Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.56.2.2
      1 /*	$NetBSD: kern_softint.c,v 1.56.2.2 2020/01/25 22:38:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Generic software interrupt framework.
     34  *
     35  * Overview
     36  *
     37  *	The soft interrupt framework provides a mechanism to schedule a
     38  *	low priority callback that runs with thread context.  It allows
     39  *	for dynamic registration of software interrupts, and for fair
     40  *	queueing and prioritization of those interrupts.  The callbacks
     41  *	can be scheduled to run from nearly any point in the kernel: by
     42  *	code running with thread context, by code running from a
     43  *	hardware interrupt handler, and at any interrupt priority
     44  *	level.
     45  *
     46  * Priority levels
     47  *
     48  *	Since soft interrupt dispatch can be tied to the underlying
     49  *	architecture's interrupt dispatch code, it can be limited
     50  *	both by the capabilities of the hardware and the capabilities
     51  *	of the interrupt dispatch code itself.  The number of priority
     52  *	levels is restricted to four.  In order of priority (lowest to
     53  *	highest) the levels are: clock, bio, net, serial.
     54  *
     55  *	The names are symbolic and in isolation do not have any direct
     56  *	connection with a particular kind of device activity: they are
     57  *	only meant as a guide.
     58  *
     59  *	The four priority levels map directly to scheduler priority
     60  *	levels, and where the architecture implements 'fast' software
     61  *	interrupts, they also map onto interrupt priorities.  The
     62  *	interrupt priorities are intended to be hidden from machine
     63  *	independent code, which should use thread-safe mechanisms to
     64  *	synchronize with software interrupts (for example: mutexes).
     65  *
     66  * Capabilities
     67  *
     68  *	Software interrupts run with limited machine context.  In
     69  *	particular, they do not posess any address space context.  They
     70  *	should not try to operate on user space addresses, or to use
     71  *	virtual memory facilities other than those noted as interrupt
     72  *	safe.
     73  *
     74  *	Unlike hardware interrupts, software interrupts do have thread
     75  *	context.  They may block on synchronization objects, sleep, and
     76  *	resume execution at a later time.
     77  *
     78  *	Since software interrupts are a limited resource and run with
     79  *	higher priority than most other LWPs in the system, all
     80  *	block-and-resume activity by a software interrupt must be kept
     81  *	short to allow futher processing at that level to continue.  By
     82  *	extension, code running with process context must take care to
     83  *	ensure that any lock that may be taken from a software interrupt
     84  *	can not be held for more than a short period of time.
     85  *
     86  *	The kernel does not allow software interrupts to use facilities
     87  *	or perform actions that may block for a significant amount of
     88  *	time.  This means that it's not valid for a software interrupt
     89  *	to sleep on condition variables	or wait for resources to become
     90  *	available (for example,	memory).
     91  *
     92  * Per-CPU operation
     93  *
     94  *	If a soft interrupt is triggered on a CPU, it can only be
     95  *	dispatched on the same CPU.  Each LWP dedicated to handling a
     96  *	soft interrupt is bound to its home CPU, so if the LWP blocks
     97  *	and needs to run again, it can only run there.  Nearly all data
     98  *	structures used to manage software interrupts are per-CPU.
     99  *
    100  *	The per-CPU requirement is intended to reduce "ping-pong" of
    101  *	cache lines between CPUs: lines occupied by data structures
    102  *	used to manage the soft interrupts, and lines occupied by data
    103  *	items being passed down to the soft interrupt.  As a positive
    104  *	side effect, this also means that the soft interrupt dispatch
    105  *	code does not need to to use spinlocks to synchronize.
    106  *
    107  * Generic implementation
    108  *
    109  *	A generic, low performance implementation is provided that
    110  *	works across all architectures, with no machine-dependent
    111  *	modifications needed.  This implementation uses the scheduler,
    112  *	and so has a number of restrictions:
    113  *
    114  *	1) The software interrupts are not currently preemptive, so
    115  *	must wait for the currently executing LWP to yield the CPU.
    116  *	This can introduce latency.
    117  *
    118  *	2) An expensive context switch is required for a software
    119  *	interrupt to be handled.
    120  *
    121  * 'Fast' software interrupts
    122  *
    123  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    124  *	the fast mechanism.  Threads running either in the kernel or in
    125  *	userspace will be interrupted, but will not be preempted.  When
    126  *	the soft interrupt completes execution, the interrupted LWP
    127  *	is resumed.  Interrupt dispatch code must provide the minimum
    128  *	level of context necessary for the soft interrupt to block and
    129  *	be resumed at a later time.  The machine-dependent dispatch
    130  *	path looks something like the following:
    131  *
    132  *	softintr()
    133  *	{
    134  *		go to IPL_HIGH if necessary for switch;
    135  *		save any necessary registers in a format that can be
    136  *		    restored by cpu_switchto if the softint blocks;
    137  *		arrange for cpu_switchto() to restore into the
    138  *		    trampoline function;
    139  *		identify LWP to handle this interrupt;
    140  *		switch to the LWP's stack;
    141  *		switch register stacks, if necessary;
    142  *		assign new value of curlwp;
    143  *		call MI softint_dispatch, passing old curlwp and IPL
    144  *		    to execute interrupt at;
    145  *		switch back to old stack;
    146  *		switch back to old register stack, if necessary;
    147  *		restore curlwp;
    148  *		return to interrupted LWP;
    149  *	}
    150  *
    151  *	If the soft interrupt blocks, a trampoline function is returned
    152  *	to in the context of the interrupted LWP, as arranged for by
    153  *	softint():
    154  *
    155  *	softint_ret()
    156  *	{
    157  *		unlock soft interrupt LWP;
    158  *		resume interrupt processing, likely returning to
    159  *		    interrupted LWP or dispatching another, different
    160  *		    interrupt;
    161  *	}
    162  *
    163  *	Once the soft interrupt has fired (and even if it has blocked),
    164  *	no further soft interrupts at that level will be triggered by
    165  *	MI code until the soft interrupt handler has ceased execution.
    166  *	If a soft interrupt handler blocks and is resumed, it resumes
    167  *	execution as a normal LWP (kthread) and gains VM context.  Only
    168  *	when it has completed and is ready to fire again will it
    169  *	interrupt other threads.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.56.2.2 2020/01/25 22:38:51 ad Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/proc.h>
    177 #include <sys/intr.h>
    178 #include <sys/ipi.h>
    179 #include <sys/mutex.h>
    180 #include <sys/kernel.h>
    181 #include <sys/kthread.h>
    182 #include <sys/evcnt.h>
    183 #include <sys/cpu.h>
    184 #include <sys/xcall.h>
    185 
    186 #include <net/netisr.h>
    187 
    188 #include <uvm/uvm_extern.h>
    189 
    190 /* This could overlap with signal info in struct lwp. */
    191 typedef struct softint {
    192 	SIMPLEQ_HEAD(, softhand) si_q;
    193 	struct lwp		*si_lwp;
    194 	struct cpu_info		*si_cpu;
    195 	uintptr_t		si_machdep;
    196 	struct evcnt		si_evcnt;
    197 	struct evcnt		si_evcnt_block;
    198 	int			si_active;
    199 	char			si_name[8];
    200 	char			si_name_block[8+6];
    201 } softint_t;
    202 
    203 typedef struct softhand {
    204 	SIMPLEQ_ENTRY(softhand)	sh_q;
    205 	void			(*sh_func)(void *);
    206 	void			*sh_arg;
    207 	softint_t		*sh_isr;
    208 	u_int			sh_flags;
    209 	u_int			sh_ipi_id;
    210 } softhand_t;
    211 
    212 typedef struct softcpu {
    213 	struct cpu_info		*sc_cpu;
    214 	softint_t		sc_int[SOFTINT_COUNT];
    215 	softhand_t		sc_hand[1];
    216 } softcpu_t;
    217 
    218 static void	softint_thread(void *);
    219 
    220 u_int		softint_bytes = 32768;
    221 u_int		softint_timing;
    222 static u_int	softint_max;
    223 static kmutex_t	softint_lock;
    224 static void	*softint_netisrs[NETISR_MAX];
    225 
    226 /*
    227  * softint_init_isr:
    228  *
    229  *	Initialize a single interrupt level for a single CPU.
    230  */
    231 static void
    232 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
    233 {
    234 	struct cpu_info *ci;
    235 	softint_t *si;
    236 	int error;
    237 
    238 	si = &sc->sc_int[level];
    239 	ci = sc->sc_cpu;
    240 	si->si_cpu = ci;
    241 
    242 	SIMPLEQ_INIT(&si->si_q);
    243 
    244 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    245 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    246 	    "soft%s/%u", desc, ci->ci_index);
    247 	if (error != 0)
    248 		panic("softint_init_isr: error %d", error);
    249 
    250 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
    251 	    ci->ci_index);
    252 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
    253 	   "softint", si->si_name);
    254 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
    255 	    desc, ci->ci_index);
    256 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
    257 	   "softint", si->si_name_block);
    258 
    259 	si->si_lwp->l_private = si;
    260 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    261 }
    262 
    263 /*
    264  * softint_init:
    265  *
    266  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    267  */
    268 void
    269 softint_init(struct cpu_info *ci)
    270 {
    271 	static struct cpu_info *first;
    272 	softcpu_t *sc, *scfirst;
    273 	softhand_t *sh, *shmax;
    274 
    275 	if (first == NULL) {
    276 		/* Boot CPU. */
    277 		first = ci;
    278 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    279 		softint_bytes = round_page(softint_bytes);
    280 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    281 		    sizeof(softhand_t);
    282 	}
    283 
    284 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
    285 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    286 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    287 	if (sc == NULL)
    288 		panic("softint_init_cpu: cannot allocate memory");
    289 
    290 	ci->ci_data.cpu_softcpu = sc;
    291 	ci->ci_data.cpu_softints = 0;
    292 	sc->sc_cpu = ci;
    293 
    294 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
    295 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
    296 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
    297 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
    298 
    299 	if (first != ci) {
    300 		mutex_enter(&softint_lock);
    301 		scfirst = first->ci_data.cpu_softcpu;
    302 		sh = sc->sc_hand;
    303 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    304 		/* Update pointers for this CPU. */
    305 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    306 			if (sh->sh_func == NULL)
    307 				continue;
    308 			sh->sh_isr =
    309 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    310 		}
    311 		mutex_exit(&softint_lock);
    312 	} else {
    313 		/*
    314 		 * Establish handlers for legacy net interrupts.
    315 		 * XXX Needs to go away.
    316 		 */
    317 #define DONETISR(n, f)							\
    318     softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
    319         (void (*)(void *))(f), NULL)
    320 #include <net/netisr_dispatch.h>
    321 	}
    322 }
    323 
    324 /*
    325  * softint_establish:
    326  *
    327  *	Register a software interrupt handler.
    328  */
    329 void *
    330 softint_establish(u_int flags, void (*func)(void *), void *arg)
    331 {
    332 	CPU_INFO_ITERATOR cii;
    333 	struct cpu_info *ci;
    334 	softcpu_t *sc;
    335 	softhand_t *sh;
    336 	u_int level, index;
    337 	u_int ipi_id = 0;
    338 	void *sih;
    339 
    340 	level = (flags & SOFTINT_LVLMASK);
    341 	KASSERT(level < SOFTINT_COUNT);
    342 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
    343 
    344 	mutex_enter(&softint_lock);
    345 
    346 	/* Find a free slot. */
    347 	sc = curcpu()->ci_data.cpu_softcpu;
    348 	for (index = 1; index < softint_max; index++) {
    349 		if (sc->sc_hand[index].sh_func == NULL)
    350 			break;
    351 	}
    352 	if (index == softint_max) {
    353 		mutex_exit(&softint_lock);
    354 		printf("WARNING: softint_establish: table full, "
    355 		    "increase softint_bytes\n");
    356 		return NULL;
    357 	}
    358 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    359 
    360 	if (flags & SOFTINT_RCPU) {
    361 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
    362 			mutex_exit(&softint_lock);
    363 			return NULL;
    364 		}
    365 	}
    366 
    367 	/* Set up the handler on each CPU. */
    368 	if (ncpu < 2) {
    369 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
    370 		sc = curcpu()->ci_data.cpu_softcpu;
    371 		sh = &sc->sc_hand[index];
    372 		sh->sh_isr = &sc->sc_int[level];
    373 		sh->sh_func = func;
    374 		sh->sh_arg = arg;
    375 		sh->sh_flags = flags;
    376 		sh->sh_ipi_id = ipi_id;
    377 	} else for (CPU_INFO_FOREACH(cii, ci)) {
    378 		sc = ci->ci_data.cpu_softcpu;
    379 		sh = &sc->sc_hand[index];
    380 		sh->sh_isr = &sc->sc_int[level];
    381 		sh->sh_func = func;
    382 		sh->sh_arg = arg;
    383 		sh->sh_flags = flags;
    384 		sh->sh_ipi_id = ipi_id;
    385 	}
    386 	mutex_exit(&softint_lock);
    387 
    388 	return sih;
    389 }
    390 
    391 /*
    392  * softint_disestablish:
    393  *
    394  *	Unregister a software interrupt handler.  The soft interrupt could
    395  *	still be active at this point, but the caller commits not to try
    396  *	and trigger it again once this call is made.  The caller must not
    397  *	hold any locks that could be taken from soft interrupt context,
    398  *	because we will wait for the softint to complete if it's still
    399  *	running.
    400  */
    401 void
    402 softint_disestablish(void *arg)
    403 {
    404 	CPU_INFO_ITERATOR cii;
    405 	struct cpu_info *ci;
    406 	softcpu_t *sc;
    407 	softhand_t *sh;
    408 	uintptr_t offset;
    409 	u_int flags;
    410 
    411 	offset = (uintptr_t)arg;
    412 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    413 	    offset, softint_bytes);
    414 
    415 	/*
    416 	 * Unregister an IPI handler if there is any.  Note: there is
    417 	 * no need to disable preemption here - ID is stable.
    418 	 */
    419 	sc = curcpu()->ci_data.cpu_softcpu;
    420 	sh = (softhand_t *)((uint8_t *)sc + offset);
    421 	if (sh->sh_ipi_id) {
    422 		ipi_unregister(sh->sh_ipi_id);
    423 	}
    424 
    425 	/*
    426 	 * Run a cross call so we see up to date values of sh_flags from
    427 	 * all CPUs.  Once softint_disestablish() is called, the caller
    428 	 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
    429 	 * it again.  So, we are only looking for handler records with
    430 	 * SOFTINT_ACTIVE already set.
    431 	 */
    432 	if (__predict_true(mp_online)) {
    433 		xc_barrier(0);
    434 	}
    435 
    436 	for (;;) {
    437 		/* Collect flag values from each CPU. */
    438 		flags = 0;
    439 		for (CPU_INFO_FOREACH(cii, ci)) {
    440 			sc = ci->ci_data.cpu_softcpu;
    441 			sh = (softhand_t *)((uint8_t *)sc + offset);
    442 			KASSERT(sh->sh_func != NULL);
    443 			flags |= sh->sh_flags;
    444 		}
    445 		/* Inactive on all CPUs? */
    446 		if ((flags & SOFTINT_ACTIVE) == 0) {
    447 			break;
    448 		}
    449 		/* Oops, still active.  Wait for it to clear. */
    450 		(void)kpause("softdis", false, 1, NULL);
    451 	}
    452 
    453 	/* Clear the handler on each CPU. */
    454 	mutex_enter(&softint_lock);
    455 	for (CPU_INFO_FOREACH(cii, ci)) {
    456 		sc = ci->ci_data.cpu_softcpu;
    457 		sh = (softhand_t *)((uint8_t *)sc + offset);
    458 		KASSERT(sh->sh_func != NULL);
    459 		sh->sh_func = NULL;
    460 	}
    461 	mutex_exit(&softint_lock);
    462 }
    463 
    464 /*
    465  * softint_schedule:
    466  *
    467  *	Trigger a software interrupt.  Must be called from a hardware
    468  *	interrupt handler, or with preemption disabled (since we are
    469  *	using the value of curcpu()).
    470  */
    471 void
    472 softint_schedule(void *arg)
    473 {
    474 	softhand_t *sh;
    475 	softint_t *si;
    476 	uintptr_t offset;
    477 	int s;
    478 
    479 	KASSERT(kpreempt_disabled());
    480 
    481 	/* Find the handler record for this CPU. */
    482 	offset = (uintptr_t)arg;
    483 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    484 	    offset, softint_bytes);
    485 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    486 
    487 	/* If it's already pending there's nothing to do. */
    488 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
    489 		return;
    490 	}
    491 
    492 	/*
    493 	 * Enqueue the handler into the LWP's pending list.
    494 	 * If the LWP is completely idle, then make it run.
    495 	 */
    496 	s = splhigh();
    497 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
    498 		si = sh->sh_isr;
    499 		sh->sh_flags |= SOFTINT_PENDING;
    500 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    501 		if (si->si_active == 0) {
    502 			si->si_active = 1;
    503 			softint_trigger(si->si_machdep);
    504 		}
    505 	}
    506 	splx(s);
    507 }
    508 
    509 /*
    510  * softint_schedule_cpu:
    511  *
    512  *	Trigger a software interrupt on a target CPU.  This invokes
    513  *	softint_schedule() for the local CPU or send an IPI to invoke
    514  *	this routine on the remote CPU.  Preemption must be disabled.
    515  */
    516 void
    517 softint_schedule_cpu(void *arg, struct cpu_info *ci)
    518 {
    519 	KASSERT(kpreempt_disabled());
    520 
    521 	if (curcpu() != ci) {
    522 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
    523 		const uintptr_t offset = (uintptr_t)arg;
    524 		const softhand_t *sh;
    525 
    526 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
    527 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
    528 		ipi_trigger(sh->sh_ipi_id, ci);
    529 		return;
    530 	}
    531 
    532 	/* Just a local CPU. */
    533 	softint_schedule(arg);
    534 }
    535 
    536 /*
    537  * softint_execute:
    538  *
    539  *	Invoke handlers for the specified soft interrupt.
    540  *	Must be entered at splhigh.  Will drop the priority
    541  *	to the level specified, but returns back at splhigh.
    542  */
    543 static inline void
    544 softint_execute(softint_t *si, lwp_t *l, int s)
    545 {
    546 	softhand_t *sh;
    547 
    548 #ifdef __HAVE_FAST_SOFTINTS
    549 	KASSERT(si->si_lwp == curlwp);
    550 #else
    551 	/* May be running in user context. */
    552 #endif
    553 	KASSERT(si->si_cpu == curcpu());
    554 	KASSERT(si->si_lwp->l_wchan == NULL);
    555 	KASSERT(si->si_active);
    556 
    557 	/*
    558 	 * Note: due to priority inheritance we may have interrupted a
    559 	 * higher priority LWP.  Since the soft interrupt must be quick
    560 	 * and is non-preemptable, we don't bother yielding.
    561 	 */
    562 
    563 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    564 		/*
    565 		 * Pick the longest waiting handler to run.  We block
    566 		 * interrupts but do not lock in order to do this, as
    567 		 * we are protecting against the local CPU only.
    568 		 */
    569 		sh = SIMPLEQ_FIRST(&si->si_q);
    570 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    571 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
    572 		KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
    573 		sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
    574 		splx(s);
    575 
    576 		/* Run the handler. */
    577 		if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
    578 			(*sh->sh_func)(sh->sh_arg);
    579 		} else {
    580 			KERNEL_LOCK(1, l);
    581 			(*sh->sh_func)(sh->sh_arg);
    582 			KERNEL_UNLOCK_ONE(l);
    583 		}
    584 
    585 		/* Diagnostic: check that spin-locks have not leaked. */
    586 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
    587 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
    588 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
    589 		/* Diagnostic: check that psrefs have not leaked. */
    590 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
    591 		    __func__, l->l_psrefs, sh->sh_func);
    592 
    593 		(void)splhigh();
    594 		KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
    595 		sh->sh_flags ^= SOFTINT_ACTIVE;
    596 	}
    597 
    598 	PSREF_DEBUG_BARRIER();
    599 
    600 	CPU_COUNT(CPU_COUNT_NSOFT, 1);
    601 
    602 	KASSERT(si->si_cpu == curcpu());
    603 	KASSERT(si->si_lwp->l_wchan == NULL);
    604 	KASSERT(si->si_active);
    605 	si->si_evcnt.ev_count++;
    606 	si->si_active = 0;
    607 }
    608 
    609 /*
    610  * softint_block:
    611  *
    612  *	Update statistics when the soft interrupt blocks.
    613  */
    614 void
    615 softint_block(lwp_t *l)
    616 {
    617 	softint_t *si = l->l_private;
    618 
    619 	KASSERT((l->l_pflag & LP_INTR) != 0);
    620 	si->si_evcnt_block.ev_count++;
    621 }
    622 
    623 /*
    624  * schednetisr:
    625  *
    626  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    627  */
    628 void
    629 schednetisr(int isr)
    630 {
    631 
    632 	softint_schedule(softint_netisrs[isr]);
    633 }
    634 
    635 #ifndef __HAVE_FAST_SOFTINTS
    636 
    637 #ifdef __HAVE_PREEMPTION
    638 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
    639 #endif
    640 
    641 /*
    642  * softint_init_md:
    643  *
    644  *	Slow path: perform machine-dependent initialization.
    645  */
    646 void
    647 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    648 {
    649 	struct proc *p;
    650 	softint_t *si;
    651 
    652 	*machdep = (1 << level);
    653 	si = l->l_private;
    654 	p = l->l_proc;
    655 
    656 	mutex_enter(p->p_lock);
    657 	lwp_lock(l);
    658 	/* Cheat and make the KASSERT in softint_thread() happy. */
    659 	si->si_active = 1;
    660 	setrunnable(l);
    661 	/* LWP now unlocked */
    662 	mutex_exit(p->p_lock);
    663 }
    664 
    665 /*
    666  * softint_trigger:
    667  *
    668  *	Slow path: cause a soft interrupt handler to begin executing.
    669  *	Called at IPL_HIGH.
    670  */
    671 void
    672 softint_trigger(uintptr_t machdep)
    673 {
    674 	struct cpu_info *ci;
    675 	lwp_t *l;
    676 
    677 	ci = curcpu();
    678 	ci->ci_data.cpu_softints |= machdep;
    679 	l = ci->ci_onproc;
    680 	if (l == ci->ci_data.cpu_idlelwp) {
    681 		atomic_or_uint(&ci->ci_want_resched,
    682 		    RESCHED_IDLE | RESCHED_UPREEMPT);
    683 	} else {
    684 		/* MI equivalent of aston() */
    685 		cpu_signotify(l);
    686 	}
    687 }
    688 
    689 /*
    690  * softint_thread:
    691  *
    692  *	Slow path: MI software interrupt dispatch.
    693  */
    694 void
    695 softint_thread(void *cookie)
    696 {
    697 	softint_t *si;
    698 	lwp_t *l;
    699 	int s;
    700 
    701 	l = curlwp;
    702 	si = l->l_private;
    703 
    704 	for (;;) {
    705 		/*
    706 		 * Clear pending status and run it.  We must drop the
    707 		 * spl before mi_switch(), since IPL_HIGH may be higher
    708 		 * than IPL_SCHED (and it is not safe to switch at a
    709 		 * higher level).
    710 		 */
    711 		s = splhigh();
    712 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    713 		softint_execute(si, l, s);
    714 		splx(s);
    715 
    716 		lwp_lock(l);
    717 		l->l_stat = LSIDL;
    718 		spc_lock(l->l_cpu);
    719 		mi_switch(l);
    720 	}
    721 }
    722 
    723 /*
    724  * softint_picklwp:
    725  *
    726  *	Slow path: called from mi_switch() to pick the highest priority
    727  *	soft interrupt LWP that needs to run.
    728  */
    729 lwp_t *
    730 softint_picklwp(void)
    731 {
    732 	struct cpu_info *ci;
    733 	u_int mask;
    734 	softint_t *si;
    735 	lwp_t *l;
    736 
    737 	ci = curcpu();
    738 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    739 	mask = ci->ci_data.cpu_softints;
    740 
    741 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    742 		l = si[SOFTINT_SERIAL].si_lwp;
    743 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    744 		l = si[SOFTINT_NET].si_lwp;
    745 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    746 		l = si[SOFTINT_BIO].si_lwp;
    747 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    748 		l = si[SOFTINT_CLOCK].si_lwp;
    749 	} else {
    750 		panic("softint_picklwp");
    751 	}
    752 
    753 	return l;
    754 }
    755 
    756 /*
    757  * softint_overlay:
    758  *
    759  *	Slow path: called from lwp_userret() to run a soft interrupt
    760  *	within the context of a user thread.
    761  */
    762 void
    763 softint_overlay(void)
    764 {
    765 	struct cpu_info *ci;
    766 	u_int softints, oflag;
    767 	softint_t *si;
    768 	pri_t obase;
    769 	lwp_t *l;
    770 	int s;
    771 
    772 	l = curlwp;
    773 	KASSERT((l->l_pflag & LP_INTR) == 0);
    774 
    775 	/*
    776 	 * Arrange to elevate priority if the LWP blocks.  Also, bind LWP
    777 	 * to the CPU.  Note: disable kernel preemption before doing that.
    778 	 */
    779 	s = splhigh();
    780 	ci = l->l_cpu;
    781 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    782 
    783 	obase = l->l_kpribase;
    784 	l->l_kpribase = PRI_KERNEL_RT;
    785 	oflag = l->l_pflag;
    786 	l->l_pflag = oflag | LP_INTR | LP_BOUND;
    787 
    788 	while ((softints = ci->ci_data.cpu_softints) != 0) {
    789 		if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
    790 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
    791 			softint_execute(&si[SOFTINT_SERIAL], l, s);
    792 			continue;
    793 		}
    794 		if ((softints & (1 << SOFTINT_NET)) != 0) {
    795 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
    796 			softint_execute(&si[SOFTINT_NET], l, s);
    797 			continue;
    798 		}
    799 		if ((softints & (1 << SOFTINT_BIO)) != 0) {
    800 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
    801 			softint_execute(&si[SOFTINT_BIO], l, s);
    802 			continue;
    803 		}
    804 		if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
    805 			ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
    806 			softint_execute(&si[SOFTINT_CLOCK], l, s);
    807 			continue;
    808 		}
    809 	}
    810 	l->l_pflag = oflag;
    811 	l->l_kpribase = obase;
    812 	splx(s);
    813 }
    814 
    815 #else	/*  !__HAVE_FAST_SOFTINTS */
    816 
    817 /*
    818  * softint_thread:
    819  *
    820  *	Fast path: the LWP is switched to without restoring any state,
    821  *	so we should not arrive here - there is a direct handoff between
    822  *	the interrupt stub and softint_dispatch().
    823  */
    824 void
    825 softint_thread(void *cookie)
    826 {
    827 
    828 	panic("softint_thread");
    829 }
    830 
    831 /*
    832  * softint_dispatch:
    833  *
    834  *	Fast path: entry point from machine-dependent code.
    835  */
    836 void
    837 softint_dispatch(lwp_t *pinned, int s)
    838 {
    839 	struct bintime now;
    840 	softint_t *si;
    841 	u_int timing;
    842 	lwp_t *l;
    843 
    844 	KASSERT((pinned->l_flag & LW_RUNNING) != 0);
    845 	l = curlwp;
    846 	si = l->l_private;
    847 
    848 	/*
    849 	 * Note the interrupted LWP, and mark the current LWP as running
    850 	 * before proceeding.  Although this must as a rule be done with
    851 	 * the LWP locked, at this point no external agents will want to
    852 	 * modify the interrupt LWP's state.
    853 	 */
    854 	timing = softint_timing;
    855 	l->l_switchto = pinned;
    856 	l->l_stat = LSONPROC;
    857 
    858 	/*
    859 	 * Dispatch the interrupt.  If softints are being timed, charge
    860 	 * for it.
    861 	 */
    862 	if (timing) {
    863 		binuptime(&l->l_stime);
    864 		membar_producer();	/* for calcru */
    865 		l->l_pflag |= LP_TIMEINTR;
    866 	}
    867 	l->l_flag |= LW_RUNNING;
    868 	softint_execute(si, l, s);
    869 	if (timing) {
    870 		binuptime(&now);
    871 		updatertime(l, &now);
    872 		l->l_pflag &= ~LP_TIMEINTR;
    873 	}
    874 
    875 	/*
    876 	 * If we blocked while handling the interrupt, the pinned LWP is
    877 	 * gone so switch to the idle LWP.  It will select a new LWP to
    878 	 * run.
    879 	 *
    880 	 * We must drop the priority level as switching at IPL_HIGH could
    881 	 * deadlock the system.  We have already set si->si_active = 0,
    882 	 * which means another interrupt at this level can be triggered.
    883 	 * That's not be a problem: we are lowering to level 's' which will
    884 	 * prevent softint_dispatch() from being reentered at level 's',
    885 	 * until the priority is finally dropped to IPL_NONE on entry to
    886 	 * the LWP chosen by mi_switch().
    887 	 */
    888 	l->l_stat = LSIDL;
    889 	if (l->l_switchto == NULL) {
    890 		splx(s);
    891 		lwp_lock(l);
    892 		spc_lock(l->l_cpu);
    893 		mi_switch(l);
    894 		/* NOTREACHED */
    895 	}
    896 	l->l_switchto = NULL;
    897 	l->l_flag &= ~LW_RUNNING;
    898 }
    899 
    900 #endif	/* !__HAVE_FAST_SOFTINTS */
    901