sh_func != NULL);
441 sh->sh_func = NULL;
442 }
443 mutex_exit(&softint_lock);
444 }
445
446 /*
447 * softint_schedule:
448 *
449 * Trigger a software interrupt. Must be called from a hardware
450 * interrupt handler, or with preemption disabled (since we are
451 * using the value of curcpu()).
452 */
453 void
454 softint_schedule(void *arg)
455 {
456 softhand_t *sh;
457 softint_t *si;
458 uintptr_t offset;
459 int s;
460
461 KASSERT(kpreempt_disabled());
462
463 /* Find the handler record for this CPU. */
464 offset = (uintptr_t)arg;
465 KASSERT(offset != 0 && offset < softint_bytes);
466 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
467
468 /* If it's already pending there's nothing to do. */
469 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
470 return;
471 }
472
473 /*
474 * Enqueue the handler into the LWP's pending list.
475 * If the LWP is completely idle, then make it run.
476 */
477 s = splhigh();
478 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
479 si = sh->sh_isr;
480 sh->sh_flags |= SOFTINT_PENDING;
481 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
482 if (si->si_active == 0) {
483 si->si_active = 1;
484 softint_trigger(si->si_machdep);
485 }
486 }
487 splx(s);
488 }
489
490 /*
491 * softint_execute:
492 *
493 * Invoke handlers for the specified soft interrupt.
494 * Must be entered at splhigh. Will drop the priority
495 * to the level specified, but returns back at splhigh.
496 */
497 static inline void
498 softint_execute(softint_t *si, lwp_t *l, int s)
499 {
500 softhand_t *sh;
501 bool havelock;
502
503 #ifdef __HAVE_FAST_SOFTINTS
504 KASSERT(si->si_lwp == curlwp);
505 #else
506 /* May be running in user context. */
507 #endif
508 KASSERT(si->si_cpu == curcpu());
509 KASSERT(si->si_lwp->l_wchan == NULL);
510 KASSERT(si->si_active);
511
512 havelock = false;
513
514 /*
515 * Note: due to priority inheritance we may have interrupted a
516 * higher priority LWP. Since the soft interrupt must be quick
517 * and is non-preemptable, we don't bother yielding.
518 */
519
520 while (!SIMPLEQ_EMPTY(&si->si_q)) {
521 /*
522 * Pick the longest waiting handler to run. We block
523 * interrupts but do not lock in order to do this, as
524 * we are protecting against the local CPU only.
525 */
526 sh = SIMPLEQ_FIRST(&si->si_q);
527 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
528 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
529 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
530 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
531 splx(s);
532
533 /* Run the handler. */
534 if (sh->sh_flags & SOFTINT_MPSAFE) {
535 if (havelock) {
536 KERNEL_UNLOCK_ONE(l);
537 havelock = false;
538 }
539 } else if (!havelock) {
540 KERNEL_LOCK(1, l);
541 havelock = true;
542 }
543 (*sh->sh_func)(sh->sh_arg);
544
545 /* Diagnostic: check that spin-locks have not leaked. */
546 KASSERTMSG(curcpu()->ci_mtx_count == 0,
547 "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
548 __func__, curcpu()->ci_mtx_count, sh->sh_func);
549
550 (void)splhigh();
551 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
552 sh->sh_flags ^= SOFTINT_ACTIVE;
553 }
554
555 if (havelock) {
556 KERNEL_UNLOCK_ONE(l);
557 }
558
559 /*
560 * Unlocked, but only for statistics.
561 * Should be per-CPU to prevent cache ping-pong.
562 */
563 curcpu()->ci_data.cpu_nsoft++;
564
565 KASSERT(si->si_cpu == curcpu());
566 KASSERT(si->si_lwp->l_wchan == NULL);
567 KASSERT(si->si_active);
568 si->si_evcnt.ev_count++;
569 si->si_active = 0;
570 }
571
572 /*
573 * softint_block:
574 *
575 * Update statistics when the soft interrupt blocks.
576 */
577 void
578 softint_block(lwp_t *l)
579 {
580 softint_t *si = l->l_private;
581
582 KASSERT((l->l_pflag & LP_INTR) != 0);
583 si->si_evcnt_block.ev_count++;
584 }
585
586 /*
587 * schednetisr:
588 *
589 * Trigger a legacy network interrupt. XXX Needs to go away.
590 */
591 void
592 schednetisr(int isr)
593 {
594
595 softint_schedule(softint_netisrs[isr]);
596 }
597
598 #ifndef __HAVE_FAST_SOFTINTS
599
600 #ifdef __HAVE_PREEMPTION
601 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
602 #endif
603
604 /*
605 * softint_init_md:
606 *
607 * Slow path: perform machine-dependent initialization.
608 */
609 void
610 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
611 {
612 softint_t *si;
613
614 *machdep = (1 << level);
615 si = l->l_private;
616
617 lwp_lock(l);
618 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
619 lwp_lock(l);
620 /* Cheat and make the KASSERT in softint_thread() happy. */
621 si->si_active = 1;
622 l->l_stat = LSRUN;
623 sched_enqueue(l, false);
624 lwp_unlock(l);
625 }
626
627 /*
628 * softint_trigger:
629 *
630 * Slow path: cause a soft interrupt handler to begin executing.
631 * Called at IPL_HIGH.
632 */
633 void
634 softint_trigger(uintptr_t machdep)
635 {
636 struct cpu_info *ci;
637 lwp_t *l;
638
639 l = curlwp;
640 ci = l->l_cpu;
641 ci->ci_data.cpu_softints |= machdep;
642 if (l == ci->ci_data.cpu_idlelwp) {
643 cpu_need_resched(ci, 0);
644 } else {
645 /* MI equivalent of aston() */
646 cpu_signotify(l);
647 }
648 }
649
650 /*
651 * softint_thread:
652 *
653 * Slow path: MI software interrupt dispatch.
654 */
655 void
656 softint_thread(void *cookie)
657 {
658 softint_t *si;
659 lwp_t *l;
660 int s;
661
662 l = curlwp;
663 si = l->l_private;
664
665 for (;;) {
666 /*
667 * Clear pending status and run it. We must drop the
668 * spl before mi_switch(), since IPL_HIGH may be higher
669 * than IPL_SCHED (and it is not safe to switch at a
670 * higher level).
671 */
672 s = splhigh();
673 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
674 softint_execute(si, l, s);
675 splx(s);
676
677 lwp_lock(l);
678 l->l_stat = LSIDL;
679 mi_switch(l);
680 }
681 }
682
683 /*
684 * softint_picklwp:
685 *
686 * Slow path: called from mi_switch() to pick the highest priority
687 * soft interrupt LWP that needs to run.
688 */
689 lwp_t *
690 softint_picklwp(void)
691 {
692 struct cpu_info *ci;
693 u_int mask;
694 softint_t *si;
695 lwp_t *l;
696
697 ci = curcpu();
698 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
699 mask = ci->ci_data.cpu_softints;
700
701 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
702 l = si[SOFTINT_SERIAL].si_lwp;
703 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
704 l = si[SOFTINT_NET].si_lwp;
705 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
706 l = si[SOFTINT_BIO].si_lwp;
707 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
708 l = si[SOFTINT_CLOCK].si_lwp;
709 } else {
710 panic("softint_picklwp");
711 }
712
713 return l;
714 }
715
716 /*
717 * softint_overlay:
718 *
719 * Slow path: called from lwp_userret() to run a soft interrupt
720 * within the context of a user thread.
721 */
722 void
723 softint_overlay(void)
724 {
725 struct cpu_info *ci;
726 u_int softints, oflag;
727 softint_t *si;
728 pri_t obase;
729 lwp_t *l;
730 int s;
731
732 l = curlwp;
733 KASSERT((l->l_pflag & LP_INTR) == 0);
734
735 /*
736 * Arrange to elevate priority if the LWP blocks. Also, bind LWP
737 * to the CPU. Note: disable kernel preemption before doing that.
738 */
739 s = splhigh();
740 ci = l->l_cpu;
741 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
742
743 obase = l->l_kpribase;
744 l->l_kpribase = PRI_KERNEL_RT;
745 oflag = l->l_pflag;
746 l->l_pflag = oflag | LP_INTR | LP_BOUND;
747
748 while ((softints = ci->ci_data.cpu_softints) != 0) {
749 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
750 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
751 softint_execute(&si[SOFTINT_SERIAL], l, s);
752 continue;
753 }
754 if ((softints & (1 << SOFTINT_NET)) != 0) {
755 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
756 softint_execute(&si[SOFTINT_NET], l, s);
757 continue;
758 }
759 if ((softints & (1 << SOFTINT_BIO)) != 0) {
760 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
761 softint_execute(&si[SOFTINT_BIO], l, s);
762 continue;
763 }
764 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
765 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
766 softint_execute(&si[SOFTINT_CLOCK], l, s);
767 continue;
768 }
769 }
770 l->l_pflag = oflag;
771 l->l_kpribase = obase;
772 splx(s);
773 }
774
775 #else /* !__HAVE_FAST_SOFTINTS */
776
777 /*
778 * softint_thread:
779 *
780 * Fast path: the LWP is switched to without restoring any state,
781 * so we should not arrive here - there is a direct handoff between
782 * the interrupt stub and softint_dispatch().
783 */
784 void
785 softint_thread(void *cookie)
786 {
787
788 panic("softint_thread");
789 }
790
791 /*
792 * softint_dispatch:
793 *
794 * Fast path: entry point from machine-dependent code.
795 */
796 void
797 softint_dispatch(lwp_t *pinned, int s)
798 {
799 struct bintime now;
800 softint_t *si;
801 u_int timing;
802 lwp_t *l;
803
804 KASSERT((pinned->l_pflag & LP_RUNNING) != 0);
805 l = curlwp;
806 si = l->l_private;
807
808 /*
809 * Note the interrupted LWP, and mark the current LWP as running
810 * before proceeding. Although this must as a rule be done with
811 * the LWP locked, at this point no external agents will want to
812 * modify the interrupt LWP's state.
813 */
814 timing = (softint_timing ? LP_TIMEINTR : 0);
815 l->l_switchto = pinned;
816 l->l_stat = LSONPROC;
817 l->l_pflag |= (LP_RUNNING | timing);
818
819 /*
820 * Dispatch the interrupt. If softints are being timed, charge
821 * for it.
822 */
823 if (timing)
824 binuptime(&l->l_stime);
825 softint_execute(si, l, s);
826 if (timing) {
827 binuptime(&now);
828 updatertime(l, &now);
829 l->l_pflag &= ~LP_TIMEINTR;
830 }
831
832 /* Indicate a soft-interrupt switch. */
833 pserialize_switchpoint();
834
835 /*
836 * If we blocked while handling the interrupt, the pinned LWP is
837 * gone so switch to the idle LWP. It will select a new LWP to
838 * run.
839 *
840 * We must drop the priority level as switching at IPL_HIGH could
841 * deadlock the system. We have already set si->si_active = 0,
842 * which means another interrupt at this level can be triggered.
843 * That's not be a problem: we are lowering to level 's' which will
844 * prevent softint_dispatch() from being reentered at level 's',
845 * until the priority is finally dropped to IPL_NONE on entry to
846 * the LWP chosen by lwp_exit_switchaway().
847 */
848 l->l_stat = LSIDL;
849 if (l->l_switchto == NULL) {
850 splx(s);
851 pmap_deactivate(l);
852 lwp_exit_switchaway(l);
853 /* NOTREACHED */
854 }
855 l->l_switchto = NULL;
856 l->l_pflag &= ~LP_RUNNING;
857 }
858
859 #endif /* !__HAVE_FAST_SOFTINTS */
860