kern_softint.c revision 1.6.6.2 1 /* $NetBSD: kern_softint.c,v 1.6.6.2 2008/01/02 21:55:58 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Generic software interrupt framework.
41 *
42 * Overview
43 *
44 * The soft interrupt framework provides a mechanism to schedule a
45 * low priority callback that runs with thread context. It allows
46 * for dynamic registration of software interrupts, and for fair
47 * queueing and prioritization of those interrupts. The callbacks
48 * can be scheduled to run from nearly any point in the kernel: by
49 * code running with thread context, by code running from a
50 * hardware interrupt handler, and at any interrupt priority
51 * level.
52 *
53 * Priority levels
54 *
55 * Since soft interrupt dispatch can be tied to the underlying
56 * architecture's interrupt dispatch code, it can be limited
57 * both by the capabilities of the hardware and the capabilities
58 * of the interrupt dispatch code itself. The number of priority
59 * levels is restricted to four. In order of priority (lowest to
60 * highest) the levels are: clock, bio, net, serial.
61 *
62 * The names are symbolic and in isolation do not have any direct
63 * connection with a particular kind of device activity: they are
64 * only meant as a guide.
65 *
66 * The four priority levels map directly to scheduler priority
67 * levels, and where the architecture implements 'fast' software
68 * interrupts, they also map onto interrupt priorities. The
69 * interrupt priorities are intended to be hidden from machine
70 * independent code, which should use thread-safe mechanisms to
71 * synchronize with software interrupts (for example: mutexes).
72 *
73 * Capabilities
74 *
75 * Software interrupts run with limited machine context. In
76 * particular, they do not posess any address space context. They
77 * should not try to operate on user space addresses, or to use
78 * virtual memory facilities other than those noted as interrupt
79 * safe.
80 *
81 * Unlike hardware interrupts, software interrupts do have thread
82 * context. They may block on synchronization objects, sleep, and
83 * resume execution at a later time.
84 *
85 * Since software interrupts are a limited resource and run with
86 * higher priority than most other LWPs in the system, all
87 * block-and-resume activity by a software interrupt must be kept
88 * short to allow futher processing at that level to continue. By
89 * extension, code running with process context must take care to
90 * ensure that any lock that may be taken from a software interrupt
91 * can not be held for more than a short period of time.
92 *
93 * The kernel does not allow software interrupts to use facilities
94 * or perform actions that may block for a significant amount of
95 * time. This means that it's not valid for a software interrupt
96 * to: sleep on condition variables, use the lockmgr() facility,
97 * or wait for resources to become available (for example,
98 * memory).
99 *
100 * Per-CPU operation
101 *
102 * If a soft interrupt is triggered on a CPU, it can only be
103 * dispatched on the same CPU. Each LWP dedicated to handling a
104 * soft interrupt is bound to its home CPU, so if the LWP blocks
105 * and needs to run again, it can only run there. Nearly all data
106 * structures used to manage software interrupts are per-CPU.
107 *
108 * The per-CPU requirement is intended to reduce "ping-pong" of
109 * cache lines between CPUs: lines occupied by data structures
110 * used to manage the soft interrupts, and lines occupied by data
111 * items being passed down to the soft interrupt. As a positive
112 * side effect, this also means that the soft interrupt dispatch
113 * code does not need to to use spinlocks to synchronize.
114 *
115 * Generic implementation
116 *
117 * A generic, low performance implementation is provided that
118 * works across all architectures, with no machine-dependent
119 * modifications needed. This implementation uses the scheduler,
120 * and so has a number of restrictions:
121 *
122 * 1) The software interrupts are not currently preemptive, so
123 * must wait for the currently executing LWP to yield the CPU.
124 * This can introduce latency.
125 *
126 * 2) An expensive context switch is required for a software
127 * interrupt to be handled.
128 *
129 * 'Fast' software interrupts
130 *
131 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
132 * the fast mechanism. Threads running either in the kernel or in
133 * userspace will be interrupted, but will not be preempted. When
134 * the soft interrupt completes execution, the interrupted LWP
135 * is resumed. Interrupt dispatch code must provide the minimum
136 * level of context necessary for the soft interrupt to block and
137 * be resumed at a later time. The machine-dependent dispatch
138 * path looks something like the following:
139 *
140 * softintr()
141 * {
142 * go to IPL_HIGH if necessary for switch;
143 * save any necessary registers in a format that can be
144 * restored by cpu_switchto if the softint blocks;
145 * arrange for cpu_switchto() to restore into the
146 * trampoline function;
147 * identify LWP to handle this interrupt;
148 * switch to the LWP's stack;
149 * switch register stacks, if necessary;
150 * assign new value of curlwp;
151 * call MI softint_dispatch, passing old curlwp and IPL
152 * to execute interrupt at;
153 * switch back to old stack;
154 * switch back to old register stack, if necessary;
155 * restore curlwp;
156 * return to interrupted LWP;
157 * }
158 *
159 * If the soft interrupt blocks, a trampoline function is returned
160 * to in the context of the interrupted LWP, as arranged for by
161 * softint():
162 *
163 * softint_ret()
164 * {
165 * unlock soft interrupt LWP;
166 * resume interrupt processing, likely returning to
167 * interrupted LWP or dispatching another, different
168 * interrupt;
169 * }
170 *
171 * Once the soft interrupt has fired (and even if it has blocked),
172 * no further soft interrupts at that level will be triggered by
173 * MI code until the soft interrupt handler has ceased execution.
174 * If a soft interrupt handler blocks and is resumed, it resumes
175 * execution as a normal LWP (kthread) and gains VM context. Only
176 * when it has completed and is ready to fire again will it
177 * interrupt other threads.
178 *
179 * Future directions
180 *
181 * Provide a cheap way to direct software interrupts to remote
182 * CPUs. Provide a way to enqueue work items into the handler
183 * record, removing additional spl calls (see subr_workqueue.c).
184 */
185
186 #include <sys/cdefs.h>
187 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.6.6.2 2008/01/02 21:55:58 bouyer Exp $");
188
189 #include <sys/param.h>
190 #include <sys/malloc.h>
191 #include <sys/proc.h>
192 #include <sys/intr.h>
193 #include <sys/mutex.h>
194 #include <sys/kthread.h>
195 #include <sys/evcnt.h>
196 #include <sys/cpu.h>
197
198 #include <net/netisr.h>
199
200 #include <uvm/uvm_extern.h>
201
202 /* This could overlap with signal info in struct lwp. */
203 typedef struct softint {
204 SIMPLEQ_HEAD(, softhand) si_q;
205 struct lwp *si_lwp;
206 struct cpu_info *si_cpu;
207 uintptr_t si_machdep;
208 struct evcnt si_evcnt;
209 struct evcnt si_evcnt_block;
210 int si_active;
211 char si_name[8];
212 char si_name_block[8+6];
213 } softint_t;
214
215 typedef struct softhand {
216 SIMPLEQ_ENTRY(softhand) sh_q;
217 void (*sh_func)(void *);
218 void *sh_arg;
219 softint_t *sh_isr;
220 u_int sh_pending;
221 u_int sh_flags;
222 } softhand_t;
223
224 typedef struct softcpu {
225 struct cpu_info *sc_cpu;
226 softint_t sc_int[SOFTINT_COUNT];
227 softhand_t sc_hand[1];
228 } softcpu_t;
229
230 static void softint_thread(void *);
231
232 u_int softint_bytes = 8192;
233 u_int softint_timing;
234 static u_int softint_max;
235 static kmutex_t softint_lock;
236 static void *softint_netisrs[32];
237
238 /*
239 * softint_init_isr:
240 *
241 * Initialize a single interrupt level for a single CPU.
242 */
243 static void
244 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
245 {
246 struct cpu_info *ci;
247 softint_t *si;
248 int error;
249
250 si = &sc->sc_int[level];
251 ci = sc->sc_cpu;
252 si->si_cpu = ci;
253
254 SIMPLEQ_INIT(&si->si_q);
255
256 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
257 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
258 "soft%s/%d", desc, (int)ci->ci_cpuid);
259 if (error != 0)
260 panic("softint_init_isr: error %d", error);
261
262 snprintf(si->si_name, sizeof(si->si_name), "%s/%d", desc,
263 (int)ci->ci_cpuid);
264 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_INTR, NULL,
265 "softint", si->si_name);
266 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%d",
267 desc, (int)ci->ci_cpuid);
268 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_INTR, NULL,
269 "softint", si->si_name_block);
270
271 si->si_lwp->l_private = si;
272 softint_init_md(si->si_lwp, level, &si->si_machdep);
273 }
274 /*
275 * softint_init:
276 *
277 * Initialize per-CPU data structures. Called from mi_cpu_attach().
278 */
279 void
280 softint_init(struct cpu_info *ci)
281 {
282 static struct cpu_info *first;
283 softcpu_t *sc, *scfirst;
284 softhand_t *sh, *shmax;
285
286 if (first == NULL) {
287 /* Boot CPU. */
288 first = ci;
289 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
290 softint_bytes = round_page(softint_bytes);
291 softint_max = (softint_bytes - sizeof(softcpu_t)) /
292 sizeof(softhand_t);
293 }
294
295 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
296 UVM_KMF_WIRED | UVM_KMF_ZERO);
297 if (sc == NULL)
298 panic("softint_init_cpu: cannot allocate memory");
299
300 ci->ci_data.cpu_softcpu = sc;
301 ci->ci_data.cpu_softints = 0;
302 sc->sc_cpu = ci;
303
304 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
305 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
306 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
307 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
308
309 if (first != ci) {
310 mutex_enter(&softint_lock);
311 scfirst = first->ci_data.cpu_softcpu;
312 sh = sc->sc_hand;
313 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
314 /* Update pointers for this CPU. */
315 for (shmax = sh + softint_max; sh < shmax; sh++) {
316 if (sh->sh_func == NULL)
317 continue;
318 sh->sh_isr =
319 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
320 }
321 mutex_exit(&softint_lock);
322 } else {
323 /*
324 * Establish handlers for legacy net interrupts.
325 * XXX Needs to go away.
326 */
327 #define DONETISR(n, f) \
328 softint_netisrs[(n)] = \
329 softint_establish(SOFTINT_NET, (void (*)(void *))(f), NULL)
330 #include <net/netisr_dispatch.h>
331 }
332 }
333
334 /*
335 * softint_establish:
336 *
337 * Register a software interrupt handler.
338 */
339 void *
340 softint_establish(u_int flags, void (*func)(void *), void *arg)
341 {
342 CPU_INFO_ITERATOR cii;
343 struct cpu_info *ci;
344 softcpu_t *sc;
345 softhand_t *sh;
346 u_int level, index;
347
348 level = (flags & SOFTINT_LVLMASK);
349 KASSERT(level < SOFTINT_COUNT);
350
351 mutex_enter(&softint_lock);
352
353 /* Find a free slot. */
354 sc = curcpu()->ci_data.cpu_softcpu;
355 for (index = 1; index < softint_max; index++)
356 if (sc->sc_hand[index].sh_func == NULL)
357 break;
358 if (index == softint_max) {
359 mutex_exit(&softint_lock);
360 printf("WARNING: softint_establish: table full, "
361 "increase softint_bytes\n");
362 return NULL;
363 }
364
365 /* Set up the handler on each CPU. */
366 if (ncpu < 2) {
367 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
368 sc = curcpu()->ci_data.cpu_softcpu;
369 sh = &sc->sc_hand[index];
370 sh->sh_isr = &sc->sc_int[level];
371 sh->sh_func = func;
372 sh->sh_arg = arg;
373 sh->sh_flags = flags;
374 sh->sh_pending = 0;
375 } else for (CPU_INFO_FOREACH(cii, ci)) {
376 sc = ci->ci_data.cpu_softcpu;
377 sh = &sc->sc_hand[index];
378 sh->sh_isr = &sc->sc_int[level];
379 sh->sh_func = func;
380 sh->sh_arg = arg;
381 sh->sh_flags = flags;
382 sh->sh_pending = 0;
383 }
384
385 mutex_exit(&softint_lock);
386
387 return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
388 }
389
390 /*
391 * softint_disestablish:
392 *
393 * Unregister a software interrupt handler.
394 */
395 void
396 softint_disestablish(void *arg)
397 {
398 CPU_INFO_ITERATOR cii;
399 struct cpu_info *ci;
400 softcpu_t *sc;
401 softhand_t *sh;
402 uintptr_t offset;
403
404 offset = (uintptr_t)arg;
405 KASSERT(offset != 0 && offset < softint_bytes);
406
407 mutex_enter(&softint_lock);
408
409 /* Clear the handler on each CPU. */
410 for (CPU_INFO_FOREACH(cii, ci)) {
411 sc = ci->ci_data.cpu_softcpu;
412 sh = (softhand_t *)((uint8_t *)sc + offset);
413 KASSERT(sh->sh_func != NULL);
414 KASSERT(sh->sh_pending == 0);
415 sh->sh_func = NULL;
416 }
417
418 mutex_exit(&softint_lock);
419 }
420
421 /*
422 * softint_schedule:
423 *
424 * Trigger a software interrupt. Must be called from a hardware
425 * interrupt handler, or with preemption disabled (since we are
426 * using the value of curcpu()).
427 */
428 void
429 softint_schedule(void *arg)
430 {
431 softhand_t *sh;
432 softint_t *si;
433 uintptr_t offset;
434 int s;
435
436 /* Find the handler record for this CPU. */
437 offset = (uintptr_t)arg;
438 KASSERT(offset != 0 && offset < softint_bytes);
439 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
440
441 /* If it's already pending there's nothing to do. */
442 if (sh->sh_pending)
443 return;
444
445 /*
446 * Enqueue the handler into the LWP's pending list.
447 * If the LWP is completely idle, then make it run.
448 */
449 s = splhigh();
450 if (!sh->sh_pending) {
451 si = sh->sh_isr;
452 sh->sh_pending = 1;
453 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
454 if (si->si_active == 0) {
455 si->si_active = 1;
456 softint_trigger(si->si_machdep);
457 }
458 }
459 splx(s);
460 }
461
462 /*
463 * softint_execute:
464 *
465 * Invoke handlers for the specified soft interrupt.
466 * Must be entered at splhigh. Will drop the priority
467 * to the level specified, but returns back at splhigh.
468 */
469 static inline void
470 softint_execute(softint_t *si, lwp_t *l, int s)
471 {
472 softhand_t *sh;
473 bool havelock;
474
475 #ifdef __HAVE_FAST_SOFTINTS
476 KASSERT(si->si_lwp == curlwp);
477 #else
478 /* May be running in user context. */
479 #endif
480 KASSERT(si->si_cpu == curcpu());
481 KASSERT(si->si_lwp->l_wchan == NULL);
482 KASSERT(si->si_active);
483
484 havelock = false;
485
486 /*
487 * Note: due to priority inheritance we may have interrupted a
488 * higher priority LWP. Since the soft interrupt must be quick
489 * and is non-preemptable, we don't bother yielding.
490 */
491
492 while (!SIMPLEQ_EMPTY(&si->si_q)) {
493 /*
494 * Pick the longest waiting handler to run. We block
495 * interrupts but do not lock in order to do this, as
496 * we are protecting against the local CPU only.
497 */
498 sh = SIMPLEQ_FIRST(&si->si_q);
499 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
500 sh->sh_pending = 0;
501 splx(s);
502
503 /* Run the handler. */
504 if ((sh->sh_flags & SOFTINT_MPSAFE) == 0 && !havelock) {
505 KERNEL_LOCK(1, l);
506 havelock = true;
507 }
508 (*sh->sh_func)(sh->sh_arg);
509
510 (void)splhigh();
511 }
512
513 if (havelock) {
514 KERNEL_UNLOCK_ONE(l);
515 }
516
517 /*
518 * Unlocked, but only for statistics.
519 * Should be per-CPU to prevent cache ping-pong.
520 */
521 uvmexp.softs++;
522
523 si->si_evcnt.ev_count++;
524 si->si_active = 0;
525 }
526
527 /*
528 * softint_block:
529 *
530 * Update statistics when the soft interrupt blocks.
531 */
532 void
533 softint_block(lwp_t *l)
534 {
535 softint_t *si = l->l_private;
536
537 KASSERT((l->l_pflag & LP_INTR) != 0);
538 si->si_evcnt_block.ev_count++;
539 }
540
541 /*
542 * schednetisr:
543 *
544 * Trigger a legacy network interrupt. XXX Needs to go away.
545 */
546 void
547 schednetisr(int isr)
548 {
549
550 softint_schedule(softint_netisrs[isr]);
551 }
552
553 #ifndef __HAVE_FAST_SOFTINTS
554
555 /*
556 * softint_init_md:
557 *
558 * Slow path: perform machine-dependent initialization.
559 */
560 void
561 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
562 {
563 softint_t *si;
564
565 *machdep = (1 << level);
566 si = l->l_private;
567
568 lwp_lock(l);
569 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
570 lwp_lock(l);
571 /* Cheat and make the KASSERT in softint_thread() happy. */
572 si->si_active = 1;
573 l->l_stat = LSRUN;
574 sched_enqueue(l, false);
575 lwp_unlock(l);
576 }
577
578 /*
579 * softint_trigger:
580 *
581 * Slow path: cause a soft interrupt handler to begin executing.
582 * Called at IPL_HIGH.
583 */
584 void
585 softint_trigger(uintptr_t machdep)
586 {
587 struct cpu_info *ci;
588 lwp_t *l;
589
590 l = curlwp;
591 ci = l->l_cpu;
592 ci->ci_data.cpu_softints |= machdep;
593 if (l == ci->ci_data.cpu_idlelwp) {
594 cpu_need_resched(ci, 0);
595 } else {
596 /* MI equivalent of aston() */
597 cpu_signotify(l);
598 }
599 }
600
601 /*
602 * softint_thread:
603 *
604 * Slow path: MI software interrupt dispatch.
605 */
606 void
607 softint_thread(void *cookie)
608 {
609 softint_t *si;
610 lwp_t *l;
611 int s;
612
613 l = curlwp;
614 si = l->l_private;
615
616 for (;;) {
617 /*
618 * Clear pending status and run it. We must drop the
619 * spl before mi_switch(), since IPL_HIGH may be higher
620 * than IPL_SCHED (and it is not safe to switch at a
621 * higher level).
622 */
623 s = splhigh();
624 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
625 softint_execute(si, l, s);
626 splx(s);
627
628 lwp_lock(l);
629 l->l_stat = LSIDL;
630 mi_switch(l);
631 }
632 }
633
634 /*
635 * softint_picklwp:
636 *
637 * Slow path: called from mi_switch() to pick the highest priority
638 * soft interrupt LWP that needs to run.
639 */
640 lwp_t *
641 softint_picklwp(void)
642 {
643 struct cpu_info *ci;
644 u_int mask;
645 softint_t *si;
646 lwp_t *l;
647
648 ci = curcpu();
649 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
650 mask = ci->ci_data.cpu_softints;
651
652 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
653 l = si[SOFTINT_SERIAL].si_lwp;
654 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
655 l = si[SOFTINT_NET].si_lwp;
656 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
657 l = si[SOFTINT_BIO].si_lwp;
658 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
659 l = si[SOFTINT_CLOCK].si_lwp;
660 } else {
661 panic("softint_picklwp");
662 }
663
664 return l;
665 }
666
667 /*
668 * softint_overlay:
669 *
670 * Slow path: called from lwp_userret() to run a soft interrupt
671 * within the context of a user thread.
672 */
673 void
674 softint_overlay(void)
675 {
676 struct cpu_info *ci;
677 u_int softints;
678 softint_t *si;
679 pri_t obase;
680 lwp_t *l;
681 int s;
682
683 l = curlwp;
684 ci = l->l_cpu;
685 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
686
687 KASSERT((l->l_pflag & LP_INTR) == 0);
688
689 /* Arrange to elevate priority if the LWP blocks. */
690 obase = l->l_kpribase;
691 l->l_kpribase = PRI_KERNEL_RT;
692 l->l_pflag |= LP_INTR;
693 s = splhigh();
694 while ((softints = ci->ci_data.cpu_softints) != 0) {
695 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
696 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
697 softint_execute(&si[SOFTINT_SERIAL], l, s);
698 continue;
699 }
700 if ((softints & (1 << SOFTINT_NET)) != 0) {
701 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
702 softint_execute(&si[SOFTINT_NET], l, s);
703 continue;
704 }
705 if ((softints & (1 << SOFTINT_BIO)) != 0) {
706 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
707 softint_execute(&si[SOFTINT_BIO], l, s);
708 continue;
709 }
710 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
711 ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
712 softint_execute(&si[SOFTINT_CLOCK], l, s);
713 continue;
714 }
715 }
716 splx(s);
717 l->l_pflag &= ~LP_INTR;
718 l->l_kpribase = obase;
719 }
720
721 #else /* !__HAVE_FAST_SOFTINTS */
722
723 /*
724 * softint_thread:
725 *
726 * Fast path: the LWP is switched to without restoring any state,
727 * so we should not arrive here - there is a direct handoff between
728 * the interrupt stub and softint_dispatch().
729 */
730 void
731 softint_thread(void *cookie)
732 {
733
734 panic("softint_thread");
735 }
736
737 /*
738 * softint_dispatch:
739 *
740 * Fast path: entry point from machine-dependent code.
741 */
742 void
743 softint_dispatch(lwp_t *pinned, int s)
744 {
745 struct bintime now;
746 softint_t *si;
747 u_int timing;
748 lwp_t *l;
749
750 l = curlwp;
751 si = l->l_private;
752
753 /*
754 * Note the interrupted LWP, and mark the current LWP as running
755 * before proceeding. Although this must as a rule be done with
756 * the LWP locked, at this point no external agents will want to
757 * modify the interrupt LWP's state.
758 */
759 timing = (softint_timing ? LW_TIMEINTR : 0);
760 l->l_switchto = pinned;
761 l->l_stat = LSONPROC;
762 l->l_flag |= (LW_RUNNING | timing);
763
764 /*
765 * Dispatch the interrupt. If softints are being timed, charge
766 * for it.
767 */
768 if (timing)
769 bintime(&l->l_stime);
770 softint_execute(si, l, s);
771 if (timing) {
772 bintime(&now);
773 updatertime(l, &now);
774 l->l_flag &= ~LW_TIMEINTR;
775 }
776
777 /*
778 * If we blocked while handling the interrupt, the pinned LWP is
779 * gone so switch to the idle LWP. It will select a new LWP to
780 * run.
781 *
782 * We must drop the priority level as switching at IPL_HIGH could
783 * deadlock the system. We have already set si->si_active = 0,
784 * which means another interrupt at this level can be triggered.
785 * That's not be a problem: we are lowering to level 's' which will
786 * prevent softint_dispatch() from being reentered at level 's',
787 * until the priority is finally dropped to IPL_NONE on entry to
788 * the idle loop.
789 */
790 l->l_stat = LSIDL;
791 if (l->l_switchto == NULL) {
792 splx(s);
793 pmap_deactivate(l);
794 lwp_exit_switchaway(l);
795 /* NOTREACHED */
796 }
797 l->l_switchto = NULL;
798 l->l_flag &= ~LW_RUNNING;
799 }
800
801 #endif /* !__HAVE_FAST_SOFTINTS */
802