kern_softint.c revision 1.67 1 /* $NetBSD: kern_softint.c,v 1.67 2021/12/05 04:56:40 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow further processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.67 2021/12/05 04:56:40 msaitoh Exp $");
174
175 #include <sys/param.h>
176 #include <sys/proc.h>
177 #include <sys/intr.h>
178 #include <sys/ipi.h>
179 #include <sys/lock.h>
180 #include <sys/mutex.h>
181 #include <sys/kernel.h>
182 #include <sys/kthread.h>
183 #include <sys/evcnt.h>
184 #include <sys/cpu.h>
185 #include <sys/xcall.h>
186
187 #include <net/netisr.h>
188
189 #include <uvm/uvm_extern.h>
190
191 /* This could overlap with signal info in struct lwp. */
192 typedef struct softint {
193 SIMPLEQ_HEAD(, softhand) si_q;
194 struct lwp *si_lwp;
195 struct cpu_info *si_cpu;
196 uintptr_t si_machdep;
197 struct evcnt si_evcnt;
198 struct evcnt si_evcnt_block;
199 volatile int si_active;
200 int si_ipl;
201 char si_name[8];
202 char si_name_block[8+6];
203 } softint_t;
204
205 typedef struct softhand {
206 SIMPLEQ_ENTRY(softhand) sh_q;
207 void (*sh_func)(void *);
208 void *sh_arg;
209 softint_t *sh_isr;
210 u_int sh_flags;
211 u_int sh_ipi_id;
212 } softhand_t;
213
214 typedef struct softcpu {
215 struct cpu_info *sc_cpu;
216 softint_t sc_int[SOFTINT_COUNT];
217 softhand_t sc_hand[1];
218 } softcpu_t;
219
220 static void softint_thread(void *);
221
222 u_int softint_bytes = 32768;
223 u_int softint_timing;
224 static u_int softint_max;
225 static kmutex_t softint_lock;
226 static void *softint_netisrs[NETISR_MAX];
227
228 /*
229 * softint_init_isr:
230 *
231 * Initialize a single interrupt level for a single CPU.
232 */
233 static void
234 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
235 int ipl)
236 {
237 struct cpu_info *ci;
238 softint_t *si;
239 int error;
240
241 si = &sc->sc_int[level];
242 ci = sc->sc_cpu;
243 si->si_cpu = ci;
244
245 SIMPLEQ_INIT(&si->si_q);
246
247 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
248 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
249 "soft%s/%u", desc, ci->ci_index);
250 if (error != 0)
251 panic("softint_init_isr: error %d", error);
252
253 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
254 ci->ci_index);
255 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
256 "softint", si->si_name);
257 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
258 desc, ci->ci_index);
259 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
260 "softint", si->si_name_block);
261
262 si->si_ipl = ipl;
263 si->si_lwp->l_private = si;
264 softint_init_md(si->si_lwp, level, &si->si_machdep);
265 }
266
267 /*
268 * softint_init:
269 *
270 * Initialize per-CPU data structures. Called from mi_cpu_attach().
271 */
272 void
273 softint_init(struct cpu_info *ci)
274 {
275 static struct cpu_info *first;
276 softcpu_t *sc, *scfirst;
277 softhand_t *sh, *shmax;
278
279 if (first == NULL) {
280 /* Boot CPU. */
281 first = ci;
282 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
283 softint_bytes = round_page(softint_bytes);
284 softint_max = (softint_bytes - sizeof(softcpu_t)) /
285 sizeof(softhand_t);
286 }
287
288 /* Use uvm_km(9) for persistent, page-aligned allocation. */
289 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
290 UVM_KMF_WIRED | UVM_KMF_ZERO);
291 if (sc == NULL)
292 panic("softint_init_cpu: cannot allocate memory");
293
294 ci->ci_data.cpu_softcpu = sc;
295 ci->ci_data.cpu_softints = 0;
296 sc->sc_cpu = ci;
297
298 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
299 IPL_SOFTNET);
300 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
301 IPL_SOFTBIO);
302 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
303 IPL_SOFTCLOCK);
304 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
305 IPL_SOFTSERIAL);
306
307 if (first != ci) {
308 mutex_enter(&softint_lock);
309 scfirst = first->ci_data.cpu_softcpu;
310 sh = sc->sc_hand;
311 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
312 /* Update pointers for this CPU. */
313 for (shmax = sh + softint_max; sh < shmax; sh++) {
314 if (sh->sh_func == NULL)
315 continue;
316 sh->sh_isr =
317 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
318 }
319 mutex_exit(&softint_lock);
320 } else {
321 /*
322 * Establish handlers for legacy net interrupts.
323 * XXX Needs to go away.
324 */
325 #define DONETISR(n, f) \
326 softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
327 (void (*)(void *))(f), NULL)
328 #include <net/netisr_dispatch.h>
329 }
330 }
331
332 /*
333 * softint_establish:
334 *
335 * Register a software interrupt handler.
336 */
337 void *
338 softint_establish(u_int flags, void (*func)(void *), void *arg)
339 {
340 CPU_INFO_ITERATOR cii;
341 struct cpu_info *ci;
342 softcpu_t *sc;
343 softhand_t *sh;
344 u_int level, index;
345 u_int ipi_id = 0;
346 void *sih;
347
348 level = (flags & SOFTINT_LVLMASK);
349 KASSERT(level < SOFTINT_COUNT);
350 KASSERT((flags & SOFTINT_IMPMASK) == 0);
351
352 mutex_enter(&softint_lock);
353
354 /* Find a free slot. */
355 sc = curcpu()->ci_data.cpu_softcpu;
356 for (index = 1; index < softint_max; index++) {
357 if (sc->sc_hand[index].sh_func == NULL)
358 break;
359 }
360 if (index == softint_max) {
361 mutex_exit(&softint_lock);
362 printf("WARNING: softint_establish: table full, "
363 "increase softint_bytes\n");
364 return NULL;
365 }
366 sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
367
368 if (flags & SOFTINT_RCPU) {
369 if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
370 mutex_exit(&softint_lock);
371 return NULL;
372 }
373 }
374
375 /* Set up the handler on each CPU. */
376 if (ncpu < 2) {
377 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
378 sc = curcpu()->ci_data.cpu_softcpu;
379 sh = &sc->sc_hand[index];
380 sh->sh_isr = &sc->sc_int[level];
381 sh->sh_func = func;
382 sh->sh_arg = arg;
383 sh->sh_flags = flags;
384 sh->sh_ipi_id = ipi_id;
385 } else for (CPU_INFO_FOREACH(cii, ci)) {
386 sc = ci->ci_data.cpu_softcpu;
387 sh = &sc->sc_hand[index];
388 sh->sh_isr = &sc->sc_int[level];
389 sh->sh_func = func;
390 sh->sh_arg = arg;
391 sh->sh_flags = flags;
392 sh->sh_ipi_id = ipi_id;
393 }
394 mutex_exit(&softint_lock);
395
396 return sih;
397 }
398
399 /*
400 * softint_disestablish:
401 *
402 * Unregister a software interrupt handler. The soft interrupt could
403 * still be active at this point, but the caller commits not to try
404 * and trigger it again once this call is made. The caller must not
405 * hold any locks that could be taken from soft interrupt context,
406 * because we will wait for the softint to complete if it's still
407 * running.
408 */
409 void
410 softint_disestablish(void *arg)
411 {
412 CPU_INFO_ITERATOR cii;
413 struct cpu_info *ci;
414 softcpu_t *sc;
415 softhand_t *sh;
416 uintptr_t offset;
417
418 offset = (uintptr_t)arg;
419 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
420 offset, softint_bytes);
421
422 /*
423 * Unregister IPI handler if there is any. Note: there is no need
424 * to disable preemption here - ID is stable.
425 */
426 sc = curcpu()->ci_data.cpu_softcpu;
427 sh = (softhand_t *)((uint8_t *)sc + offset);
428 if (sh->sh_ipi_id) {
429 ipi_unregister(sh->sh_ipi_id);
430 }
431
432 /*
433 * Run a dummy softint at the same level on all CPUs and wait for
434 * completion, to make sure this softint is no longer running
435 * anywhere.
436 */
437 xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
438
439 /* Clear the handler on each CPU. */
440 mutex_enter(&softint_lock);
441 for (CPU_INFO_FOREACH(cii, ci)) {
442 sc = ci->ci_data.cpu_softcpu;
443 sh = (softhand_t *)((uint8_t *)sc + offset);
444 KASSERT(sh->sh_func != NULL);
445 sh->sh_func = NULL;
446 }
447 mutex_exit(&softint_lock);
448 }
449
450 /*
451 * softint_schedule:
452 *
453 * Trigger a software interrupt. Must be called from a hardware
454 * interrupt handler, or with preemption disabled (since we are
455 * using the value of curcpu()).
456 */
457 void
458 softint_schedule(void *arg)
459 {
460 softhand_t *sh;
461 softint_t *si;
462 uintptr_t offset;
463 int s;
464
465 /*
466 * If this assert fires, rather than disabling preemption explicitly
467 * to make it stop, consider that you are probably using a softint
468 * when you don't need to.
469 */
470 KASSERT(kpreempt_disabled());
471
472 /* Find the handler record for this CPU. */
473 offset = (uintptr_t)arg;
474 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
475 offset, softint_bytes);
476 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
477
478 /* If it's already pending there's nothing to do. */
479 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
480 return;
481 }
482
483 /*
484 * Enqueue the handler into the LWP's pending list.
485 * If the LWP is completely idle, then make it run.
486 */
487 s = splhigh();
488 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
489 si = sh->sh_isr;
490 sh->sh_flags |= SOFTINT_PENDING;
491 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
492 if (si->si_active == 0) {
493 si->si_active = 1;
494 softint_trigger(si->si_machdep);
495 }
496 }
497 splx(s);
498 }
499
500 /*
501 * softint_schedule_cpu:
502 *
503 * Trigger a software interrupt on a target CPU. This invokes
504 * softint_schedule() for the local CPU or send an IPI to invoke
505 * this routine on the remote CPU. Preemption must be disabled.
506 */
507 void
508 softint_schedule_cpu(void *arg, struct cpu_info *ci)
509 {
510 KASSERT(kpreempt_disabled());
511
512 if (curcpu() != ci) {
513 const softcpu_t *sc = ci->ci_data.cpu_softcpu;
514 const uintptr_t offset = (uintptr_t)arg;
515 const softhand_t *sh;
516
517 sh = (const softhand_t *)((const uint8_t *)sc + offset);
518 KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
519 ipi_trigger(sh->sh_ipi_id, ci);
520 return;
521 }
522
523 /* Just a local CPU. */
524 softint_schedule(arg);
525 }
526
527 /*
528 * softint_execute:
529 *
530 * Invoke handlers for the specified soft interrupt.
531 * Must be entered at splhigh. Will drop the priority
532 * to the level specified, but returns back at splhigh.
533 */
534 static inline void
535 softint_execute(lwp_t *l, int s)
536 {
537 softint_t *si = l->l_private;
538 softhand_t *sh;
539
540 KASSERT(si->si_lwp == curlwp);
541 KASSERT(si->si_cpu == curcpu());
542 KASSERT(si->si_lwp->l_wchan == NULL);
543 KASSERT(si->si_active);
544
545 /*
546 * Note: due to priority inheritance we may have interrupted a
547 * higher priority LWP. Since the soft interrupt must be quick
548 * and is non-preemptable, we don't bother yielding.
549 */
550
551 while (!SIMPLEQ_EMPTY(&si->si_q)) {
552 /*
553 * Pick the longest waiting handler to run. We block
554 * interrupts but do not lock in order to do this, as
555 * we are protecting against the local CPU only.
556 */
557 sh = SIMPLEQ_FIRST(&si->si_q);
558 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
559 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
560 sh->sh_flags ^= SOFTINT_PENDING;
561 splx(s);
562
563 /* Run the handler. */
564 if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
565 (*sh->sh_func)(sh->sh_arg);
566 } else {
567 KERNEL_LOCK(1, l);
568 (*sh->sh_func)(sh->sh_arg);
569 KERNEL_UNLOCK_ONE(l);
570 }
571
572 /* Diagnostic: check that spin-locks have not leaked. */
573 KASSERTMSG(curcpu()->ci_mtx_count == 0,
574 "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
575 __func__, curcpu()->ci_mtx_count, sh->sh_func);
576 /* Diagnostic: check that psrefs have not leaked. */
577 KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
578 __func__, l->l_psrefs, sh->sh_func);
579
580 (void)splhigh();
581 }
582
583 PSREF_DEBUG_BARRIER();
584
585 CPU_COUNT(CPU_COUNT_NSOFT, 1);
586
587 KASSERT(si->si_cpu == curcpu());
588 KASSERT(si->si_lwp->l_wchan == NULL);
589 KASSERT(si->si_active);
590 si->si_evcnt.ev_count++;
591 si->si_active = 0;
592 }
593
594 /*
595 * softint_block:
596 *
597 * Update statistics when the soft interrupt blocks.
598 */
599 void
600 softint_block(lwp_t *l)
601 {
602 softint_t *si = l->l_private;
603
604 KASSERT((l->l_pflag & LP_INTR) != 0);
605 si->si_evcnt_block.ev_count++;
606 }
607
608 /*
609 * schednetisr:
610 *
611 * Trigger a legacy network interrupt. XXX Needs to go away.
612 */
613 void
614 schednetisr(int isr)
615 {
616
617 softint_schedule(softint_netisrs[isr]);
618 }
619
620 #ifndef __HAVE_FAST_SOFTINTS
621
622 #ifdef __HAVE_PREEMPTION
623 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
624 #endif
625
626 /*
627 * softint_init_md:
628 *
629 * Slow path: perform machine-dependent initialization.
630 */
631 void
632 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
633 {
634 struct proc *p;
635 softint_t *si;
636
637 *machdep = (1 << level);
638 si = l->l_private;
639 p = l->l_proc;
640
641 mutex_enter(p->p_lock);
642 lwp_lock(l);
643 /* Cheat and make the KASSERT in softint_thread() happy. */
644 si->si_active = 1;
645 setrunnable(l);
646 /* LWP now unlocked */
647 mutex_exit(p->p_lock);
648 }
649
650 /*
651 * softint_trigger:
652 *
653 * Slow path: cause a soft interrupt handler to begin executing.
654 * Called at IPL_HIGH.
655 */
656 void
657 softint_trigger(uintptr_t machdep)
658 {
659 struct cpu_info *ci;
660 lwp_t *l;
661
662 ci = curcpu();
663 ci->ci_data.cpu_softints |= machdep;
664 l = ci->ci_onproc;
665
666 /*
667 * Arrange for mi_switch() to be called. If called from interrupt
668 * mode, we don't know if curlwp is executing in kernel or user, so
669 * post an AST and have it take a trip through userret(). If not in
670 * interrupt mode, curlwp is running in kernel and will notice the
671 * resched soon enough; avoid the AST.
672 */
673 if (l == ci->ci_data.cpu_idlelwp) {
674 atomic_or_uint(&ci->ci_want_resched,
675 RESCHED_IDLE | RESCHED_UPREEMPT);
676 } else {
677 atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
678 if (cpu_intr_p()) {
679 cpu_signotify(l);
680 }
681 }
682 }
683
684 /*
685 * softint_thread:
686 *
687 * Slow path: MI software interrupt dispatch.
688 */
689 void
690 softint_thread(void *cookie)
691 {
692 softint_t *si;
693 lwp_t *l;
694 int s;
695
696 l = curlwp;
697 si = l->l_private;
698
699 for (;;) {
700 /* Clear pending status and run it. */
701 s = splhigh();
702 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
703 softint_execute(l, s);
704 splx(s);
705
706 /* Interrupts allowed to run again before switching. */
707 lwp_lock(l);
708 l->l_stat = LSIDL;
709 spc_lock(l->l_cpu);
710 mi_switch(l);
711 }
712 }
713
714 /*
715 * softint_picklwp:
716 *
717 * Slow path: called from mi_switch() to pick the highest priority
718 * soft interrupt LWP that needs to run.
719 */
720 lwp_t *
721 softint_picklwp(void)
722 {
723 struct cpu_info *ci;
724 u_int mask;
725 softint_t *si;
726 lwp_t *l;
727
728 ci = curcpu();
729 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
730 mask = ci->ci_data.cpu_softints;
731
732 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
733 l = si[SOFTINT_SERIAL].si_lwp;
734 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
735 l = si[SOFTINT_NET].si_lwp;
736 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
737 l = si[SOFTINT_BIO].si_lwp;
738 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
739 l = si[SOFTINT_CLOCK].si_lwp;
740 } else {
741 panic("softint_picklwp");
742 }
743
744 return l;
745 }
746
747 #else /* !__HAVE_FAST_SOFTINTS */
748
749 /*
750 * softint_thread:
751 *
752 * Fast path: the LWP is switched to without restoring any state,
753 * so we should not arrive here - there is a direct handoff between
754 * the interrupt stub and softint_dispatch().
755 */
756 void
757 softint_thread(void *cookie)
758 {
759
760 panic("softint_thread");
761 }
762
763 /*
764 * softint_dispatch:
765 *
766 * Fast path: entry point from machine-dependent code.
767 */
768 void
769 softint_dispatch(lwp_t *pinned, int s)
770 {
771 struct bintime now;
772 u_int timing;
773 lwp_t *l;
774
775 #ifdef DIAGNOSTIC
776 if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
777 struct lwp *onproc = curcpu()->ci_onproc;
778 int s2 = splhigh();
779 printf("curcpu=%d, spl=%d curspl=%d\n"
780 "onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
781 "curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
782 "pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
783 cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
784 onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
785 curlwp->l_stat, curlwp->l_flag,
786 cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
787 pinned->l_flag, cpu_index(pinned->l_cpu));
788 splx(s2);
789 panic("softint screwup");
790 }
791 #endif
792
793 /*
794 * Note the interrupted LWP, and mark the current LWP as running
795 * before proceeding. Although this must as a rule be done with
796 * the LWP locked, at this point no external agents will want to
797 * modify the interrupt LWP's state.
798 */
799 timing = softint_timing;
800 l = curlwp;
801 l->l_switchto = pinned;
802 l->l_stat = LSONPROC;
803
804 /*
805 * Dispatch the interrupt. If softints are being timed, charge
806 * for it.
807 */
808 if (timing) {
809 binuptime(&l->l_stime);
810 membar_producer(); /* for calcru */
811 l->l_pflag |= LP_TIMEINTR;
812 }
813 l->l_pflag |= LP_RUNNING;
814 softint_execute(l, s);
815 if (timing) {
816 binuptime(&now);
817 updatertime(l, &now);
818 l->l_pflag &= ~LP_TIMEINTR;
819 }
820
821 /*
822 * If we blocked while handling the interrupt, the pinned LWP is
823 * gone and we are now running as a kthread, so find another LWP to
824 * run. softint_dispatch() won't be reentered until the priority is
825 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
826 */
827 l->l_stat = LSIDL;
828 if (l->l_switchto == NULL) {
829 lwp_lock(l);
830 spc_lock(l->l_cpu);
831 mi_switch(l);
832 /* NOTREACHED */
833 }
834 l->l_switchto = NULL;
835 l->l_pflag &= ~LP_RUNNING;
836 }
837
838 #endif /* !__HAVE_FAST_SOFTINTS */
839