Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.67
      1 /*	$NetBSD: kern_softint.c,v 1.67 2021/12/05 04:56:40 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Generic software interrupt framework.
     34  *
     35  * Overview
     36  *
     37  *	The soft interrupt framework provides a mechanism to schedule a
     38  *	low priority callback that runs with thread context.  It allows
     39  *	for dynamic registration of software interrupts, and for fair
     40  *	queueing and prioritization of those interrupts.  The callbacks
     41  *	can be scheduled to run from nearly any point in the kernel: by
     42  *	code running with thread context, by code running from a
     43  *	hardware interrupt handler, and at any interrupt priority
     44  *	level.
     45  *
     46  * Priority levels
     47  *
     48  *	Since soft interrupt dispatch can be tied to the underlying
     49  *	architecture's interrupt dispatch code, it can be limited
     50  *	both by the capabilities of the hardware and the capabilities
     51  *	of the interrupt dispatch code itself.  The number of priority
     52  *	levels is restricted to four.  In order of priority (lowest to
     53  *	highest) the levels are: clock, bio, net, serial.
     54  *
     55  *	The names are symbolic and in isolation do not have any direct
     56  *	connection with a particular kind of device activity: they are
     57  *	only meant as a guide.
     58  *
     59  *	The four priority levels map directly to scheduler priority
     60  *	levels, and where the architecture implements 'fast' software
     61  *	interrupts, they also map onto interrupt priorities.  The
     62  *	interrupt priorities are intended to be hidden from machine
     63  *	independent code, which should use thread-safe mechanisms to
     64  *	synchronize with software interrupts (for example: mutexes).
     65  *
     66  * Capabilities
     67  *
     68  *	Software interrupts run with limited machine context.  In
     69  *	particular, they do not posess any address space context.  They
     70  *	should not try to operate on user space addresses, or to use
     71  *	virtual memory facilities other than those noted as interrupt
     72  *	safe.
     73  *
     74  *	Unlike hardware interrupts, software interrupts do have thread
     75  *	context.  They may block on synchronization objects, sleep, and
     76  *	resume execution at a later time.
     77  *
     78  *	Since software interrupts are a limited resource and run with
     79  *	higher priority than most other LWPs in the system, all
     80  *	block-and-resume activity by a software interrupt must be kept
     81  *	short to allow further processing at that level to continue.  By
     82  *	extension, code running with process context must take care to
     83  *	ensure that any lock that may be taken from a software interrupt
     84  *	can not be held for more than a short period of time.
     85  *
     86  *	The kernel does not allow software interrupts to use facilities
     87  *	or perform actions that may block for a significant amount of
     88  *	time.  This means that it's not valid for a software interrupt
     89  *	to sleep on condition variables	or wait for resources to become
     90  *	available (for example,	memory).
     91  *
     92  * Per-CPU operation
     93  *
     94  *	If a soft interrupt is triggered on a CPU, it can only be
     95  *	dispatched on the same CPU.  Each LWP dedicated to handling a
     96  *	soft interrupt is bound to its home CPU, so if the LWP blocks
     97  *	and needs to run again, it can only run there.  Nearly all data
     98  *	structures used to manage software interrupts are per-CPU.
     99  *
    100  *	The per-CPU requirement is intended to reduce "ping-pong" of
    101  *	cache lines between CPUs: lines occupied by data structures
    102  *	used to manage the soft interrupts, and lines occupied by data
    103  *	items being passed down to the soft interrupt.  As a positive
    104  *	side effect, this also means that the soft interrupt dispatch
    105  *	code does not need to to use spinlocks to synchronize.
    106  *
    107  * Generic implementation
    108  *
    109  *	A generic, low performance implementation is provided that
    110  *	works across all architectures, with no machine-dependent
    111  *	modifications needed.  This implementation uses the scheduler,
    112  *	and so has a number of restrictions:
    113  *
    114  *	1) The software interrupts are not currently preemptive, so
    115  *	must wait for the currently executing LWP to yield the CPU.
    116  *	This can introduce latency.
    117  *
    118  *	2) An expensive context switch is required for a software
    119  *	interrupt to be handled.
    120  *
    121  * 'Fast' software interrupts
    122  *
    123  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    124  *	the fast mechanism.  Threads running either in the kernel or in
    125  *	userspace will be interrupted, but will not be preempted.  When
    126  *	the soft interrupt completes execution, the interrupted LWP
    127  *	is resumed.  Interrupt dispatch code must provide the minimum
    128  *	level of context necessary for the soft interrupt to block and
    129  *	be resumed at a later time.  The machine-dependent dispatch
    130  *	path looks something like the following:
    131  *
    132  *	softintr()
    133  *	{
    134  *		go to IPL_HIGH if necessary for switch;
    135  *		save any necessary registers in a format that can be
    136  *		    restored by cpu_switchto if the softint blocks;
    137  *		arrange for cpu_switchto() to restore into the
    138  *		    trampoline function;
    139  *		identify LWP to handle this interrupt;
    140  *		switch to the LWP's stack;
    141  *		switch register stacks, if necessary;
    142  *		assign new value of curlwp;
    143  *		call MI softint_dispatch, passing old curlwp and IPL
    144  *		    to execute interrupt at;
    145  *		switch back to old stack;
    146  *		switch back to old register stack, if necessary;
    147  *		restore curlwp;
    148  *		return to interrupted LWP;
    149  *	}
    150  *
    151  *	If the soft interrupt blocks, a trampoline function is returned
    152  *	to in the context of the interrupted LWP, as arranged for by
    153  *	softint():
    154  *
    155  *	softint_ret()
    156  *	{
    157  *		unlock soft interrupt LWP;
    158  *		resume interrupt processing, likely returning to
    159  *		    interrupted LWP or dispatching another, different
    160  *		    interrupt;
    161  *	}
    162  *
    163  *	Once the soft interrupt has fired (and even if it has blocked),
    164  *	no further soft interrupts at that level will be triggered by
    165  *	MI code until the soft interrupt handler has ceased execution.
    166  *	If a soft interrupt handler blocks and is resumed, it resumes
    167  *	execution as a normal LWP (kthread) and gains VM context.  Only
    168  *	when it has completed and is ready to fire again will it
    169  *	interrupt other threads.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.67 2021/12/05 04:56:40 msaitoh Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/proc.h>
    177 #include <sys/intr.h>
    178 #include <sys/ipi.h>
    179 #include <sys/lock.h>
    180 #include <sys/mutex.h>
    181 #include <sys/kernel.h>
    182 #include <sys/kthread.h>
    183 #include <sys/evcnt.h>
    184 #include <sys/cpu.h>
    185 #include <sys/xcall.h>
    186 
    187 #include <net/netisr.h>
    188 
    189 #include <uvm/uvm_extern.h>
    190 
    191 /* This could overlap with signal info in struct lwp. */
    192 typedef struct softint {
    193 	SIMPLEQ_HEAD(, softhand) si_q;
    194 	struct lwp		*si_lwp;
    195 	struct cpu_info		*si_cpu;
    196 	uintptr_t		si_machdep;
    197 	struct evcnt		si_evcnt;
    198 	struct evcnt		si_evcnt_block;
    199 	volatile int		si_active;
    200 	int			si_ipl;
    201 	char			si_name[8];
    202 	char			si_name_block[8+6];
    203 } softint_t;
    204 
    205 typedef struct softhand {
    206 	SIMPLEQ_ENTRY(softhand)	sh_q;
    207 	void			(*sh_func)(void *);
    208 	void			*sh_arg;
    209 	softint_t		*sh_isr;
    210 	u_int			sh_flags;
    211 	u_int			sh_ipi_id;
    212 } softhand_t;
    213 
    214 typedef struct softcpu {
    215 	struct cpu_info		*sc_cpu;
    216 	softint_t		sc_int[SOFTINT_COUNT];
    217 	softhand_t		sc_hand[1];
    218 } softcpu_t;
    219 
    220 static void	softint_thread(void *);
    221 
    222 u_int		softint_bytes = 32768;
    223 u_int		softint_timing;
    224 static u_int	softint_max;
    225 static kmutex_t	softint_lock;
    226 static void	*softint_netisrs[NETISR_MAX];
    227 
    228 /*
    229  * softint_init_isr:
    230  *
    231  *	Initialize a single interrupt level for a single CPU.
    232  */
    233 static void
    234 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
    235     int ipl)
    236 {
    237 	struct cpu_info *ci;
    238 	softint_t *si;
    239 	int error;
    240 
    241 	si = &sc->sc_int[level];
    242 	ci = sc->sc_cpu;
    243 	si->si_cpu = ci;
    244 
    245 	SIMPLEQ_INIT(&si->si_q);
    246 
    247 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    248 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    249 	    "soft%s/%u", desc, ci->ci_index);
    250 	if (error != 0)
    251 		panic("softint_init_isr: error %d", error);
    252 
    253 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
    254 	    ci->ci_index);
    255 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
    256 	   "softint", si->si_name);
    257 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
    258 	    desc, ci->ci_index);
    259 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
    260 	   "softint", si->si_name_block);
    261 
    262 	si->si_ipl = ipl;
    263 	si->si_lwp->l_private = si;
    264 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    265 }
    266 
    267 /*
    268  * softint_init:
    269  *
    270  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    271  */
    272 void
    273 softint_init(struct cpu_info *ci)
    274 {
    275 	static struct cpu_info *first;
    276 	softcpu_t *sc, *scfirst;
    277 	softhand_t *sh, *shmax;
    278 
    279 	if (first == NULL) {
    280 		/* Boot CPU. */
    281 		first = ci;
    282 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    283 		softint_bytes = round_page(softint_bytes);
    284 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    285 		    sizeof(softhand_t);
    286 	}
    287 
    288 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
    289 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    290 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    291 	if (sc == NULL)
    292 		panic("softint_init_cpu: cannot allocate memory");
    293 
    294 	ci->ci_data.cpu_softcpu = sc;
    295 	ci->ci_data.cpu_softints = 0;
    296 	sc->sc_cpu = ci;
    297 
    298 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
    299 	    IPL_SOFTNET);
    300 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
    301 	    IPL_SOFTBIO);
    302 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
    303 	    IPL_SOFTCLOCK);
    304 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
    305 	    IPL_SOFTSERIAL);
    306 
    307 	if (first != ci) {
    308 		mutex_enter(&softint_lock);
    309 		scfirst = first->ci_data.cpu_softcpu;
    310 		sh = sc->sc_hand;
    311 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    312 		/* Update pointers for this CPU. */
    313 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    314 			if (sh->sh_func == NULL)
    315 				continue;
    316 			sh->sh_isr =
    317 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    318 		}
    319 		mutex_exit(&softint_lock);
    320 	} else {
    321 		/*
    322 		 * Establish handlers for legacy net interrupts.
    323 		 * XXX Needs to go away.
    324 		 */
    325 #define DONETISR(n, f)							\
    326     softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
    327         (void (*)(void *))(f), NULL)
    328 #include <net/netisr_dispatch.h>
    329 	}
    330 }
    331 
    332 /*
    333  * softint_establish:
    334  *
    335  *	Register a software interrupt handler.
    336  */
    337 void *
    338 softint_establish(u_int flags, void (*func)(void *), void *arg)
    339 {
    340 	CPU_INFO_ITERATOR cii;
    341 	struct cpu_info *ci;
    342 	softcpu_t *sc;
    343 	softhand_t *sh;
    344 	u_int level, index;
    345 	u_int ipi_id = 0;
    346 	void *sih;
    347 
    348 	level = (flags & SOFTINT_LVLMASK);
    349 	KASSERT(level < SOFTINT_COUNT);
    350 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
    351 
    352 	mutex_enter(&softint_lock);
    353 
    354 	/* Find a free slot. */
    355 	sc = curcpu()->ci_data.cpu_softcpu;
    356 	for (index = 1; index < softint_max; index++) {
    357 		if (sc->sc_hand[index].sh_func == NULL)
    358 			break;
    359 	}
    360 	if (index == softint_max) {
    361 		mutex_exit(&softint_lock);
    362 		printf("WARNING: softint_establish: table full, "
    363 		    "increase softint_bytes\n");
    364 		return NULL;
    365 	}
    366 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    367 
    368 	if (flags & SOFTINT_RCPU) {
    369 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
    370 			mutex_exit(&softint_lock);
    371 			return NULL;
    372 		}
    373 	}
    374 
    375 	/* Set up the handler on each CPU. */
    376 	if (ncpu < 2) {
    377 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
    378 		sc = curcpu()->ci_data.cpu_softcpu;
    379 		sh = &sc->sc_hand[index];
    380 		sh->sh_isr = &sc->sc_int[level];
    381 		sh->sh_func = func;
    382 		sh->sh_arg = arg;
    383 		sh->sh_flags = flags;
    384 		sh->sh_ipi_id = ipi_id;
    385 	} else for (CPU_INFO_FOREACH(cii, ci)) {
    386 		sc = ci->ci_data.cpu_softcpu;
    387 		sh = &sc->sc_hand[index];
    388 		sh->sh_isr = &sc->sc_int[level];
    389 		sh->sh_func = func;
    390 		sh->sh_arg = arg;
    391 		sh->sh_flags = flags;
    392 		sh->sh_ipi_id = ipi_id;
    393 	}
    394 	mutex_exit(&softint_lock);
    395 
    396 	return sih;
    397 }
    398 
    399 /*
    400  * softint_disestablish:
    401  *
    402  *	Unregister a software interrupt handler.  The soft interrupt could
    403  *	still be active at this point, but the caller commits not to try
    404  *	and trigger it again once this call is made.  The caller must not
    405  *	hold any locks that could be taken from soft interrupt context,
    406  *	because we will wait for the softint to complete if it's still
    407  *	running.
    408  */
    409 void
    410 softint_disestablish(void *arg)
    411 {
    412 	CPU_INFO_ITERATOR cii;
    413 	struct cpu_info *ci;
    414 	softcpu_t *sc;
    415 	softhand_t *sh;
    416 	uintptr_t offset;
    417 
    418 	offset = (uintptr_t)arg;
    419 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    420 	    offset, softint_bytes);
    421 
    422 	/*
    423 	 * Unregister IPI handler if there is any.  Note: there is no need
    424 	 * to disable preemption here - ID is stable.
    425 	 */
    426 	sc = curcpu()->ci_data.cpu_softcpu;
    427 	sh = (softhand_t *)((uint8_t *)sc + offset);
    428 	if (sh->sh_ipi_id) {
    429 		ipi_unregister(sh->sh_ipi_id);
    430 	}
    431 
    432 	/*
    433 	 * Run a dummy softint at the same level on all CPUs and wait for
    434 	 * completion, to make sure this softint is no longer running
    435 	 * anywhere.
    436 	 */
    437 	xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
    438 
    439 	/* Clear the handler on each CPU. */
    440 	mutex_enter(&softint_lock);
    441 	for (CPU_INFO_FOREACH(cii, ci)) {
    442 		sc = ci->ci_data.cpu_softcpu;
    443 		sh = (softhand_t *)((uint8_t *)sc + offset);
    444 		KASSERT(sh->sh_func != NULL);
    445 		sh->sh_func = NULL;
    446 	}
    447 	mutex_exit(&softint_lock);
    448 }
    449 
    450 /*
    451  * softint_schedule:
    452  *
    453  *	Trigger a software interrupt.  Must be called from a hardware
    454  *	interrupt handler, or with preemption disabled (since we are
    455  *	using the value of curcpu()).
    456  */
    457 void
    458 softint_schedule(void *arg)
    459 {
    460 	softhand_t *sh;
    461 	softint_t *si;
    462 	uintptr_t offset;
    463 	int s;
    464 
    465 	/*
    466 	 * If this assert fires, rather than disabling preemption explicitly
    467 	 * to make it stop, consider that you are probably using a softint
    468 	 * when you don't need to.
    469 	 */
    470 	KASSERT(kpreempt_disabled());
    471 
    472 	/* Find the handler record for this CPU. */
    473 	offset = (uintptr_t)arg;
    474 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    475 	    offset, softint_bytes);
    476 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    477 
    478 	/* If it's already pending there's nothing to do. */
    479 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
    480 		return;
    481 	}
    482 
    483 	/*
    484 	 * Enqueue the handler into the LWP's pending list.
    485 	 * If the LWP is completely idle, then make it run.
    486 	 */
    487 	s = splhigh();
    488 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
    489 		si = sh->sh_isr;
    490 		sh->sh_flags |= SOFTINT_PENDING;
    491 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    492 		if (si->si_active == 0) {
    493 			si->si_active = 1;
    494 			softint_trigger(si->si_machdep);
    495 		}
    496 	}
    497 	splx(s);
    498 }
    499 
    500 /*
    501  * softint_schedule_cpu:
    502  *
    503  *	Trigger a software interrupt on a target CPU.  This invokes
    504  *	softint_schedule() for the local CPU or send an IPI to invoke
    505  *	this routine on the remote CPU.  Preemption must be disabled.
    506  */
    507 void
    508 softint_schedule_cpu(void *arg, struct cpu_info *ci)
    509 {
    510 	KASSERT(kpreempt_disabled());
    511 
    512 	if (curcpu() != ci) {
    513 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
    514 		const uintptr_t offset = (uintptr_t)arg;
    515 		const softhand_t *sh;
    516 
    517 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
    518 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
    519 		ipi_trigger(sh->sh_ipi_id, ci);
    520 		return;
    521 	}
    522 
    523 	/* Just a local CPU. */
    524 	softint_schedule(arg);
    525 }
    526 
    527 /*
    528  * softint_execute:
    529  *
    530  *	Invoke handlers for the specified soft interrupt.
    531  *	Must be entered at splhigh.  Will drop the priority
    532  *	to the level specified, but returns back at splhigh.
    533  */
    534 static inline void
    535 softint_execute(lwp_t *l, int s)
    536 {
    537 	softint_t *si = l->l_private;
    538 	softhand_t *sh;
    539 
    540 	KASSERT(si->si_lwp == curlwp);
    541 	KASSERT(si->si_cpu == curcpu());
    542 	KASSERT(si->si_lwp->l_wchan == NULL);
    543 	KASSERT(si->si_active);
    544 
    545 	/*
    546 	 * Note: due to priority inheritance we may have interrupted a
    547 	 * higher priority LWP.  Since the soft interrupt must be quick
    548 	 * and is non-preemptable, we don't bother yielding.
    549 	 */
    550 
    551 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    552 		/*
    553 		 * Pick the longest waiting handler to run.  We block
    554 		 * interrupts but do not lock in order to do this, as
    555 		 * we are protecting against the local CPU only.
    556 		 */
    557 		sh = SIMPLEQ_FIRST(&si->si_q);
    558 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    559 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
    560 		sh->sh_flags ^= SOFTINT_PENDING;
    561 		splx(s);
    562 
    563 		/* Run the handler. */
    564 		if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
    565 			(*sh->sh_func)(sh->sh_arg);
    566 		} else {
    567 			KERNEL_LOCK(1, l);
    568 			(*sh->sh_func)(sh->sh_arg);
    569 			KERNEL_UNLOCK_ONE(l);
    570 		}
    571 
    572 		/* Diagnostic: check that spin-locks have not leaked. */
    573 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
    574 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
    575 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
    576 		/* Diagnostic: check that psrefs have not leaked. */
    577 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
    578 		    __func__, l->l_psrefs, sh->sh_func);
    579 
    580 		(void)splhigh();
    581 	}
    582 
    583 	PSREF_DEBUG_BARRIER();
    584 
    585 	CPU_COUNT(CPU_COUNT_NSOFT, 1);
    586 
    587 	KASSERT(si->si_cpu == curcpu());
    588 	KASSERT(si->si_lwp->l_wchan == NULL);
    589 	KASSERT(si->si_active);
    590 	si->si_evcnt.ev_count++;
    591 	si->si_active = 0;
    592 }
    593 
    594 /*
    595  * softint_block:
    596  *
    597  *	Update statistics when the soft interrupt blocks.
    598  */
    599 void
    600 softint_block(lwp_t *l)
    601 {
    602 	softint_t *si = l->l_private;
    603 
    604 	KASSERT((l->l_pflag & LP_INTR) != 0);
    605 	si->si_evcnt_block.ev_count++;
    606 }
    607 
    608 /*
    609  * schednetisr:
    610  *
    611  *	Trigger a legacy network interrupt.  XXX Needs to go away.
    612  */
    613 void
    614 schednetisr(int isr)
    615 {
    616 
    617 	softint_schedule(softint_netisrs[isr]);
    618 }
    619 
    620 #ifndef __HAVE_FAST_SOFTINTS
    621 
    622 #ifdef __HAVE_PREEMPTION
    623 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
    624 #endif
    625 
    626 /*
    627  * softint_init_md:
    628  *
    629  *	Slow path: perform machine-dependent initialization.
    630  */
    631 void
    632 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    633 {
    634 	struct proc *p;
    635 	softint_t *si;
    636 
    637 	*machdep = (1 << level);
    638 	si = l->l_private;
    639 	p = l->l_proc;
    640 
    641 	mutex_enter(p->p_lock);
    642 	lwp_lock(l);
    643 	/* Cheat and make the KASSERT in softint_thread() happy. */
    644 	si->si_active = 1;
    645 	setrunnable(l);
    646 	/* LWP now unlocked */
    647 	mutex_exit(p->p_lock);
    648 }
    649 
    650 /*
    651  * softint_trigger:
    652  *
    653  *	Slow path: cause a soft interrupt handler to begin executing.
    654  *	Called at IPL_HIGH.
    655  */
    656 void
    657 softint_trigger(uintptr_t machdep)
    658 {
    659 	struct cpu_info *ci;
    660 	lwp_t *l;
    661 
    662 	ci = curcpu();
    663 	ci->ci_data.cpu_softints |= machdep;
    664 	l = ci->ci_onproc;
    665 
    666 	/*
    667 	 * Arrange for mi_switch() to be called.  If called from interrupt
    668 	 * mode, we don't know if curlwp is executing in kernel or user, so
    669 	 * post an AST and have it take a trip through userret().  If not in
    670 	 * interrupt mode, curlwp is running in kernel and will notice the
    671 	 * resched soon enough; avoid the AST.
    672 	 */
    673 	if (l == ci->ci_data.cpu_idlelwp) {
    674 		atomic_or_uint(&ci->ci_want_resched,
    675 		    RESCHED_IDLE | RESCHED_UPREEMPT);
    676 	} else {
    677 		atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
    678 		if (cpu_intr_p()) {
    679 			cpu_signotify(l);
    680 		}
    681 	}
    682 }
    683 
    684 /*
    685  * softint_thread:
    686  *
    687  *	Slow path: MI software interrupt dispatch.
    688  */
    689 void
    690 softint_thread(void *cookie)
    691 {
    692 	softint_t *si;
    693 	lwp_t *l;
    694 	int s;
    695 
    696 	l = curlwp;
    697 	si = l->l_private;
    698 
    699 	for (;;) {
    700 		/* Clear pending status and run it. */
    701 		s = splhigh();
    702 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    703 		softint_execute(l, s);
    704 		splx(s);
    705 
    706 		/* Interrupts allowed to run again before switching. */
    707 		lwp_lock(l);
    708 		l->l_stat = LSIDL;
    709 		spc_lock(l->l_cpu);
    710 		mi_switch(l);
    711 	}
    712 }
    713 
    714 /*
    715  * softint_picklwp:
    716  *
    717  *	Slow path: called from mi_switch() to pick the highest priority
    718  *	soft interrupt LWP that needs to run.
    719  */
    720 lwp_t *
    721 softint_picklwp(void)
    722 {
    723 	struct cpu_info *ci;
    724 	u_int mask;
    725 	softint_t *si;
    726 	lwp_t *l;
    727 
    728 	ci = curcpu();
    729 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    730 	mask = ci->ci_data.cpu_softints;
    731 
    732 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    733 		l = si[SOFTINT_SERIAL].si_lwp;
    734 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    735 		l = si[SOFTINT_NET].si_lwp;
    736 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    737 		l = si[SOFTINT_BIO].si_lwp;
    738 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    739 		l = si[SOFTINT_CLOCK].si_lwp;
    740 	} else {
    741 		panic("softint_picklwp");
    742 	}
    743 
    744 	return l;
    745 }
    746 
    747 #else	/*  !__HAVE_FAST_SOFTINTS */
    748 
    749 /*
    750  * softint_thread:
    751  *
    752  *	Fast path: the LWP is switched to without restoring any state,
    753  *	so we should not arrive here - there is a direct handoff between
    754  *	the interrupt stub and softint_dispatch().
    755  */
    756 void
    757 softint_thread(void *cookie)
    758 {
    759 
    760 	panic("softint_thread");
    761 }
    762 
    763 /*
    764  * softint_dispatch:
    765  *
    766  *	Fast path: entry point from machine-dependent code.
    767  */
    768 void
    769 softint_dispatch(lwp_t *pinned, int s)
    770 {
    771 	struct bintime now;
    772 	u_int timing;
    773 	lwp_t *l;
    774 
    775 #ifdef DIAGNOSTIC
    776 	if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
    777 		struct lwp *onproc = curcpu()->ci_onproc;
    778 		int s2 = splhigh();
    779 		printf("curcpu=%d, spl=%d curspl=%d\n"
    780 			"onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    781 			"curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    782 			"pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
    783 			cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
    784 			onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
    785 			curlwp->l_stat, curlwp->l_flag,
    786 			cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
    787 			pinned->l_flag, cpu_index(pinned->l_cpu));
    788 		splx(s2);
    789 		panic("softint screwup");
    790 	}
    791 #endif
    792 
    793 	/*
    794 	 * Note the interrupted LWP, and mark the current LWP as running
    795 	 * before proceeding.  Although this must as a rule be done with
    796 	 * the LWP locked, at this point no external agents will want to
    797 	 * modify the interrupt LWP's state.
    798 	 */
    799 	timing = softint_timing;
    800 	l = curlwp;
    801 	l->l_switchto = pinned;
    802 	l->l_stat = LSONPROC;
    803 
    804 	/*
    805 	 * Dispatch the interrupt.  If softints are being timed, charge
    806 	 * for it.
    807 	 */
    808 	if (timing) {
    809 		binuptime(&l->l_stime);
    810 		membar_producer();	/* for calcru */
    811 		l->l_pflag |= LP_TIMEINTR;
    812 	}
    813 	l->l_pflag |= LP_RUNNING;
    814 	softint_execute(l, s);
    815 	if (timing) {
    816 		binuptime(&now);
    817 		updatertime(l, &now);
    818 		l->l_pflag &= ~LP_TIMEINTR;
    819 	}
    820 
    821 	/*
    822 	 * If we blocked while handling the interrupt, the pinned LWP is
    823 	 * gone and we are now running as a kthread, so find another LWP to
    824 	 * run.  softint_dispatch() won't be reentered until the priority is
    825 	 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
    826 	 */
    827 	l->l_stat = LSIDL;
    828 	if (l->l_switchto == NULL) {
    829 		lwp_lock(l);
    830 		spc_lock(l->l_cpu);
    831 		mi_switch(l);
    832 		/* NOTREACHED */
    833 	}
    834 	l->l_switchto = NULL;
    835 	l->l_pflag &= ~LP_RUNNING;
    836 }
    837 
    838 #endif	/* !__HAVE_FAST_SOFTINTS */
    839