Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.50
      1 /*	$NetBSD: kern_softint.c,v 1.50 2019/11/23 19:42:52 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Generic software interrupt framework.
     34  *
     35  * Overview
     36  *
     37  *	The soft interrupt framework provides a mechanism to schedule a
     38  *	low priority callback that runs with thread context.  It allows
     39  *	for dynamic registration of software interrupts, and for fair
     40  *	queueing and prioritization of those interrupts.  The callbacks
     41  *	can be scheduled to run from nearly any point in the kernel: by
     42  *	code running with thread context, by code running from a
     43  *	hardware interrupt handler, and at any interrupt priority
     44  *	level.
     45  *
     46  * Priority levels
     47  *
     48  *	Since soft interrupt dispatch can be tied to the underlying
     49  *	architecture's interrupt dispatch code, it can be limited
     50  *	both by the capabilities of the hardware and the capabilities
     51  *	of the interrupt dispatch code itself.  The number of priority
     52  *	levels is restricted to four.  In order of priority (lowest to
     53  *	highest) the levels are: clock, bio, net, serial.
     54  *
     55  *	The names are symbolic and in isolation do not have any direct
     56  *	connection with a particular kind of device activity: they are
     57  *	only meant as a guide.
     58  *
     59  *	The four priority levels map directly to scheduler priority
     60  *	levels, and where the architecture implements 'fast' software
     61  *	interrupts, they also map onto interrupt priorities.  The
     62  *	interrupt priorities are intended to be hidden from machine
     63  *	independent code, which should use thread-safe mechanisms to
     64  *	synchronize with software interrupts (for example: mutexes).
     65  *
     66  * Capabilities
     67  *
     68  *	Software interrupts run with limited machine context.  In
     69  *	particular, they do not posess any address space context.  They
     70  *	should not try to operate on user space addresses, or to use
     71  *	virtual memory facilities other than those noted as interrupt
     72  *	safe.
     73  *
     74  *	Unlike hardware interrupts, software interrupts do have thread
     75  *	context.  They may block on synchronization objects, sleep, and
     76  *	resume execution at a later time.
     77  *
     78  *	Since software interrupts are a limited resource and run with
     79  *	higher priority than most other LWPs in the system, all
     80  *	block-and-resume activity by a software interrupt must be kept
     81  *	short to allow futher processing at that level to continue.  By
     82  *	extension, code running with process context must take care to
     83  *	ensure that any lock that may be taken from a software interrupt
     84  *	can not be held for more than a short period of time.
     85  *
     86  *	The kernel does not allow software interrupts to use facilities
     87  *	or perform actions that may block for a significant amount of
     88  *	time.  This means that it's not valid for a software interrupt
     89  *	to sleep on condition variables	or wait for resources to become
     90  *	available (for example,	memory).
     91  *
     92  * Per-CPU operation
     93  *
     94  *	If a soft interrupt is triggered on a CPU, it can only be
     95  *	dispatched on the same CPU.  Each LWP dedicated to handling a
     96  *	soft interrupt is bound to its home CPU, so if the LWP blocks
     97  *	and needs to run again, it can only run there.  Nearly all data
     98  *	structures used to manage software interrupts are per-CPU.
     99  *
    100  *	The per-CPU requirement is intended to reduce "ping-pong" of
    101  *	cache lines between CPUs: lines occupied by data structures
    102  *	used to manage the soft interrupts, and lines occupied by data
    103  *	items being passed down to the soft interrupt.  As a positive
    104  *	side effect, this also means that the soft interrupt dispatch
    105  *	code does not need to to use spinlocks to synchronize.
    106  *
    107  * Generic implementation
    108  *
    109  *	A generic, low performance implementation is provided that
    110  *	works across all architectures, with no machine-dependent
    111  *	modifications needed.  This implementation uses the scheduler,
    112  *	and so has a number of restrictions:
    113  *
    114  *	1) The software interrupts are not currently preemptive, so
    115  *	must wait for the currently executing LWP to yield the CPU.
    116  *	This can introduce latency.
    117  *
    118  *	2) An expensive context switch is required for a software
    119  *	interrupt to be handled.
    120  *
    121  * 'Fast' software interrupts
    122  *
    123  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    124  *	the fast mechanism.  Threads running either in the kernel or in
    125  *	userspace will be interrupted, but will not be preempted.  When
    126  *	the soft interrupt completes execution, the interrupted LWP
    127  *	is resumed.  Interrupt dispatch code must provide the minimum
    128  *	level of context necessary for the soft interrupt to block and
    129  *	be resumed at a later time.  The machine-dependent dispatch
    130  *	path looks something like the following:
    131  *
    132  *	softintr()
    133  *	{
    134  *		go to IPL_HIGH if necessary for switch;
    135  *		save any necessary registers in a format that can be
    136  *		    restored by cpu_switchto if the softint blocks;
    137  *		arrange for cpu_switchto() to restore into the
    138  *		    trampoline function;
    139  *		identify LWP to handle this interrupt;
    140  *		switch to the LWP's stack;
    141  *		switch register stacks, if necessary;
    142  *		assign new value of curlwp;
    143  *		call MI softint_dispatch, passing old curlwp and IPL
    144  *		    to execute interrupt at;
    145  *		switch back to old stack;
    146  *		switch back to old register stack, if necessary;
    147  *		restore curlwp;
    148  *		return to interrupted LWP;
    149  *	}
    150  *
    151  *	If the soft interrupt blocks, a trampoline function is returned
    152  *	to in the context of the interrupted LWP, as arranged for by
    153  *	softint():
    154  *
    155  *	softint_ret()
    156  *	{
    157  *		unlock soft interrupt LWP;
    158  *		resume interrupt processing, likely returning to
    159  *		    interrupted LWP or dispatching another, different
    160  *		    interrupt;
    161  *	}
    162  *
    163  *	Once the soft interrupt has fired (and even if it has blocked),
    164  *	no further soft interrupts at that level will be triggered by
    165  *	MI code until the soft interrupt handler has ceased execution.
    166  *	If a soft interrupt handler blocks and is resumed, it resumes
    167  *	execution as a normal LWP (kthread) and gains VM context.  Only
    168  *	when it has completed and is ready to fire again will it
    169  *	interrupt other threads.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.50 2019/11/23 19:42:52 ad Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/proc.h>
    177 #include <sys/intr.h>
    178 #include <sys/ipi.h>
    179 #include <sys/mutex.h>
    180 #include <sys/kernel.h>
    181 #include <sys/kthread.h>
    182 #include <sys/evcnt.h>
    183 #include <sys/cpu.h>
    184 #include <sys/xcall.h>
    185 #include <sys/pserialize.h>
    186 
    187 #include <net/netisr.h>
    188 
    189 #include <uvm/uvm_extern.h>
    190 
    191 /* This could overlap with signal info in struct lwp. */
    192 typedef struct softint {
    193 	SIMPLEQ_HEAD(, softhand) si_q;
    194 	struct lwp		*si_lwp;
    195 	struct cpu_info		*si_cpu;
    196 	uintptr_t		si_machdep;
    197 	struct evcnt		si_evcnt;
    198 	struct evcnt		si_evcnt_block;
    199 	int			si_active;
    200 	char			si_name[8];
    201 	char			si_name_block[8+6];
    202 } softint_t;
    203 
    204 typedef struct softhand {
    205 	SIMPLEQ_ENTRY(softhand)	sh_q;
    206 	void			(*sh_func)(void *);
    207 	void			*sh_arg;
    208 	softint_t		*sh_isr;
    209 	u_int			sh_flags;
    210 	u_int			sh_ipi_id;
    211 } softhand_t;
    212 
    213 typedef struct softcpu {
    214 	struct cpu_info		*sc_cpu;
    215 	softint_t		sc_int[SOFTINT_COUNT];
    216 	softhand_t		sc_hand[1];
    217 } softcpu_t;
    218 
    219 static void	softint_thread(void *);
    220 
    221 u_int		softint_bytes = 32768;
    222 u_int		softint_timing;
    223 static u_int	softint_max;
    224 static kmutex_t	softint_lock;
    225 static void	*softint_netisrs[NETISR_MAX];
    226 
    227 /*
    228  * softint_init_isr:
    229  *
    230  *	Initialize a single interrupt level for a single CPU.
    231  */
    232 static void
    233 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    234 {
    235 	struct cpu_info *ci;
    236 	softint_t *si;
    237 	int error;
    238 
    239 	si = &sc->sc_int[level];
    240 	ci = sc->sc_cpu;
    241 	si->si_cpu = ci;
    242 
    243 	SIMPLEQ_INIT(&si->si_q);
    244 
    245 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    246 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    247 	    "soft%s/%u", desc, ci->ci_index);
    248 	if (error != 0)
    249 		panic("softint_init_isr: error %d", error);
    250 
    251 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
    252 	    ci->ci_index);
    253 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
    254 	   "softint", si->si_name);
    255 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
    256 	    desc, ci->ci_index);
    257 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
    258 	   "softint", si->si_name_block);
    259 
    260 	si->si_lwp->l_private = si;
    261 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    262 }
    263 
    264 /*
    265  * softint_init:
    266  *
    267  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    268  */
    269 void
    270 softint_init(struct cpu_info *ci)
    271 {
    272 	static struct cpu_info *first;
    273 	softcpu_t *sc, *scfirst;
    274 	softhand_t *sh, *shmax;
    275 
    276 	if (first == NULL) {
    277 		/* Boot CPU. */
    278 		first = ci;
    279 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    280 		softint_bytes = round_page(softint_bytes);
    281 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    282 		    sizeof(softhand_t);
    283 	}
    284 
    285 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
    286 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    287 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    288 	if (sc == NULL)
    289 		panic("softint_init_cpu: cannot allocate memory");
    290 
    291 	ci->ci_data.cpu_softcpu = sc;
    292 	ci->ci_data.cpu_softints = 0;
    293 	sc->sc_cpu = ci;
    294 
    295 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    296 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    297 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    298 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    299 
    300 	if (first != ci) {
    301 		mutex_enter(&softint_lock);
    302 		scfirst = first->ci_data.cpu_softcpu;
    303 		sh = sc->sc_hand;
    304 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    305 		/* Update pointers for this CPU. */
    306 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    307 			if (sh->sh_func == NULL)
    308 				continue;
    309 			sh->sh_isr =
    310 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    311 		}
    312 		mutex_exit(&softint_lock);
    313 	} else {
    314 		/*
    315 		 * Establish handlers for legacy net interrupts.
    316 		 * XXX Needs to go away.
    317 		 */
    318 #define DONETISR(n, f)							\
    319     softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
    320         (void (*)(void *))(f), NULL)
    321 #include <net/netisr_dispatch.h>
    322 	}
    323 }
    324 
    325 /*
    326  * softint_establish:
    327  *
    328  *	Register a software interrupt handler.
    329  */
    330 void *
    331 softint_establish(u_int flags, void (*func)(void *), void *arg)
    332 {
    333 	CPU_INFO_ITERATOR cii;
    334 	struct cpu_info *ci;
    335 	softcpu_t *sc;
    336 	softhand_t *sh;
    337 	u_int level, index;
    338 	u_int ipi_id = 0;
    339 	void *sih;
    340 
    341 	level = (flags & SOFTINT_LVLMASK);
    342 	KASSERT(level < SOFTINT_COUNT);
    343 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
    344 
    345 	mutex_enter(&softint_lock);
    346 
    347 	/* Find a free slot. */
    348 	sc = curcpu()->ci_data.cpu_softcpu;
    349 	for (index = 1; index < softint_max; index++) {
    350 		if (sc->sc_hand[index].sh_func == NULL)
    351 			break;
    352 	}
    353 	if (index == softint_max) {
    354 		mutex_exit(&softint_lock);
    355 		printf("WARNING: softint_establish: table full, "
    356 		    "increase softint_bytes\n");
    357 		return NULL;
    358 	}
    359 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    360 
    361 	if (flags & SOFTINT_RCPU) {
    362 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
    363 			mutex_exit(&softint_lock);
    364 			return NULL;
    365 		}
    366 	}
    367 
    368 	/* Set up the handler on each CPU. */
    369 	if (ncpu < 2) {
    370 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
    371 		sc = curcpu()->ci_data.cpu_softcpu;
    372 		sh = &sc->sc_hand[index];
    373 		sh->sh_isr = &sc->sc_int[level];
    374 		sh->sh_func = func;
    375 		sh->sh_arg = arg;
    376 		sh->sh_flags = flags;
    377 		sh->sh_ipi_id = ipi_id;
    378 	} else for (CPU_INFO_FOREACH(cii, ci)) {
    379 		sc = ci->ci_data.cpu_softcpu;
    380 		sh = &sc->sc_hand[index];
    381 		sh->sh_isr = &sc->sc_int[level];
    382 		sh->sh_func = func;
    383 		sh->sh_arg = arg;
    384 		sh->sh_flags = flags;
    385 		sh->sh_ipi_id = ipi_id;
    386 	}
    387 	mutex_exit(&softint_lock);
    388 
    389 	return sih;
    390 }
    391 
    392 /*
    393  * softint_disestablish:
    394  *
    395  *	Unregister a software interrupt handler.  The soft interrupt could
    396  *	still be active at this point, but the caller commits not to try
    397  *	and trigger it again once this call is made.  The caller must not
    398  *	hold any locks that could be taken from soft interrupt context,
    399  *	because we will wait for the softint to complete if it's still
    400  *	running.
    401  */
    402 void
    403 softint_disestablish(void *arg)
    404 {
    405 	CPU_INFO_ITERATOR cii;
    406 	struct cpu_info *ci;
    407 	softcpu_t *sc;
    408 	softhand_t *sh;
    409 	uintptr_t offset;
    410 	u_int flags;
    411 
    412 	offset = (uintptr_t)arg;
    413 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    414 	    offset, softint_bytes);
    415 
    416 	/*
    417 	 * Unregister an IPI handler if there is any.  Note: there is
    418 	 * no need to disable preemption here - ID is stable.
    419 	 */
    420 	sc = curcpu()->ci_data.cpu_softcpu;
    421 	sh = (softhand_t *)((uint8_t *)sc + offset);
    422 	if (sh->sh_ipi_id) {
    423 		ipi_unregister(sh->sh_ipi_id);
    424 	}
    425 
    426 	/*
    427 	 * Run a cross call so we see up to date values of sh_flags from
    428 	 * all CPUs.  Once softint_disestablish() is called, the caller
    429 	 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
    430 	 * it again.  So, we are only looking for handler records with
    431 	 * SOFTINT_ACTIVE already set.
    432 	 */
    433 	if (__predict_true(mp_online)) {
    434 		xc_barrier(0);
    435 	}
    436 
    437 	for (;;) {
    438 		/* Collect flag values from each CPU. */
    439 		flags = 0;
    440 		for (CPU_INFO_FOREACH(cii, ci)) {
    441 			sc = ci->ci_data.cpu_softcpu;
    442 			sh = (softhand_t *)((uint8_t *)sc + offset);
    443 			KASSERT(sh->sh_func != NULL);
    444 			flags |= sh->sh_flags;
    445 		}
    446 		/* Inactive on all CPUs? */
    447 		if ((flags & SOFTINT_ACTIVE) == 0) {
    448 			break;
    449 		}
    450 		/* Oops, still active.  Wait for it to clear. */
    451 		(void)kpause("softdis", false, 1, NULL);
    452 	}
    453 
    454 	/* Clear the handler on each CPU. */
    455 	mutex_enter(&softint_lock);
    456 	for (CPU_INFO_FOREACH(cii, ci)) {
    457 		sc = ci->ci_data.cpu_softcpu;
    458 		sh = (softhand_t *)((uint8_t *)sc + offset);
    459 		KASSERT(sh->sh_func != NULL);
    460 		sh->sh_func = NULL;
    461 	}
    462 	mutex_exit(&softint_lock);
    463 }
    464 
    465 /*
    466  * softint_schedule:
    467  *
    468  *	Trigger a software interrupt.  Must be called from a hardware
    469  *	interrupt handler, or with preemption disabled (since we are
    470  *	using the value of curcpu()).
    471  */
    472 void
    473 softint_schedule(void *arg)
    474 {
    475 	softhand_t *sh;
    476 	softint_t *si;
    477 	uintptr_t offset;
    478 	int s;
    479 
    480 	KASSERT(kpreempt_disabled());
    481 
    482 	/* Find the handler record for this CPU. */
    483 	offset = (uintptr_t)arg;
    484 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    485 	    offset, softint_bytes);
    486 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    487 
    488 	/* If it's already pending there's nothing to do. */
    489 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
    490 		return;
    491 	}
    492 
    493 	/*
    494 	 * Enqueue the handler into the LWP's pending list.
    495 	 * If the LWP is completely idle, then make it run.
    496 	 */
    497 	s = splhigh();
    498 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
    499 		si = sh->sh_isr;
    500 		sh->sh_flags |= SOFTINT_PENDING;
    501 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    502 		if (si->si_active == 0) {
    503 			si->si_active = 1;
    504 			softint_trigger(si->si_machdep);
    505 		}
    506 	}
    507 	splx(s);
    508 }
    509 
    510 /*
    511  * softint_schedule_cpu:
    512  *
    513  *	Trigger a software interrupt on a target CPU.  This invokes
    514  *	softint_schedule() for the local CPU or send an IPI to invoke
    515  *	this routine on the remote CPU.  Preemption must be disabled.
    516  */
    517 void
    518 softint_schedule_cpu(void *arg, struct cpu_info *ci)
    519 {
    520 	KASSERT(kpreempt_disabled());
    521 
    522 	if (curcpu() != ci) {
    523 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
    524 		const uintptr_t offset = (uintptr_t)arg;
    525 		const softhand_t *sh;
    526 
    527 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
    528 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
    529 		ipi_trigger(sh->sh_ipi_id, ci);
    530 		return;
    531 	}
    532 
    533 	/* Just a local CPU. */
    534 	softint_schedule(arg);
    535 }
    536 
    537 /*
    538  * softint_execute:
    539  *
    540  *	Invoke handlers for the specified soft interrupt.
    541  *	Must be entered at splhigh.  Will drop the priority
    542  *	to the level specified, but returns back at splhigh.
    543  */
    544 static inline void
    545 softint_execute(softint_t *si, lwp_t *l, int s)
    546 {
    547 	softhand_t *sh;
    548 	bool havelock;
    549 
    550 #ifdef __HAVE_FAST_SOFTINTS
    551 	KASSERT(si->si_lwp == curlwp);
    552 #else
    553 	/* May be running in user context. */
    554 #endif
    555 	KASSERT(si->si_cpu == curcpu());
    556 	KASSERT(si->si_lwp->l_wchan == NULL);
    557 	KASSERT(si->si_active);
    558 
    559 	havelock = false;
    560 
    561 	/*
    562 	 * Note: due to priority inheritance we may have interrupted a
    563 	 * higher priority LWP.  Since the soft interrupt must be quick
    564 	 * and is non-preemptable, we don't bother yielding.
    565 	 */
    566 
    567 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    568 		/*
    569 		 * Pick the longest waiting handler to run.  We block
    570 		 * interrupts but do not lock in order to do this, as
    571 		 * we are protecting against the local CPU only.
    572 		 */
    573 		sh = SIMPLEQ_FIRST(&si->si_q);
    574 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    575 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
    576 		KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
    577 		sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
    578 		splx(s);
    579 
    580 		/* Run the handler. */
    581 		if (sh->sh_flags & SOFTINT_MPSAFE) {
    582 			if (havelock) {
    583 				KERNEL_UNLOCK_ONE(l);
    584 				havelock = false;
    585 			}
    586 		} else if (!havelock) {
    587 			KERNEL_LOCK(1, l);
    588 			havelock = true;
    589 		}
    590 		(*sh->sh_func)(sh->sh_arg);
    591 
    592 		/* Diagnostic: check that spin-locks have not leaked. */
    593 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
    594 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
    595 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
    596 		/* Diagnostic: check that psrefs have not leaked. */
    597 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
    598 		    __func__, l->l_psrefs, sh->sh_func);
    599 
    600 		(void)splhigh();
    601 		KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
    602 		sh->sh_flags ^= SOFTINT_ACTIVE;
    603 	}
    604 
    605 	PSREF_DEBUG_BARRIER();
    606 
    607 	if (havelock) {
    608 		KERNEL_UNLOCK_ONE(l);
    609 	}
    610 
    611 	/*
    612 	 * Unlocked, but only for statistics.
    613 	 * Should be per-CPU to prevent cache ping-pong.
    614 	 */
    615 	curcpu()->ci_data.cpu_nsoft++;
    616 
    617 	KASSERT(si->si_cpu == curcpu());
    618 	KASSERT(si->si_lwp->l_wchan == NULL);
    619 	KASSERT(si->si_active);
    620 	si->si_evcnt.ev_count++;
    621 	si->si_active = 0;
    622 }
    623 
    624 /*
    625  * softint_block:
    626  *
    627  *	Update statistics when the soft interrupt blocks.
    628  */
    629 void
    630 softint_block(lwp_t *l)
    631 {
    632 	softint_t *si = l->l_private;
    633 
    634 	KASSERT((l->l_pflag & LP_INTR) != 0);
    635 	si->si_evcnt_block.ev_count++;
    636 }
    637 
    638 /*
    639  * schednetisr:
    640  *
    641  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    642  */
    643 void
    644 schednetisr(int isr)
    645 {
    646 
    647 	softint_schedule(softint_netisrs[isr]);
    648 }
    649 
    650 #ifndef __HAVE_FAST_SOFTINTS
    651 
    652 #ifdef __HAVE_PREEMPTION
    653 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
    654 #endif
    655 
    656 /*
    657  * softint_init_md:
    658  *
    659  *	Slow path: perform machine-dependent initialization.
    660  */
    661 void
    662 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    663 {
    664 	struct proc *p;
    665 	softint_t *si;
    666 
    667 	*machdep = (1 << level);
    668 	si = l->l_private;
    669 	p = l->l_proc;
    670 
    671 	mutex_enter(p->p_lock);
    672 	lwp_lock(l);
    673 	/* Cheat and make the KASSERT in softint_thread() happy. */
    674 	si->si_active = 1;
    675 	setrunnable(l);
    676 	/* LWP now unlocked */
    677 	mutex_exit(p->p_lock);
    678 }
    679 
    680 /*
    681  * softint_trigger:
    682  *
    683  *	Slow path: cause a soft interrupt handler to begin executing.
    684  *	Called at IPL_HIGH.
    685  */
    686 void
    687 softint_trigger(uintptr_t machdep)
    688 {
    689 	struct cpu_info *ci;
    690 	lwp_t *l;
    691 
    692 	l = curlwp;
    693 	ci = l->l_cpu;
    694 	ci->ci_data.cpu_softints |= machdep;
    695 	if (l == ci->ci_data.cpu_idlelwp) {
    696 		atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
    697 	} else {
    698 		/* MI equivalent of aston() */
    699 		lwp_need_userret(l);
    700 	}
    701 }
    702 
    703 /*
    704  * softint_thread:
    705  *
    706  *	Slow path: MI software interrupt dispatch.
    707  */
    708 void
    709 softint_thread(void *cookie)
    710 {
    711 	softint_t *si;
    712 	lwp_t *l;
    713 	int s;
    714 
    715 	l = curlwp;
    716 	si = l->l_private;
    717 
    718 	for (;;) {
    719 		/*
    720 		 * Clear pending status and run it.  We must drop the
    721 		 * spl before mi_switch(), since IPL_HIGH may be higher
    722 		 * than IPL_SCHED (and it is not safe to switch at a
    723 		 * higher level).
    724 		 */
    725 		s = splhigh();
    726 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    727 		softint_execute(si, l, s);
    728 		splx(s);
    729 
    730 		lwp_lock(l);
    731 		l->l_stat = LSIDL;
    732 		mi_switch(l);
    733 	}
    734 }
    735 
    736 /*
    737  * softint_picklwp:
    738  *
    739  *	Slow path: called from mi_switch() to pick the highest priority
    740  *	soft interrupt LWP that needs to run.
    741  */
    742 lwp_t *
    743 softint_picklwp(void)
    744 {
    745 	struct cpu_info *ci;
    746 	u_int mask;
    747 	softint_t *si;
    748 	lwp_t *l;
    749 
    750 	ci = curcpu();
    751 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    752 	mask = ci->ci_data.cpu_softints;
    753 
    754 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    755 		l = si[SOFTINT_SERIAL].si_lwp;
    756 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    757 		l = si[SOFTINT_NET].si_lwp;
    758 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    759 		l = si[SOFTINT_BIO].si_lwp;
    760 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    761 		l = si[SOFTINT_CLOCK].si_lwp;
    762 	} else {
    763 		panic("softint_picklwp");
    764 	}
    765 
    766 	return l;
    767 }
    768 
    769 /*
    770  * softint_overlay:
    771  *
    772  *	Slow path: called from lwp_userret() to run a soft interrupt
    773  *	within the context of a user thread.
    774  */
    775 void
    776 softint_overlay(void)
    777 {
    778 	struct cpu_info *ci;
    779 	u_int softints, oflag;
    780 	softint_t *si;
    781 	pri_t obase;
    782 	lwp_t *l;
    783 	int s;
    784 
    785 	l = curlwp;
    786 	KASSERT((l->l_pflag & LP_INTR) == 0);
    787 
    788 	/*
    789 	 * Arrange to elevate priority if the LWP blocks.  Also, bind LWP
    790 	 * to the CPU.  Note: disable kernel preemption before doing that.
    791 	 */
    792 	s = splhigh();
    793 	ci = l->l_cpu;
    794 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    795 
    796 	obase = l->l_kpribase;
    797 	l->l_kpribase = PRI_KERNEL_RT;
    798 	oflag = l->l_pflag;
    799 	l->l_pflag = oflag | LP_INTR | LP_BOUND;
    800 
    801 	while ((softints = ci->ci_data.cpu_softints) != 0) {
    802 		if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
    803 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
    804 			softint_execute(&si[SOFTINT_SERIAL], l, s);
    805 			continue;
    806 		}
    807 		if ((softints & (1 << SOFTINT_NET)) != 0) {
    808 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
    809 			softint_execute(&si[SOFTINT_NET], l, s);
    810 			continue;
    811 		}
    812 		if ((softints & (1 << SOFTINT_BIO)) != 0) {
    813 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
    814 			softint_execute(&si[SOFTINT_BIO], l, s);
    815 			continue;
    816 		}
    817 		if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
    818 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
    819 			softint_execute(&si[SOFTINT_CLOCK], l, s);
    820 			continue;
    821 		}
    822 	}
    823 	l->l_pflag = oflag;
    824 	l->l_kpribase = obase;
    825 	splx(s);
    826 }
    827 
    828 #else	/*  !__HAVE_FAST_SOFTINTS */
    829 
    830 /*
    831  * softint_thread:
    832  *
    833  *	Fast path: the LWP is switched to without restoring any state,
    834  *	so we should not arrive here - there is a direct handoff between
    835  *	the interrupt stub and softint_dispatch().
    836  */
    837 void
    838 softint_thread(void *cookie)
    839 {
    840 
    841 	panic("softint_thread");
    842 }
    843 
    844 /*
    845  * softint_dispatch:
    846  *
    847  *	Fast path: entry point from machine-dependent code.
    848  */
    849 void
    850 softint_dispatch(lwp_t *pinned, int s)
    851 {
    852 	struct bintime now;
    853 	softint_t *si;
    854 	u_int timing;
    855 	lwp_t *l;
    856 
    857 	KASSERT((pinned->l_pflag & LP_RUNNING) != 0);
    858 	l = curlwp;
    859 	si = l->l_private;
    860 
    861 	/*
    862 	 * Note the interrupted LWP, and mark the current LWP as running
    863 	 * before proceeding.  Although this must as a rule be done with
    864 	 * the LWP locked, at this point no external agents will want to
    865 	 * modify the interrupt LWP's state.
    866 	 */
    867 	timing = (softint_timing ? LP_TIMEINTR : 0);
    868 	l->l_switchto = pinned;
    869 	l->l_stat = LSONPROC;
    870 
    871 	/*
    872 	 * Dispatch the interrupt.  If softints are being timed, charge
    873 	 * for it.
    874 	 */
    875 	if (timing) {
    876 		binuptime(&l->l_stime);
    877 		membar_producer();	/* for calcru */
    878 	}
    879 	l->l_pflag |= (LP_RUNNING | timing);
    880 	softint_execute(si, l, s);
    881 	if (timing) {
    882 		binuptime(&now);
    883 		updatertime(l, &now);
    884 		l->l_pflag &= ~LP_TIMEINTR;
    885 	}
    886 
    887 	/* Indicate a soft-interrupt switch. */
    888 	pserialize_switchpoint();
    889 
    890 	/*
    891 	 * If we blocked while handling the interrupt, the pinned LWP is
    892 	 * gone so switch to the idle LWP.  It will select a new LWP to
    893 	 * run.
    894 	 *
    895 	 * We must drop the priority level as switching at IPL_HIGH could
    896 	 * deadlock the system.  We have already set si->si_active = 0,
    897 	 * which means another interrupt at this level can be triggered.
    898 	 * That's not be a problem: we are lowering to level 's' which will
    899 	 * prevent softint_dispatch() from being reentered at level 's',
    900 	 * until the priority is finally dropped to IPL_NONE on entry to
    901 	 * the LWP chosen by lwp_exit_switchaway().
    902 	 */
    903 	l->l_stat = LSIDL;
    904 	if (l->l_switchto == NULL) {
    905 		splx(s);
    906 		pmap_deactivate(l);
    907 		lwp_exit_switchaway(l);
    908 		/* NOTREACHED */
    909 	}
    910 	l->l_switchto = NULL;
    911 	l->l_pflag &= ~LP_RUNNING;
    912 }
    913 
    914 #endif	/* !__HAVE_FAST_SOFTINTS */
    915