kern_softint.c revision 1.64 1 /* $NetBSD: kern_softint.c,v 1.64 2020/03/27 00:13:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow futher processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.64 2020/03/27 00:13:52 ad Exp $");
174
175 #include <sys/param.h>
176 #include <sys/proc.h>
177 #include <sys/intr.h>
178 #include <sys/ipi.h>
179 #include <sys/lock.h>
180 #include <sys/mutex.h>
181 #include <sys/kernel.h>
182 #include <sys/kthread.h>
183 #include <sys/evcnt.h>
184 #include <sys/cpu.h>
185 #include <sys/xcall.h>
186
187 #include <net/netisr.h>
188
189 #include <uvm/uvm_extern.h>
190
191 /* This could overlap with signal info in struct lwp. */
192 typedef struct softint {
193 SIMPLEQ_HEAD(, softhand) si_q;
194 struct lwp *si_lwp;
195 struct cpu_info *si_cpu;
196 uintptr_t si_machdep;
197 struct evcnt si_evcnt;
198 struct evcnt si_evcnt_block;
199 volatile int si_active;
200 char si_name[8];
201 char si_name_block[8+6];
202 } softint_t;
203
204 typedef struct softhand {
205 SIMPLEQ_ENTRY(softhand) sh_q;
206 void (*sh_func)(void *);
207 void *sh_arg;
208 softint_t *sh_isr;
209 u_int sh_flags;
210 u_int sh_ipi_id;
211 } softhand_t;
212
213 typedef struct softcpu {
214 struct cpu_info *sc_cpu;
215 softint_t sc_int[SOFTINT_COUNT];
216 softhand_t sc_hand[1];
217 } softcpu_t;
218
219 static void softint_thread(void *);
220
221 u_int softint_bytes = 32768;
222 u_int softint_timing;
223 static u_int softint_max;
224 static kmutex_t softint_lock;
225 static void *softint_netisrs[NETISR_MAX];
226
227 /*
228 * softint_init_isr:
229 *
230 * Initialize a single interrupt level for a single CPU.
231 */
232 static void
233 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
234 {
235 struct cpu_info *ci;
236 softint_t *si;
237 int error;
238
239 si = &sc->sc_int[level];
240 ci = sc->sc_cpu;
241 si->si_cpu = ci;
242
243 SIMPLEQ_INIT(&si->si_q);
244
245 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
246 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
247 "soft%s/%u", desc, ci->ci_index);
248 if (error != 0)
249 panic("softint_init_isr: error %d", error);
250
251 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
252 ci->ci_index);
253 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
254 "softint", si->si_name);
255 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
256 desc, ci->ci_index);
257 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
258 "softint", si->si_name_block);
259
260 si->si_lwp->l_private = si;
261 softint_init_md(si->si_lwp, level, &si->si_machdep);
262 }
263
264 /*
265 * softint_init:
266 *
267 * Initialize per-CPU data structures. Called from mi_cpu_attach().
268 */
269 void
270 softint_init(struct cpu_info *ci)
271 {
272 static struct cpu_info *first;
273 softcpu_t *sc, *scfirst;
274 softhand_t *sh, *shmax;
275
276 if (first == NULL) {
277 /* Boot CPU. */
278 first = ci;
279 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
280 softint_bytes = round_page(softint_bytes);
281 softint_max = (softint_bytes - sizeof(softcpu_t)) /
282 sizeof(softhand_t);
283 }
284
285 /* Use uvm_km(9) for persistent, page-aligned allocation. */
286 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
287 UVM_KMF_WIRED | UVM_KMF_ZERO);
288 if (sc == NULL)
289 panic("softint_init_cpu: cannot allocate memory");
290
291 ci->ci_data.cpu_softcpu = sc;
292 ci->ci_data.cpu_softints = 0;
293 sc->sc_cpu = ci;
294
295 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
296 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
297 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
298 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
299
300 if (first != ci) {
301 mutex_enter(&softint_lock);
302 scfirst = first->ci_data.cpu_softcpu;
303 sh = sc->sc_hand;
304 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
305 /* Update pointers for this CPU. */
306 for (shmax = sh + softint_max; sh < shmax; sh++) {
307 if (sh->sh_func == NULL)
308 continue;
309 sh->sh_isr =
310 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
311 }
312 mutex_exit(&softint_lock);
313 } else {
314 /*
315 * Establish handlers for legacy net interrupts.
316 * XXX Needs to go away.
317 */
318 #define DONETISR(n, f) \
319 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
320 (void (*)(void *))(f), NULL)
321 #include <net/netisr_dispatch.h>
322 }
323 }
324
325 /*
326 * softint_establish:
327 *
328 * Register a software interrupt handler.
329 */
330 void *
331 softint_establish(u_int flags, void (*func)(void *), void *arg)
332 {
333 CPU_INFO_ITERATOR cii;
334 struct cpu_info *ci;
335 softcpu_t *sc;
336 softhand_t *sh;
337 u_int level, index;
338 u_int ipi_id = 0;
339 void *sih;
340
341 level = (flags & SOFTINT_LVLMASK);
342 KASSERT(level < SOFTINT_COUNT);
343 KASSERT((flags & SOFTINT_IMPMASK) == 0);
344
345 mutex_enter(&softint_lock);
346
347 /* Find a free slot. */
348 sc = curcpu()->ci_data.cpu_softcpu;
349 for (index = 1; index < softint_max; index++) {
350 if (sc->sc_hand[index].sh_func == NULL)
351 break;
352 }
353 if (index == softint_max) {
354 mutex_exit(&softint_lock);
355 printf("WARNING: softint_establish: table full, "
356 "increase softint_bytes\n");
357 return NULL;
358 }
359 sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
360
361 if (flags & SOFTINT_RCPU) {
362 if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
363 mutex_exit(&softint_lock);
364 return NULL;
365 }
366 }
367
368 /* Set up the handler on each CPU. */
369 if (ncpu < 2) {
370 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
371 sc = curcpu()->ci_data.cpu_softcpu;
372 sh = &sc->sc_hand[index];
373 sh->sh_isr = &sc->sc_int[level];
374 sh->sh_func = func;
375 sh->sh_arg = arg;
376 sh->sh_flags = flags;
377 sh->sh_ipi_id = ipi_id;
378 } else for (CPU_INFO_FOREACH(cii, ci)) {
379 sc = ci->ci_data.cpu_softcpu;
380 sh = &sc->sc_hand[index];
381 sh->sh_isr = &sc->sc_int[level];
382 sh->sh_func = func;
383 sh->sh_arg = arg;
384 sh->sh_flags = flags;
385 sh->sh_ipi_id = ipi_id;
386 }
387 mutex_exit(&softint_lock);
388
389 return sih;
390 }
391
392 /*
393 * softint_disestablish:
394 *
395 * Unregister a software interrupt handler. The soft interrupt could
396 * still be active at this point, but the caller commits not to try
397 * and trigger it again once this call is made. The caller must not
398 * hold any locks that could be taken from soft interrupt context,
399 * because we will wait for the softint to complete if it's still
400 * running.
401 */
402 void
403 softint_disestablish(void *arg)
404 {
405 CPU_INFO_ITERATOR cii;
406 struct cpu_info *ci;
407 softcpu_t *sc;
408 softhand_t *sh;
409 uintptr_t offset;
410 u_int flags;
411
412 offset = (uintptr_t)arg;
413 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
414 offset, softint_bytes);
415
416 /*
417 * Unregister an IPI handler if there is any. Note: there is
418 * no need to disable preemption here - ID is stable.
419 */
420 sc = curcpu()->ci_data.cpu_softcpu;
421 sh = (softhand_t *)((uint8_t *)sc + offset);
422 if (sh->sh_ipi_id) {
423 ipi_unregister(sh->sh_ipi_id);
424 }
425
426 /*
427 * Run a cross call so we see up to date values of sh_flags from
428 * all CPUs. Once softint_disestablish() is called, the caller
429 * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
430 * it again. So, we are only looking for handler records with
431 * SOFTINT_ACTIVE already set.
432 */
433 if (__predict_true(mp_online)) {
434 xc_barrier(0);
435 }
436
437 for (;;) {
438 /* Collect flag values from each CPU. */
439 flags = 0;
440 for (CPU_INFO_FOREACH(cii, ci)) {
441 sc = ci->ci_data.cpu_softcpu;
442 sh = (softhand_t *)((uint8_t *)sc + offset);
443 KASSERT(sh->sh_func != NULL);
444 flags |= sh->sh_flags;
445 }
446 /* Inactive on all CPUs? */
447 if ((flags & SOFTINT_ACTIVE) == 0) {
448 break;
449 }
450 /* Oops, still active. Wait for it to clear. */
451 (void)kpause("softdis", false, 1, NULL);
452 }
453
454 /* Clear the handler on each CPU. */
455 mutex_enter(&softint_lock);
456 for (CPU_INFO_FOREACH(cii, ci)) {
457 sc = ci->ci_data.cpu_softcpu;
458 sh = (softhand_t *)((uint8_t *)sc + offset);
459 KASSERT(sh->sh_func != NULL);
460 sh->sh_func = NULL;
461 }
462 mutex_exit(&softint_lock);
463 }
464
465 /*
466 * softint_schedule:
467 *
468 * Trigger a software interrupt. Must be called from a hardware
469 * interrupt handler, or with preemption disabled (since we are
470 * using the value of curcpu()).
471 */
472 void
473 softint_schedule(void *arg)
474 {
475 softhand_t *sh;
476 softint_t *si;
477 uintptr_t offset;
478 int s;
479
480 /*
481 * If this assert fires, rather than disabling preemption explicitly
482 * to make it stop, consider that you are probably using a softint
483 * when you don't need to.
484 */
485 KASSERT(kpreempt_disabled());
486
487 /* Find the handler record for this CPU. */
488 offset = (uintptr_t)arg;
489 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
490 offset, softint_bytes);
491 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
492
493 /* If it's already pending there's nothing to do. */
494 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
495 return;
496 }
497
498 /*
499 * Enqueue the handler into the LWP's pending list.
500 * If the LWP is completely idle, then make it run.
501 */
502 s = splhigh();
503 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
504 si = sh->sh_isr;
505 sh->sh_flags |= SOFTINT_PENDING;
506 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
507 if (si->si_active == 0) {
508 si->si_active = 1;
509 softint_trigger(si->si_machdep);
510 }
511 }
512 splx(s);
513 }
514
515 /*
516 * softint_schedule_cpu:
517 *
518 * Trigger a software interrupt on a target CPU. This invokes
519 * softint_schedule() for the local CPU or send an IPI to invoke
520 * this routine on the remote CPU. Preemption must be disabled.
521 */
522 void
523 softint_schedule_cpu(void *arg, struct cpu_info *ci)
524 {
525 KASSERT(kpreempt_disabled());
526
527 if (curcpu() != ci) {
528 const softcpu_t *sc = ci->ci_data.cpu_softcpu;
529 const uintptr_t offset = (uintptr_t)arg;
530 const softhand_t *sh;
531
532 sh = (const softhand_t *)((const uint8_t *)sc + offset);
533 KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
534 ipi_trigger(sh->sh_ipi_id, ci);
535 return;
536 }
537
538 /* Just a local CPU. */
539 softint_schedule(arg);
540 }
541
542 /*
543 * softint_execute:
544 *
545 * Invoke handlers for the specified soft interrupt.
546 * Must be entered at splhigh. Will drop the priority
547 * to the level specified, but returns back at splhigh.
548 */
549 static inline void
550 softint_execute(softint_t *si, lwp_t *l, int s)
551 {
552 softhand_t *sh;
553
554 KASSERT(si->si_lwp == curlwp);
555 KASSERT(si->si_cpu == curcpu());
556 KASSERT(si->si_lwp->l_wchan == NULL);
557 KASSERT(si->si_active);
558
559 /*
560 * Note: due to priority inheritance we may have interrupted a
561 * higher priority LWP. Since the soft interrupt must be quick
562 * and is non-preemptable, we don't bother yielding.
563 */
564
565 while (!SIMPLEQ_EMPTY(&si->si_q)) {
566 /*
567 * Pick the longest waiting handler to run. We block
568 * interrupts but do not lock in order to do this, as
569 * we are protecting against the local CPU only.
570 */
571 sh = SIMPLEQ_FIRST(&si->si_q);
572 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
573 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
574 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
575 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
576 splx(s);
577
578 /* Run the handler. */
579 if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
580 (*sh->sh_func)(sh->sh_arg);
581 } else {
582 KERNEL_LOCK(1, l);
583 (*sh->sh_func)(sh->sh_arg);
584 KERNEL_UNLOCK_ONE(l);
585 }
586
587 /* Diagnostic: check that spin-locks have not leaked. */
588 KASSERTMSG(curcpu()->ci_mtx_count == 0,
589 "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
590 __func__, curcpu()->ci_mtx_count, sh->sh_func);
591 /* Diagnostic: check that psrefs have not leaked. */
592 KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
593 __func__, l->l_psrefs, sh->sh_func);
594
595 (void)splhigh();
596 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
597 sh->sh_flags ^= SOFTINT_ACTIVE;
598 }
599
600 PSREF_DEBUG_BARRIER();
601
602 CPU_COUNT(CPU_COUNT_NSOFT, 1);
603
604 KASSERT(si->si_cpu == curcpu());
605 KASSERT(si->si_lwp->l_wchan == NULL);
606 KASSERT(si->si_active);
607 si->si_evcnt.ev_count++;
608 si->si_active = 0;
609 }
610
611 /*
612 * softint_block:
613 *
614 * Update statistics when the soft interrupt blocks.
615 */
616 void
617 softint_block(lwp_t *l)
618 {
619 softint_t *si = l->l_private;
620
621 KASSERT((l->l_pflag & LP_INTR) != 0);
622 si->si_evcnt_block.ev_count++;
623 }
624
625 /*
626 * schednetisr:
627 *
628 * Trigger a legacy network interrupt. XXX Needs to go away.
629 */
630 void
631 schednetisr(int isr)
632 {
633
634 softint_schedule(softint_netisrs[isr]);
635 }
636
637 #ifndef __HAVE_FAST_SOFTINTS
638
639 #ifdef __HAVE_PREEMPTION
640 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
641 #endif
642
643 /*
644 * softint_init_md:
645 *
646 * Slow path: perform machine-dependent initialization.
647 */
648 void
649 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
650 {
651 struct proc *p;
652 softint_t *si;
653
654 *machdep = (1 << level);
655 si = l->l_private;
656 p = l->l_proc;
657
658 mutex_enter(p->p_lock);
659 lwp_lock(l);
660 /* Cheat and make the KASSERT in softint_thread() happy. */
661 si->si_active = 1;
662 setrunnable(l);
663 /* LWP now unlocked */
664 mutex_exit(p->p_lock);
665 }
666
667 /*
668 * softint_trigger:
669 *
670 * Slow path: cause a soft interrupt handler to begin executing.
671 * Called at IPL_HIGH.
672 */
673 void
674 softint_trigger(uintptr_t machdep)
675 {
676 struct cpu_info *ci;
677 lwp_t *l;
678
679 ci = curcpu();
680 ci->ci_data.cpu_softints |= machdep;
681 l = ci->ci_onproc;
682
683 /*
684 * Arrange for mi_switch() to be called. If called from interrupt
685 * mode, we don't know if curlwp is executing in kernel or user, so
686 * post an AST and have it take a trip through userret(). If not in
687 * interrupt mode, curlwp is running in kernel and will notice the
688 * resched soon enough; avoid the AST.
689 */
690 if (l == ci->ci_data.cpu_idlelwp) {
691 atomic_or_uint(&ci->ci_want_resched,
692 RESCHED_IDLE | RESCHED_UPREEMPT);
693 } else {
694 atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
695 if (cpu_intr_p()) {
696 cpu_signotify(l);
697 }
698 }
699 }
700
701 /*
702 * softint_thread:
703 *
704 * Slow path: MI software interrupt dispatch.
705 */
706 void
707 softint_thread(void *cookie)
708 {
709 softint_t *si;
710 lwp_t *l;
711 int s;
712
713 l = curlwp;
714 si = l->l_private;
715
716 for (;;) {
717 /* Clear pending status and run it. */
718 s = splhigh();
719 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
720 softint_execute(si, l, s);
721 splx(s);
722
723 /* Interrupts allowed to run again before switching. */
724 lwp_lock(l);
725 l->l_stat = LSIDL;
726 spc_lock(l->l_cpu);
727 mi_switch(l);
728 }
729 }
730
731 /*
732 * softint_picklwp:
733 *
734 * Slow path: called from mi_switch() to pick the highest priority
735 * soft interrupt LWP that needs to run.
736 */
737 lwp_t *
738 softint_picklwp(void)
739 {
740 struct cpu_info *ci;
741 u_int mask;
742 softint_t *si;
743 lwp_t *l;
744
745 ci = curcpu();
746 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
747 mask = ci->ci_data.cpu_softints;
748
749 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
750 l = si[SOFTINT_SERIAL].si_lwp;
751 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
752 l = si[SOFTINT_NET].si_lwp;
753 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
754 l = si[SOFTINT_BIO].si_lwp;
755 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
756 l = si[SOFTINT_CLOCK].si_lwp;
757 } else {
758 panic("softint_picklwp");
759 }
760
761 return l;
762 }
763
764 #else /* !__HAVE_FAST_SOFTINTS */
765
766 /*
767 * softint_thread:
768 *
769 * Fast path: the LWP is switched to without restoring any state,
770 * so we should not arrive here - there is a direct handoff between
771 * the interrupt stub and softint_dispatch().
772 */
773 void
774 softint_thread(void *cookie)
775 {
776
777 panic("softint_thread");
778 }
779
780 /*
781 * softint_dispatch:
782 *
783 * Fast path: entry point from machine-dependent code.
784 */
785 void
786 softint_dispatch(lwp_t *pinned, int s)
787 {
788 struct bintime now;
789 softint_t *si;
790 u_int timing;
791 lwp_t *l;
792
793 #ifdef DIAGNOSTIC
794 if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
795 struct lwp *onproc = curcpu()->ci_onproc;
796 int s2 = splhigh();
797 printf("curcpu=%d, spl=%d curspl=%d\n"
798 "onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
799 "curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
800 "pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
801 cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
802 onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
803 curlwp->l_stat, curlwp->l_flag,
804 cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
805 pinned->l_flag, cpu_index(pinned->l_cpu));
806 splx(s2);
807 panic("softint screwup");
808 }
809 #endif
810
811 l = curlwp;
812 si = l->l_private;
813
814 /*
815 * Note the interrupted LWP, and mark the current LWP as running
816 * before proceeding. Although this must as a rule be done with
817 * the LWP locked, at this point no external agents will want to
818 * modify the interrupt LWP's state.
819 */
820 timing = softint_timing;
821 l->l_switchto = pinned;
822 l->l_stat = LSONPROC;
823
824 /*
825 * Dispatch the interrupt. If softints are being timed, charge
826 * for it.
827 */
828 if (timing) {
829 binuptime(&l->l_stime);
830 membar_producer(); /* for calcru */
831 l->l_pflag |= LP_TIMEINTR;
832 }
833 l->l_pflag |= LP_RUNNING;
834 softint_execute(si, l, s);
835 if (timing) {
836 binuptime(&now);
837 updatertime(l, &now);
838 l->l_pflag &= ~LP_TIMEINTR;
839 }
840
841 /*
842 * If we blocked while handling the interrupt, the pinned LWP is
843 * gone, so find another LWP to run. It will select a new LWP to
844 * run. softint_dispatch() won't be reentered until the priority
845 * is finally dropped to IPL_NONE on entry to the LWP chosen by
846 * mi_switch().
847 */
848 l->l_stat = LSIDL;
849 if (l->l_switchto == NULL) {
850 lwp_lock(l);
851 spc_lock(l->l_cpu);
852 mi_switch(l);
853 /* NOTREACHED */
854 }
855 l->l_switchto = NULL;
856 l->l_pflag &= ~LP_RUNNING;
857 }
858
859 #endif /* !__HAVE_FAST_SOFTINTS */
860