kern_softint.c revision 1.71 1 /* $NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Generic software interrupt framework.
34 *
35 * Overview
36 *
37 * The soft interrupt framework provides a mechanism to schedule a
38 * low priority callback that runs with thread context. It allows
39 * for dynamic registration of software interrupts, and for fair
40 * queueing and prioritization of those interrupts. The callbacks
41 * can be scheduled to run from nearly any point in the kernel: by
42 * code running with thread context, by code running from a
43 * hardware interrupt handler, and at any interrupt priority
44 * level.
45 *
46 * Priority levels
47 *
48 * Since soft interrupt dispatch can be tied to the underlying
49 * architecture's interrupt dispatch code, it can be limited
50 * both by the capabilities of the hardware and the capabilities
51 * of the interrupt dispatch code itself. The number of priority
52 * levels is restricted to four. In order of priority (lowest to
53 * highest) the levels are: clock, bio, net, serial.
54 *
55 * The names are symbolic and in isolation do not have any direct
56 * connection with a particular kind of device activity: they are
57 * only meant as a guide.
58 *
59 * The four priority levels map directly to scheduler priority
60 * levels, and where the architecture implements 'fast' software
61 * interrupts, they also map onto interrupt priorities. The
62 * interrupt priorities are intended to be hidden from machine
63 * independent code, which should use thread-safe mechanisms to
64 * synchronize with software interrupts (for example: mutexes).
65 *
66 * Capabilities
67 *
68 * Software interrupts run with limited machine context. In
69 * particular, they do not posess any address space context. They
70 * should not try to operate on user space addresses, or to use
71 * virtual memory facilities other than those noted as interrupt
72 * safe.
73 *
74 * Unlike hardware interrupts, software interrupts do have thread
75 * context. They may block on synchronization objects, sleep, and
76 * resume execution at a later time.
77 *
78 * Since software interrupts are a limited resource and run with
79 * higher priority than most other LWPs in the system, all
80 * block-and-resume activity by a software interrupt must be kept
81 * short to allow further processing at that level to continue. By
82 * extension, code running with process context must take care to
83 * ensure that any lock that may be taken from a software interrupt
84 * can not be held for more than a short period of time.
85 *
86 * The kernel does not allow software interrupts to use facilities
87 * or perform actions that may block for a significant amount of
88 * time. This means that it's not valid for a software interrupt
89 * to sleep on condition variables or wait for resources to become
90 * available (for example, memory).
91 *
92 * Per-CPU operation
93 *
94 * If a soft interrupt is triggered on a CPU, it can only be
95 * dispatched on the same CPU. Each LWP dedicated to handling a
96 * soft interrupt is bound to its home CPU, so if the LWP blocks
97 * and needs to run again, it can only run there. Nearly all data
98 * structures used to manage software interrupts are per-CPU.
99 *
100 * The per-CPU requirement is intended to reduce "ping-pong" of
101 * cache lines between CPUs: lines occupied by data structures
102 * used to manage the soft interrupts, and lines occupied by data
103 * items being passed down to the soft interrupt. As a positive
104 * side effect, this also means that the soft interrupt dispatch
105 * code does not need to to use spinlocks to synchronize.
106 *
107 * Generic implementation
108 *
109 * A generic, low performance implementation is provided that
110 * works across all architectures, with no machine-dependent
111 * modifications needed. This implementation uses the scheduler,
112 * and so has a number of restrictions:
113 *
114 * 1) The software interrupts are not currently preemptive, so
115 * must wait for the currently executing LWP to yield the CPU.
116 * This can introduce latency.
117 *
118 * 2) An expensive context switch is required for a software
119 * interrupt to be handled.
120 *
121 * 'Fast' software interrupts
122 *
123 * If an architectures defines __HAVE_FAST_SOFTINTS, it implements
124 * the fast mechanism. Threads running either in the kernel or in
125 * userspace will be interrupted, but will not be preempted. When
126 * the soft interrupt completes execution, the interrupted LWP
127 * is resumed. Interrupt dispatch code must provide the minimum
128 * level of context necessary for the soft interrupt to block and
129 * be resumed at a later time. The machine-dependent dispatch
130 * path looks something like the following:
131 *
132 * softintr()
133 * {
134 * go to IPL_HIGH if necessary for switch;
135 * save any necessary registers in a format that can be
136 * restored by cpu_switchto if the softint blocks;
137 * arrange for cpu_switchto() to restore into the
138 * trampoline function;
139 * identify LWP to handle this interrupt;
140 * switch to the LWP's stack;
141 * switch register stacks, if necessary;
142 * assign new value of curlwp;
143 * call MI softint_dispatch, passing old curlwp and IPL
144 * to execute interrupt at;
145 * switch back to old stack;
146 * switch back to old register stack, if necessary;
147 * restore curlwp;
148 * return to interrupted LWP;
149 * }
150 *
151 * If the soft interrupt blocks, a trampoline function is returned
152 * to in the context of the interrupted LWP, as arranged for by
153 * softint():
154 *
155 * softint_ret()
156 * {
157 * unlock soft interrupt LWP;
158 * resume interrupt processing, likely returning to
159 * interrupted LWP or dispatching another, different
160 * interrupt;
161 * }
162 *
163 * Once the soft interrupt has fired (and even if it has blocked),
164 * no further soft interrupts at that level will be triggered by
165 * MI code until the soft interrupt handler has ceased execution.
166 * If a soft interrupt handler blocks and is resumed, it resumes
167 * execution as a normal LWP (kthread) and gains VM context. Only
168 * when it has completed and is ready to fire again will it
169 * interrupt other threads.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $");
174
175 #include <sys/param.h>
176 #include <sys/proc.h>
177 #include <sys/intr.h>
178 #include <sys/ipi.h>
179 #include <sys/lock.h>
180 #include <sys/mutex.h>
181 #include <sys/kernel.h>
182 #include <sys/kthread.h>
183 #include <sys/evcnt.h>
184 #include <sys/cpu.h>
185 #include <sys/xcall.h>
186 #include <sys/psref.h>
187
188 #include <uvm/uvm_extern.h>
189
190 /* This could overlap with signal info in struct lwp. */
191 typedef struct softint {
192 SIMPLEQ_HEAD(, softhand) si_q;
193 struct lwp *si_lwp;
194 struct cpu_info *si_cpu;
195 uintptr_t si_machdep;
196 struct evcnt si_evcnt;
197 struct evcnt si_evcnt_block;
198 volatile int si_active;
199 int si_ipl;
200 char si_name[8];
201 char si_name_block[8+6];
202 } softint_t;
203
204 typedef struct softhand {
205 SIMPLEQ_ENTRY(softhand) sh_q;
206 void (*sh_func)(void *);
207 void *sh_arg;
208 softint_t *sh_isr;
209 u_int sh_flags;
210 u_int sh_ipi_id;
211 } softhand_t;
212
213 typedef struct softcpu {
214 struct cpu_info *sc_cpu;
215 softint_t sc_int[SOFTINT_COUNT];
216 softhand_t sc_hand[1];
217 } softcpu_t;
218
219 static void softint_thread(void *);
220
221 u_int softint_bytes = 32768;
222 u_int softint_timing;
223 static u_int softint_max;
224 static kmutex_t softint_lock;
225
226 /*
227 * softint_init_isr:
228 *
229 * Initialize a single interrupt level for a single CPU.
230 */
231 static void
232 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
233 int ipl)
234 {
235 struct cpu_info *ci;
236 softint_t *si;
237 int error;
238
239 si = &sc->sc_int[level];
240 ci = sc->sc_cpu;
241 si->si_cpu = ci;
242
243 SIMPLEQ_INIT(&si->si_q);
244
245 error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
246 KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
247 "soft%s/%u", desc, ci->ci_index);
248 if (error != 0)
249 panic("softint_init_isr: error %d", error);
250
251 snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
252 ci->ci_index);
253 evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
254 "softint", si->si_name);
255 snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
256 desc, ci->ci_index);
257 evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
258 "softint", si->si_name_block);
259
260 si->si_ipl = ipl;
261 si->si_lwp->l_private = si;
262 softint_init_md(si->si_lwp, level, &si->si_machdep);
263 }
264
265 /*
266 * softint_init:
267 *
268 * Initialize per-CPU data structures. Called from mi_cpu_attach().
269 */
270 void
271 softint_init(struct cpu_info *ci)
272 {
273 static struct cpu_info *first;
274 softcpu_t *sc, *scfirst;
275 softhand_t *sh, *shmax;
276
277 if (first == NULL) {
278 /* Boot CPU. */
279 first = ci;
280 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
281 softint_bytes = round_page(softint_bytes);
282 softint_max = (softint_bytes - sizeof(softcpu_t)) /
283 sizeof(softhand_t);
284 }
285
286 /* Use uvm_km(9) for persistent, page-aligned allocation. */
287 sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
288 UVM_KMF_WIRED | UVM_KMF_ZERO);
289 if (sc == NULL)
290 panic("softint_init_cpu: cannot allocate memory");
291
292 ci->ci_data.cpu_softcpu = sc;
293 ci->ci_data.cpu_softints = 0;
294 sc->sc_cpu = ci;
295
296 softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
297 IPL_SOFTNET);
298 softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
299 IPL_SOFTBIO);
300 softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
301 IPL_SOFTCLOCK);
302 softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
303 IPL_SOFTSERIAL);
304
305 if (first != ci) {
306 mutex_enter(&softint_lock);
307 scfirst = first->ci_data.cpu_softcpu;
308 sh = sc->sc_hand;
309 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
310 /* Update pointers for this CPU. */
311 for (shmax = sh + softint_max; sh < shmax; sh++) {
312 if (sh->sh_func == NULL)
313 continue;
314 sh->sh_isr =
315 &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
316 }
317 mutex_exit(&softint_lock);
318 }
319 }
320
321 /*
322 * softint_establish:
323 *
324 * Register a software interrupt handler.
325 */
326 void *
327 softint_establish(u_int flags, void (*func)(void *), void *arg)
328 {
329 CPU_INFO_ITERATOR cii;
330 struct cpu_info *ci;
331 softcpu_t *sc;
332 softhand_t *sh;
333 u_int level, index;
334 u_int ipi_id = 0;
335 void *sih;
336
337 level = (flags & SOFTINT_LVLMASK);
338 KASSERT(level < SOFTINT_COUNT);
339 KASSERT((flags & SOFTINT_IMPMASK) == 0);
340
341 mutex_enter(&softint_lock);
342
343 /* Find a free slot. */
344 sc = curcpu()->ci_data.cpu_softcpu;
345 for (index = 1; index < softint_max; index++) {
346 if (sc->sc_hand[index].sh_func == NULL)
347 break;
348 }
349 if (index == softint_max) {
350 mutex_exit(&softint_lock);
351 printf("WARNING: softint_establish: table full, "
352 "increase softint_bytes\n");
353 return NULL;
354 }
355 sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
356
357 if (flags & SOFTINT_RCPU) {
358 if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
359 mutex_exit(&softint_lock);
360 return NULL;
361 }
362 }
363
364 /* Set up the handler on each CPU. */
365 if (ncpu < 2) {
366 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
367 sc = curcpu()->ci_data.cpu_softcpu;
368 sh = &sc->sc_hand[index];
369 sh->sh_isr = &sc->sc_int[level];
370 sh->sh_func = func;
371 sh->sh_arg = arg;
372 sh->sh_flags = flags;
373 sh->sh_ipi_id = ipi_id;
374 } else for (CPU_INFO_FOREACH(cii, ci)) {
375 sc = ci->ci_data.cpu_softcpu;
376 sh = &sc->sc_hand[index];
377 sh->sh_isr = &sc->sc_int[level];
378 sh->sh_func = func;
379 sh->sh_arg = arg;
380 sh->sh_flags = flags;
381 sh->sh_ipi_id = ipi_id;
382 }
383 mutex_exit(&softint_lock);
384
385 return sih;
386 }
387
388 /*
389 * softint_disestablish:
390 *
391 * Unregister a software interrupt handler. The soft interrupt could
392 * still be active at this point, but the caller commits not to try
393 * and trigger it again once this call is made. The caller must not
394 * hold any locks that could be taken from soft interrupt context,
395 * because we will wait for the softint to complete if it's still
396 * running.
397 */
398 void
399 softint_disestablish(void *arg)
400 {
401 CPU_INFO_ITERATOR cii;
402 struct cpu_info *ci;
403 softcpu_t *sc;
404 softhand_t *sh;
405 uintptr_t offset;
406
407 offset = (uintptr_t)arg;
408 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
409 offset, softint_bytes);
410
411 /*
412 * Unregister IPI handler if there is any. Note: there is no need
413 * to disable preemption here - ID is stable.
414 */
415 sc = curcpu()->ci_data.cpu_softcpu;
416 sh = (softhand_t *)((uint8_t *)sc + offset);
417 if (sh->sh_ipi_id) {
418 ipi_unregister(sh->sh_ipi_id);
419 }
420
421 /*
422 * Run a dummy softint at the same level on all CPUs and wait for
423 * completion, to make sure this softint is no longer running
424 * anywhere.
425 */
426 xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
427
428 /* Clear the handler on each CPU. */
429 mutex_enter(&softint_lock);
430 for (CPU_INFO_FOREACH(cii, ci)) {
431 sc = ci->ci_data.cpu_softcpu;
432 sh = (softhand_t *)((uint8_t *)sc + offset);
433 KASSERT(sh->sh_func != NULL);
434 sh->sh_func = NULL;
435 }
436 mutex_exit(&softint_lock);
437 }
438
439 /*
440 * softint_schedule:
441 *
442 * Trigger a software interrupt. Must be called from a hardware
443 * interrupt handler, or with preemption disabled (since we are
444 * using the value of curcpu()).
445 */
446 void
447 softint_schedule(void *arg)
448 {
449 softhand_t *sh;
450 softint_t *si;
451 uintptr_t offset;
452 int s;
453
454 /*
455 * If this assert fires, rather than disabling preemption explicitly
456 * to make it stop, consider that you are probably using a softint
457 * when you don't need to.
458 */
459 KASSERT(kpreempt_disabled());
460
461 /* Find the handler record for this CPU. */
462 offset = (uintptr_t)arg;
463 KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
464 offset, softint_bytes);
465 sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
466
467 /* If it's already pending there's nothing to do. */
468 if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
469 return;
470 }
471
472 /*
473 * Enqueue the handler into the LWP's pending list.
474 * If the LWP is completely idle, then make it run.
475 */
476 s = splhigh();
477 if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
478 si = sh->sh_isr;
479 sh->sh_flags |= SOFTINT_PENDING;
480 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
481 if (si->si_active == 0) {
482 si->si_active = 1;
483 softint_trigger(si->si_machdep);
484 }
485 }
486 splx(s);
487 }
488
489 /*
490 * softint_schedule_cpu:
491 *
492 * Trigger a software interrupt on a target CPU. This invokes
493 * softint_schedule() for the local CPU or send an IPI to invoke
494 * this routine on the remote CPU. Preemption must be disabled.
495 */
496 void
497 softint_schedule_cpu(void *arg, struct cpu_info *ci)
498 {
499 KASSERT(kpreempt_disabled());
500
501 if (curcpu() != ci) {
502 const softcpu_t *sc = ci->ci_data.cpu_softcpu;
503 const uintptr_t offset = (uintptr_t)arg;
504 const softhand_t *sh;
505
506 sh = (const softhand_t *)((const uint8_t *)sc + offset);
507 KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
508 ipi_trigger(sh->sh_ipi_id, ci);
509 return;
510 }
511
512 /* Just a local CPU. */
513 softint_schedule(arg);
514 }
515
516 /*
517 * softint_execute:
518 *
519 * Invoke handlers for the specified soft interrupt.
520 * Must be entered at splhigh. Will drop the priority
521 * to the level specified, but returns back at splhigh.
522 */
523 static inline void
524 softint_execute(lwp_t *l, int s)
525 {
526 softint_t *si = l->l_private;
527 softhand_t *sh;
528
529 KASSERT(si->si_lwp == curlwp);
530 KASSERT(si->si_cpu == curcpu());
531 KASSERT(si->si_lwp->l_wchan == NULL);
532 KASSERT(si->si_active);
533
534 /*
535 * Note: due to priority inheritance we may have interrupted a
536 * higher priority LWP. Since the soft interrupt must be quick
537 * and is non-preemptable, we don't bother yielding.
538 */
539
540 while (!SIMPLEQ_EMPTY(&si->si_q)) {
541 /*
542 * Pick the longest waiting handler to run. We block
543 * interrupts but do not lock in order to do this, as
544 * we are protecting against the local CPU only.
545 */
546 sh = SIMPLEQ_FIRST(&si->si_q);
547 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
548 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
549 sh->sh_flags ^= SOFTINT_PENDING;
550 splx(s);
551
552 /* Run the handler. */
553 if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
554 (*sh->sh_func)(sh->sh_arg);
555 } else {
556 KERNEL_LOCK(1, l);
557 (*sh->sh_func)(sh->sh_arg);
558 KERNEL_UNLOCK_ONE(l);
559 }
560
561 /* Diagnostic: check that spin-locks have not leaked. */
562 KASSERTMSG(curcpu()->ci_mtx_count == 0,
563 "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
564 __func__, curcpu()->ci_mtx_count, sh->sh_func);
565 /* Diagnostic: check that psrefs have not leaked. */
566 KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
567 __func__, l->l_psrefs, sh->sh_func);
568 /* Diagnostic: check that biglocks have not leaked. */
569 KASSERTMSG(l->l_blcnt == 0,
570 "%s: sh_func=%p leaked %d biglocks",
571 __func__, sh->sh_func, curlwp->l_blcnt);
572
573 (void)splhigh();
574 }
575
576 PSREF_DEBUG_BARRIER();
577
578 CPU_COUNT(CPU_COUNT_NSOFT, 1);
579
580 KASSERT(si->si_cpu == curcpu());
581 KASSERT(si->si_lwp->l_wchan == NULL);
582 KASSERT(si->si_active);
583 si->si_evcnt.ev_count++;
584 si->si_active = 0;
585 }
586
587 /*
588 * softint_block:
589 *
590 * Update statistics when the soft interrupt blocks.
591 */
592 void
593 softint_block(lwp_t *l)
594 {
595 softint_t *si = l->l_private;
596
597 KASSERT((l->l_pflag & LP_INTR) != 0);
598 si->si_evcnt_block.ev_count++;
599 }
600
601 #ifndef __HAVE_FAST_SOFTINTS
602
603 #ifdef __HAVE_PREEMPTION
604 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
605 #endif
606
607 /*
608 * softint_init_md:
609 *
610 * Slow path: perform machine-dependent initialization.
611 */
612 void
613 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
614 {
615 struct proc *p;
616 softint_t *si;
617
618 *machdep = (1 << level);
619 si = l->l_private;
620 p = l->l_proc;
621
622 mutex_enter(p->p_lock);
623 lwp_lock(l);
624 /* Cheat and make the KASSERT in softint_thread() happy. */
625 si->si_active = 1;
626 setrunnable(l);
627 /* LWP now unlocked */
628 mutex_exit(p->p_lock);
629 }
630
631 /*
632 * softint_trigger:
633 *
634 * Slow path: cause a soft interrupt handler to begin executing.
635 * Called at IPL_HIGH.
636 */
637 void
638 softint_trigger(uintptr_t machdep)
639 {
640 struct cpu_info *ci;
641 lwp_t *l;
642
643 ci = curcpu();
644 ci->ci_data.cpu_softints |= machdep;
645 l = ci->ci_onproc;
646
647 /*
648 * Arrange for mi_switch() to be called. If called from interrupt
649 * mode, we don't know if curlwp is executing in kernel or user, so
650 * post an AST and have it take a trip through userret(). If not in
651 * interrupt mode, curlwp is running in kernel and will notice the
652 * resched soon enough; avoid the AST.
653 */
654 if (l == ci->ci_data.cpu_idlelwp) {
655 atomic_or_uint(&ci->ci_want_resched,
656 RESCHED_IDLE | RESCHED_UPREEMPT);
657 } else {
658 atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
659 if (cpu_intr_p()) {
660 cpu_signotify(l);
661 }
662 }
663 }
664
665 /*
666 * softint_thread:
667 *
668 * Slow path: MI software interrupt dispatch.
669 */
670 void
671 softint_thread(void *cookie)
672 {
673 softint_t *si;
674 lwp_t *l;
675 int s;
676
677 l = curlwp;
678 si = l->l_private;
679
680 for (;;) {
681 /* Clear pending status and run it. */
682 s = splhigh();
683 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
684 softint_execute(l, s);
685 splx(s);
686
687 /* Interrupts allowed to run again before switching. */
688 lwp_lock(l);
689 l->l_stat = LSIDL;
690 spc_lock(l->l_cpu);
691 mi_switch(l);
692 }
693 }
694
695 /*
696 * softint_picklwp:
697 *
698 * Slow path: called from mi_switch() to pick the highest priority
699 * soft interrupt LWP that needs to run.
700 */
701 lwp_t *
702 softint_picklwp(void)
703 {
704 struct cpu_info *ci;
705 u_int mask;
706 softint_t *si;
707 lwp_t *l;
708
709 ci = curcpu();
710 si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
711 mask = ci->ci_data.cpu_softints;
712
713 if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
714 l = si[SOFTINT_SERIAL].si_lwp;
715 } else if ((mask & (1 << SOFTINT_NET)) != 0) {
716 l = si[SOFTINT_NET].si_lwp;
717 } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
718 l = si[SOFTINT_BIO].si_lwp;
719 } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
720 l = si[SOFTINT_CLOCK].si_lwp;
721 } else {
722 panic("softint_picklwp");
723 }
724
725 return l;
726 }
727
728 #else /* !__HAVE_FAST_SOFTINTS */
729
730 /*
731 * softint_thread:
732 *
733 * Fast path: the LWP is switched to without restoring any state,
734 * so we should not arrive here - there is a direct handoff between
735 * the interrupt stub and softint_dispatch().
736 */
737 void
738 softint_thread(void *cookie)
739 {
740
741 panic("softint_thread");
742 }
743
744 /*
745 * softint_dispatch:
746 *
747 * Fast path: entry point from machine-dependent code.
748 */
749 void
750 softint_dispatch(lwp_t *pinned, int s)
751 {
752 struct bintime now;
753 u_int timing;
754 lwp_t *l;
755
756 #ifdef DIAGNOSTIC
757 if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
758 struct lwp *onproc = curcpu()->ci_onproc;
759 int s2 = splhigh();
760 printf("curcpu=%d, spl=%d curspl=%d\n"
761 "onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
762 "curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
763 "pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
764 cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
765 onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
766 curlwp->l_stat, curlwp->l_flag,
767 cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
768 pinned->l_flag, cpu_index(pinned->l_cpu));
769 splx(s2);
770 panic("softint screwup");
771 }
772 #endif
773
774 /*
775 * Note the interrupted LWP, and mark the current LWP as running
776 * before proceeding. Although this must as a rule be done with
777 * the LWP locked, at this point no external agents will want to
778 * modify the interrupt LWP's state.
779 */
780 timing = softint_timing;
781 l = curlwp;
782 l->l_switchto = pinned;
783 l->l_stat = LSONPROC;
784
785 /*
786 * Dispatch the interrupt. If softints are being timed, charge
787 * for it.
788 */
789 if (timing) {
790 binuptime(&l->l_stime);
791 membar_producer(); /* for calcru */
792 l->l_pflag |= LP_TIMEINTR;
793 }
794 l->l_pflag |= LP_RUNNING;
795 softint_execute(l, s);
796 if (timing) {
797 binuptime(&now);
798 updatertime(l, &now);
799 l->l_pflag &= ~LP_TIMEINTR;
800 }
801
802 /*
803 * If we blocked while handling the interrupt, the pinned LWP is
804 * gone and we are now running as a kthread, so find another LWP to
805 * run. softint_dispatch() won't be reentered until the priority is
806 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
807 */
808 l->l_stat = LSIDL;
809 if (l->l_switchto == NULL) {
810 lwp_lock(l);
811 spc_lock(l->l_cpu);
812 mi_switch(l);
813 /* NOTREACHED */
814 }
815 l->l_switchto = NULL;
816 l->l_pflag &= ~LP_RUNNING;
817 }
818
819 #endif /* !__HAVE_FAST_SOFTINTS */
820