kern_softint.c revision 1.45.4.1 1 /* $NetBSD: kern_softint.c,v 1.45.4.1 2019/06/10 22:09:03 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.45.4.1 2019/06/10 22:09:03 christos Exp $");
174
175 #include <sys/param.h>
176 #include <sys/proc.h>
177 #include <sys/intr.h>
178 #include <sys/ipi.h>
179 #include <sys/mutex.h>
180 #include <sys/kernel.h>
181 #include <sys/kthread.h>
182 #include <sys/evcnt.h>
183 #include <sys/cpu.h>
184 #include <sys/xcall.h>
185 #include <sys/pserialize.h>
186
187 #include <net/netisr.h>
188
189 #include <uvm/uvm_extern.h>
190
191 /* This could overlap with signal info in struct lwp. */
192 typedef struct softint {
193 SIMPLEQ_HEAD(, softhand) si_q;
194 struct lwp *si_lwp;
195 struct cpu_info *si_cpu;
196 uintptr_t si_machdep;
197 struct evcnt si_evcnt;
198 struct evcnt si_evcnt_block;
199 int si_active;
200 char si_name[8];
201 char si_name_block[8+6];
202 } softint_t;
203
204 typedef struct softhand {
205 SIMPLEQ_ENTRY(softhand) sh_q;
206 void (*sh_func)(void *);
207 void *sh_arg;
208 softint_t *sh_isr;
209 u_int sh_flags;
210 u_int sh_ipi_id;
211 } softhand_t;
212
213 typedef struct softcpu {
214 struct cpu_info *sc_cpu;
215 softint_t sc_int[SOFTINT_COUNT];
216 softhand_t sc_hand[1];
217 } softcpu_t;
218
219 static void softint_thread(void *);
220
221 u_int softint_bytes = 32768;
222 u_int softint_timing;
223 static u_int softint_max;
224 static kmutex_t softint_lock;
225 static void *softint_netisrs[NETISR_MAX];
226
227 /*
228 * softint_init_isr:
229 *
230 * Initialize a single interrupt level for a single CPU.
231 */
232 static void
233 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
234 {
235 struct cpu_info *ci;
236 softint_t *si;
237 int error;
238
239 si = &sc->sc_int[level];
240 ci = sc->sc_cpu;
241 si->si_cpu = ci;
242
243 SIMPLEQ_INIT(&si->si_q);
244
245 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
246 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
247 "soft%s/%u", desc, ci->ci_index);
248 if (error != 0)
249 panic("softint_init_isr: error %d", error);
250
251 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
252 ci->ci_index);
253 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
254 "softint", si->si_name);
255 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
256 desc, ci->ci_index);
257 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
258 "softint", si->si_name_block);
259
260 si->si_lwp->l_private = si;
261 softint_init_md(si->si_lwp, level, &si->si_machdep);
262 }
263
264 /*
265 * softint_init:
266 *
267 * Initialize per-CPU data structures. Called from mi_cpu_attach().
268 */
269 void
270 softint_init(struct cpu_info *ci)
271 {
272 static struct cpu_info *first;
273 softcpu_t *sc, *scfirst;
274 softhand_t *sh, *shmax;
275
276 if (first == NULL) {
277 /* Boot CPU. */
278 first = ci;
279 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
280 softint_bytes = round_page(softint_bytes);
281 softint_max = (softint_bytes - sizeof(softcpu_t)) /
282 sizeof(softhand_t);
283 }
284
285 /* Use uvm_km(9) for persistent, page-aligned allocation. */
286 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
287 UVM_KMF_WIRED | UVM_KMF_ZERO);
288 if (sc == NULL)
289 panic("softint_init_cpu: cannot allocate memory");
290
291 ci->ci_data.cpu_softcpu = sc;
292 ci->ci_data.cpu_softints = 0;
293 sc->sc_cpu = ci;
294
295 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
296 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
297 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
298 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
299
300 if (first != ci) {
301 mutex_enter(&softint_lock);
302 scfirst = first->ci_data.cpu_softcpu;
303 sh = sc->sc_hand;
304 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
305 /* Update pointers for this CPU. */
306 for (shmax = sh + softint_max; sh < shmax; sh++) {
307 if (sh->sh_func == NULL)
308 continue;
309 sh->sh_isr =
310 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
311 }
312 mutex_exit(&softint_lock);
313 } else {
314 /*
315 * Establish handlers for legacy net interrupts.
316 * XXX Needs to go away.
317 */
318 #define DONETISR(n, f) \
319 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
320 (void (*)(void *))(f), NULL)
321 #include <net/netisr_dispatch.h>
322 }
323 }
324
325 /*
326 * softint_establish:
327 *
328 * Register a software interrupt handler.
329 */
330 void *
331 softint_establish(u_int flags, void (*func)(void *), void *arg)
332 {
333 CPU_INFO_ITERATOR cii;
334 struct cpu_info *ci;
335 softcpu_t *sc;
336 softhand_t *sh;
337 u_int level, index;
338 u_int ipi_id = 0;
339 void *sih;
340
341 level = (flags & SOFTINT_LVLMASK);
342 KASSERT(level < SOFTINT_COUNT);
343 KASSERT((flags & SOFTINT_IMPMASK) == 0);
344
345 mutex_enter(&softint_lock);
346
347 /* Find a free slot. */
348 sc = curcpu()->ci_data.cpu_softcpu;
349 for (index = 1; index < softint_max; index++) {
350 if (sc->sc_hand[index].sh_func == NULL)
351 break;
352 }
353 if (index == softint_max) {
354 mutex_exit(&softint_lock);
355 printf("WARNING: softint_establish: table full, "
356 "increase softint_bytes\n");
357 return NULL;
358 }
359 sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
360
361 if (flags & SOFTINT_RCPU) {
362 if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
363 mutex_exit(&softint_lock);
364 return NULL;
365 }
366 }
367
368 /* Set up the handler on each CPU. */
369 if (ncpu < 2) {
370 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
371 sc = curcpu()->ci_data.cpu_softcpu;
372 sh = &sc->sc_hand[index];
373 sh->sh_isr = &sc->sc_int[level];
374 sh->sh_func = func;
375 sh->sh_arg = arg;
376 sh->sh_flags = flags;
377 sh->sh_ipi_id = ipi_id;
378 } else for (CPU_INFO_FOREACH(cii, ci)) {
379 sc = ci->ci_data.cpu_softcpu;
380 sh = &sc->sc_hand[index];
381 sh->sh_isr = &sc->sc_int[level];
382 sh->sh_func = func;
383 sh->sh_arg = arg;
384 sh->sh_flags = flags;
385 sh->sh_ipi_id = ipi_id;
386 }
387 mutex_exit(&softint_lock);
388
389 return sih;
390 }
391
392 /*
393 * softint_disestablish:
394 *
395 * Unregister a software interrupt handler. The soft interrupt could
396 * still be active at this point, but the caller commits not to try
397 * and trigger it again once this call is made. The caller must not
398 * hold any locks that could be taken from soft interrupt context,
399 * because we will wait for the softint to complete if it's still
400 * running.
401 */
402 void
403 softint_disestablish(void *arg)
404 {
405 CPU_INFO_ITERATOR cii;
406 struct cpu_info *ci;
407 softcpu_t *sc;
408 softhand_t *sh;
409 uintptr_t offset;
410 uint64_t where;
411 u_int flags;
412
413 offset = (uintptr_t)arg;
414 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
415 offset, softint_bytes);
416
417 /*
418 * Unregister an IPI handler if there is any. Note: there is
419 * no need to disable preemption here - ID is stable.
420 */
421 sc = curcpu()->ci_data.cpu_softcpu;
422 sh = (softhand_t *)((uint8_t *)sc + offset);
423 if (sh->sh_ipi_id) {
424 ipi_unregister(sh->sh_ipi_id);
425 }
426
427 /*
428 * Run a cross call so we see up to date values of sh_flags from
429 * all CPUs. Once softint_disestablish() is called, the caller
430 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
431 * it again. So, we are only looking for handler records with
432 * SOFTINT_ACTIVE already set.
433 */
434 if (__predict_true(mp_online)) {
435 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
436 xc_wait(where);
437 }
438
439 for (;;) {
440 /* Collect flag values from each CPU. */
441 flags = 0;
442 for (CPU_INFO_FOREACH(cii, ci)) {
443 sc = ci->ci_data.cpu_softcpu;
444 sh = (softhand_t *)((uint8_t *)sc + offset);
445 KASSERT(sh->sh_func != NULL);
446 flags |= sh->sh_flags;
447 }
448 /* Inactive on all CPUs? */
449 if ((flags & SOFTINT_ACTIVE) == 0) {
450 break;
451 }
452 /* Oops, still active. Wait for it to clear. */
453 (void)kpause("softdis", false, 1, NULL);
454 }
455
456 /* Clear the handler on each CPU. */
457 mutex_enter(&softint_lock);
458 for (CPU_INFO_FOREACH(cii, ci)) {
459 sc = ci->ci_data.cpu_softcpu;
460 sh = (softhand_t *)((uint8_t *)sc + offset);
461 KASSERT(sh->sh_func != NULL);
462 sh->sh_func = NULL;
463 }
464 mutex_exit(&softint_lock);
465 }
466
467 /*
468 * softint_schedule:
469 *
470 * Trigger a software interrupt. Must be called from a hardware
471 * interrupt handler, or with preemption disabled (since we are
472 * using the value of curcpu()).
473 */
474 void
475 softint_schedule(void *arg)
476 {
477 softhand_t *sh;
478 softint_t *si;
479 uintptr_t offset;
480 int s;
481
482 KASSERT(kpreempt_disabled());
483
484 /* Find the handler record for this CPU. */
485 offset = (uintptr_t)arg;
486 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
487 offset, softint_bytes);
488 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
489
490 /* If it's already pending there's nothing to do. */
491 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
492 return;
493 }
494
495 /*
496 * Enqueue the handler into the LWP's pending list.
497 * If the LWP is completely idle, then make it run.
498 */
499 s = splhigh();
500 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
501 si = sh->sh_isr;
502 sh->sh_flags |= SOFTINT_PENDING;
503 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
504 if (si->si_active == 0) {
505 si->si_active = 1;
506 softint_trigger(si->si_machdep);
507 }
508 }
509 splx(s);
510 }
511
512 /*
513 * softint_schedule_cpu:
514 *
515 * Trigger a software interrupt on a target CPU. This invokes
516 * softint_schedule() for the local CPU or send an IPI to invoke
517 * this routine on the remote CPU. Preemption must be disabled.
518 */
519 void
520 softint_schedule_cpu(void *arg, struct cpu_info *ci)
521 {
522 KASSERT(kpreempt_disabled());
523
524 if (curcpu() != ci) {
525 const softcpu_t *sc = ci->ci_data.cpu_softcpu;
526 const uintptr_t offset = (uintptr_t)arg;
527 const softhand_t *sh;
528
529 sh = (const softhand_t *)((const uint8_t *)sc + offset);
530 KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
531 ipi_trigger(sh->sh_ipi_id, ci);
532 return;
533 }
534
535 /* Just a local CPU. */
536 softint_schedule(arg);
537 }
538
539 /*
540 * softint_execute:
541 *
542 * Invoke handlers for the specified soft interrupt.
543 * Must be entered at splhigh. Will drop the priority
544 * to the level specified, but returns back at splhigh.
545 */
546 static inline void
547 softint_execute(softint_t *si, lwp_t *l, int s)
548 {
549 softhand_t *sh;
550 bool havelock;
551
552 #ifdef __HAVE_FAST_SOFTINTS
553 KASSERT(si->si_lwp == curlwp);
554 #else
555 /* May be running in user context. */
556 #endif
557 KASSERT(si->si_cpu == curcpu());
558 KASSERT(si->si_lwp->l_wchan == NULL);
559 KASSERT(si->si_active);
560
561 havelock = false;
562
563 /*
564 * Note: due to priority inheritance we may have interrupted a
565 * higher priority LWP. Since the soft interrupt must be quick
566 * and is non-preemptable, we don't bother yielding.
567 */
568
569 while (!SIMPLEQ_EMPTY(&si->si_q)) {
570 /*
571 * Pick the longest waiting handler to run. We block
572 * interrupts but do not lock in order to do this, as
573 * we are protecting against the local CPU only.
574 */
575 sh = SIMPLEQ_FIRST(&si->si_q);
576 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
577 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
578 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
579 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
580 splx(s);
581
582 /* Run the handler. */
583 if (sh->sh_flags & SOFTINT_MPSAFE) {
584 if (havelock) {
585 KERNEL_UNLOCK_ONE(l);
586 havelock = false;
587 }
588 } else if (!havelock) {
589 KERNEL_LOCK(1, l);
590 havelock = true;
591 }
592 (*sh->sh_func)(sh->sh_arg);
593
594 /* Diagnostic: check that spin-locks have not leaked. */
595 KASSERTMSG(curcpu()->ci_mtx_count == 0,
596 "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
597 __func__, curcpu()->ci_mtx_count, sh->sh_func);
598 /* Diagnostic: check that psrefs have not leaked. */
599 KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
600 __func__, l->l_psrefs, sh->sh_func);
601
602 (void)splhigh();
603 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
604 sh->sh_flags ^= SOFTINT_ACTIVE;
605 }
606
607 PSREF_DEBUG_BARRIER();
608
609 if (havelock) {
610 KERNEL_UNLOCK_ONE(l);
611 }
612
613 /*
614 * Unlocked, but only for statistics.
615 * Should be per-CPU to prevent cache ping-pong.
616 */
617 curcpu()->ci_data.cpu_nsoft++;
618
619 KASSERT(si->si_cpu == curcpu());
620 KASSERT(si->si_lwp->l_wchan == NULL);
621 KASSERT(si->si_active);
622 si->si_evcnt.ev_count++;
623 si->si_active = 0;
624 }
625
626 /*
627 * softint_block:
628 *
629 * Update statistics when the soft interrupt blocks.
630 */
631 void
632 softint_block(lwp_t *l)
633 {
634 softint_t *si = l->l_private;
635
636 KASSERT((l->l_pflag & LP_INTR) != 0);
637 si->si_evcnt_block.ev_count++;
638 }
639
640 /*
641 * schednetisr:
642 *
643 * Trigger a legacy network interrupt. XXX Needs to go away.
644 */
645 void
646 schednetisr(int isr)
647 {
648
649 softint_schedule(softint_netisrs[isr]);
650 }
651
652 #ifndef __HAVE_FAST_SOFTINTS
653
654 #ifdef __HAVE_PREEMPTION
655 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
656 #endif
657
658 /*
659 * softint_init_md:
660 *
661 * Slow path: perform machine-dependent initialization.
662 */
663 void
664 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
665 {
666 softint_t *si;
667
668 *machdep = (1 << level);
669 si = l->l_private;
670
671 lwp_lock(l);
672 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
673 lwp_lock(l);
674 /* Cheat and make the KASSERT in softint_thread() happy. */
675 si->si_active = 1;
676 l->l_stat = LSRUN;
677 sched_enqueue(l, false);
678 lwp_unlock(l);
679 }
680
681 /*
682 * softint_trigger:
683 *
684 * Slow path: cause a soft interrupt handler to begin executing.
685 * Called at IPL_HIGH.
686 */
687 void
688 softint_trigger(uintptr_t machdep)
689 {
690 struct cpu_info *ci;
691 lwp_t *l;
692
693 l = curlwp;
694 ci = l->l_cpu;
695 ci->ci_data.cpu_softints |= machdep;
696 if (l == ci->ci_data.cpu_idlelwp) {
697 cpu_need_resched(ci, 0);
698 } else {
699 /* MI equivalent of aston() */
700 cpu_signotify(l);
701 }
702 }
703
704 /*
705 * softint_thread:
706 *
707 * Slow path: MI software interrupt dispatch.
708 */
709 void
710 softint_thread(void *cookie)
711 {
712 softint_t *si;
713 lwp_t *l;
714 int s;
715
716 l = curlwp;
717 si = l->l_private;
718
719 for (;;) {
720 /*
721 * Clear pending status and run it. We must drop the
722 * spl before mi_switch(), since IPL_HIGH may be higher
723 * than IPL_SCHED (and it is not safe to switch at a
724 * higher level).
725 */
726 s = splhigh();
727 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
728 softint_execute(si, l, s);
729 splx(s);
730
731 lwp_lock(l);
732 l->l_stat = LSIDL;
733 mi_switch(l);
734 }
735 }
736
737 /*
738 * softint_picklwp:
739 *
740 * Slow path: called from mi_switch() to pick the highest priority
741 * soft interrupt LWP that needs to run.
742 */
743 lwp_t *
744 softint_picklwp(void)
745 {
746 struct cpu_info *ci;
747 u_int mask;
748 softint_t *si;
749 lwp_t *l;
750
751 ci = curcpu();
752 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
753 mask = ci->ci_data.cpu_softints;
754
755 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
756 l = si[SOFTINT_SERIAL].si_lwp;
757 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
758 l = si[SOFTINT_NET].si_lwp;
759 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
760 l = si[SOFTINT_BIO].si_lwp;
761 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
762 l = si[SOFTINT_CLOCK].si_lwp;
763 } else {
764 panic("softint_picklwp");
765 }
766
767 return l;
768 }
769
770 /*
771 * softint_overlay:
772 *
773 * Slow path: called from lwp_userret() to run a soft interrupt
774 * within the context of a user thread.
775 */
776 void
777 softint_overlay(void)
778 {
779 struct cpu_info *ci;
780 u_int softints, oflag;
781 softint_t *si;
782 pri_t obase;
783 lwp_t *l;
784 int s;
785
786 l = curlwp;
787 KASSERT((l->l_pflag & LP_INTR) == 0);
788
789 /*
790 * Arrange to elevate priority if the LWP blocks. Also, bind LWP
791 * to the CPU. Note: disable kernel preemption before doing that.
792 */
793 s = splhigh();
794 ci = l->l_cpu;
795 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
796
797 obase = l->l_kpribase;
798 l->l_kpribase = PRI_KERNEL_RT;
799 oflag = l->l_pflag;
800 l->l_pflag = oflag | LP_INTR | LP_BOUND;
801
802 while ((softints = ci->ci_data.cpu_softints) != 0) {
803 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
804 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
805 softint_execute(&si[SOFTINT_SERIAL], l, s);
806 continue;
807 }
808 if ((softints & (1 << SOFTINT_NET)) != 0) {
809 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
810 softint_execute(&si[SOFTINT_NET], l, s);
811 continue;
812 }
813 if ((softints & (1 << SOFTINT_BIO)) != 0) {
814 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
815 softint_execute(&si[SOFTINT_BIO], l, s);
816 continue;
817 }
818 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
819 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
820 softint_execute(&si[SOFTINT_CLOCK], l, s);
821 continue;
822 }
823 }
824 l->l_pflag = oflag;
825 l->l_kpribase = obase;
826 splx(s);
827 }
828
829 #else /* !__HAVE_FAST_SOFTINTS */
830
831 /*
832 * softint_thread:
833 *
834 * Fast path: the LWP is switched to without restoring any state,
835 * so we should not arrive here - there is a direct handoff between
836 * the interrupt stub and softint_dispatch().
837 */
838 void
839 softint_thread(void *cookie)
840 {
841
842 panic("softint_thread");
843 }
844
845 /*
846 * softint_dispatch:
847 *
848 * Fast path: entry point from machine-dependent code.
849 */
850 void
851 softint_dispatch(lwp_t *pinned, int s)
852 {
853 struct bintime now;
854 softint_t *si;
855 u_int timing;
856 lwp_t *l;
857
858 KASSERT((pinned->l_pflag & LP_RUNNING) != 0);
859 l = curlwp;
860 si = l->l_private;
861
862 /*
863 * Note the interrupted LWP, and mark the current LWP as running
864 * before proceeding. Although this must as a rule be done with
865 * the LWP locked, at this point no external agents will want to
866 * modify the interrupt LWP's state.
867 */
868 timing = (softint_timing ? LP_TIMEINTR : 0);
869 l->l_switchto = pinned;
870 l->l_stat = LSONPROC;
871 l->l_pflag |= (LP_RUNNING | timing);
872
873 /*
874 * Dispatch the interrupt. If softints are being timed, charge
875 * for it.
876 */
877 if (timing)
878 binuptime(&l->l_stime);
879 softint_execute(si, l, s);
880 if (timing) {
881 binuptime(&now);
882 updatertime(l, &now);
883 l->l_pflag &= ~LP_TIMEINTR;
884 }
885
886 /* Indicate a soft-interrupt switch. */
887 pserialize_switchpoint();
888
889 /*
890 * If we blocked while handling the interrupt, the pinned LWP is
891 * gone so switch to the idle LWP. It will select a new LWP to
892 * run.
893 *
894 * We must drop the priority level as switching at IPL_HIGH could
895 * deadlock the system. We have already set si->si_active = 0,
896 * which means another interrupt at this level can be triggered.
897 * That's not be a problem: we are lowering to level 's' which will
898 * prevent softint_dispatch() from being reentered at level 's',
899 * until the priority is finally dropped to IPL_NONE on entry to
900 * the LWP chosen by lwp_exit_switchaway().
901 */
902 l->l_stat = LSIDL;
903 if (l->l_switchto == NULL) {
904 splx(s);
905 pmap_deactivate(l);
906 lwp_exit_switchaway(l);
907 /* NOTREACHED */
908 }
909 l->l_switchto = NULL;
910 l->l_pflag &= ~LP_RUNNING;
911 }
912
913 #endif /* !__HAVE_FAST_SOFTINTS */
914