Home | History | Annotate | Line # | Download | only in kern
kern_softint.c revision 1.71
      1 /*	$NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Generic software interrupt framework.
     34  *
     35  * Overview
     36  *
     37  *	The soft interrupt framework provides a mechanism to schedule a
     38  *	low priority callback that runs with thread context.  It allows
     39  *	for dynamic registration of software interrupts, and for fair
     40  *	queueing and prioritization of those interrupts.  The callbacks
     41  *	can be scheduled to run from nearly any point in the kernel: by
     42  *	code running with thread context, by code running from a
     43  *	hardware interrupt handler, and at any interrupt priority
     44  *	level.
     45  *
     46  * Priority levels
     47  *
     48  *	Since soft interrupt dispatch can be tied to the underlying
     49  *	architecture's interrupt dispatch code, it can be limited
     50  *	both by the capabilities of the hardware and the capabilities
     51  *	of the interrupt dispatch code itself.  The number of priority
     52  *	levels is restricted to four.  In order of priority (lowest to
     53  *	highest) the levels are: clock, bio, net, serial.
     54  *
     55  *	The names are symbolic and in isolation do not have any direct
     56  *	connection with a particular kind of device activity: they are
     57  *	only meant as a guide.
     58  *
     59  *	The four priority levels map directly to scheduler priority
     60  *	levels, and where the architecture implements 'fast' software
     61  *	interrupts, they also map onto interrupt priorities.  The
     62  *	interrupt priorities are intended to be hidden from machine
     63  *	independent code, which should use thread-safe mechanisms to
     64  *	synchronize with software interrupts (for example: mutexes).
     65  *
     66  * Capabilities
     67  *
     68  *	Software interrupts run with limited machine context.  In
     69  *	particular, they do not posess any address space context.  They
     70  *	should not try to operate on user space addresses, or to use
     71  *	virtual memory facilities other than those noted as interrupt
     72  *	safe.
     73  *
     74  *	Unlike hardware interrupts, software interrupts do have thread
     75  *	context.  They may block on synchronization objects, sleep, and
     76  *	resume execution at a later time.
     77  *
     78  *	Since software interrupts are a limited resource and run with
     79  *	higher priority than most other LWPs in the system, all
     80  *	block-and-resume activity by a software interrupt must be kept
     81  *	short to allow further processing at that level to continue.  By
     82  *	extension, code running with process context must take care to
     83  *	ensure that any lock that may be taken from a software interrupt
     84  *	can not be held for more than a short period of time.
     85  *
     86  *	The kernel does not allow software interrupts to use facilities
     87  *	or perform actions that may block for a significant amount of
     88  *	time.  This means that it's not valid for a software interrupt
     89  *	to sleep on condition variables	or wait for resources to become
     90  *	available (for example,	memory).
     91  *
     92  * Per-CPU operation
     93  *
     94  *	If a soft interrupt is triggered on a CPU, it can only be
     95  *	dispatched on the same CPU.  Each LWP dedicated to handling a
     96  *	soft interrupt is bound to its home CPU, so if the LWP blocks
     97  *	and needs to run again, it can only run there.  Nearly all data
     98  *	structures used to manage software interrupts are per-CPU.
     99  *
    100  *	The per-CPU requirement is intended to reduce "ping-pong" of
    101  *	cache lines between CPUs: lines occupied by data structures
    102  *	used to manage the soft interrupts, and lines occupied by data
    103  *	items being passed down to the soft interrupt.  As a positive
    104  *	side effect, this also means that the soft interrupt dispatch
    105  *	code does not need to to use spinlocks to synchronize.
    106  *
    107  * Generic implementation
    108  *
    109  *	A generic, low performance implementation is provided that
    110  *	works across all architectures, with no machine-dependent
    111  *	modifications needed.  This implementation uses the scheduler,
    112  *	and so has a number of restrictions:
    113  *
    114  *	1) The software interrupts are not currently preemptive, so
    115  *	must wait for the currently executing LWP to yield the CPU.
    116  *	This can introduce latency.
    117  *
    118  *	2) An expensive context switch is required for a software
    119  *	interrupt to be handled.
    120  *
    121  * 'Fast' software interrupts
    122  *
    123  *	If an architectures defines __HAVE_FAST_SOFTINTS, it implements
    124  *	the fast mechanism.  Threads running either in the kernel or in
    125  *	userspace will be interrupted, but will not be preempted.  When
    126  *	the soft interrupt completes execution, the interrupted LWP
    127  *	is resumed.  Interrupt dispatch code must provide the minimum
    128  *	level of context necessary for the soft interrupt to block and
    129  *	be resumed at a later time.  The machine-dependent dispatch
    130  *	path looks something like the following:
    131  *
    132  *	softintr()
    133  *	{
    134  *		go to IPL_HIGH if necessary for switch;
    135  *		save any necessary registers in a format that can be
    136  *		    restored by cpu_switchto if the softint blocks;
    137  *		arrange for cpu_switchto() to restore into the
    138  *		    trampoline function;
    139  *		identify LWP to handle this interrupt;
    140  *		switch to the LWP's stack;
    141  *		switch register stacks, if necessary;
    142  *		assign new value of curlwp;
    143  *		call MI softint_dispatch, passing old curlwp and IPL
    144  *		    to execute interrupt at;
    145  *		switch back to old stack;
    146  *		switch back to old register stack, if necessary;
    147  *		restore curlwp;
    148  *		return to interrupted LWP;
    149  *	}
    150  *
    151  *	If the soft interrupt blocks, a trampoline function is returned
    152  *	to in the context of the interrupted LWP, as arranged for by
    153  *	softint():
    154  *
    155  *	softint_ret()
    156  *	{
    157  *		unlock soft interrupt LWP;
    158  *		resume interrupt processing, likely returning to
    159  *		    interrupted LWP or dispatching another, different
    160  *		    interrupt;
    161  *	}
    162  *
    163  *	Once the soft interrupt has fired (and even if it has blocked),
    164  *	no further soft interrupts at that level will be triggered by
    165  *	MI code until the soft interrupt handler has ceased execution.
    166  *	If a soft interrupt handler blocks and is resumed, it resumes
    167  *	execution as a normal LWP (kthread) and gains VM context.  Only
    168  *	when it has completed and is ready to fire again will it
    169  *	interrupt other threads.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.71 2022/09/03 02:48:00 thorpej Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/proc.h>
    177 #include <sys/intr.h>
    178 #include <sys/ipi.h>
    179 #include <sys/lock.h>
    180 #include <sys/mutex.h>
    181 #include <sys/kernel.h>
    182 #include <sys/kthread.h>
    183 #include <sys/evcnt.h>
    184 #include <sys/cpu.h>
    185 #include <sys/xcall.h>
    186 #include <sys/psref.h>
    187 
    188 #include <uvm/uvm_extern.h>
    189 
    190 /* This could overlap with signal info in struct lwp. */
    191 typedef struct softint {
    192 	SIMPLEQ_HEAD(, softhand) si_q;
    193 	struct lwp		*si_lwp;
    194 	struct cpu_info		*si_cpu;
    195 	uintptr_t		si_machdep;
    196 	struct evcnt		si_evcnt;
    197 	struct evcnt		si_evcnt_block;
    198 	volatile int		si_active;
    199 	int			si_ipl;
    200 	char			si_name[8];
    201 	char			si_name_block[8+6];
    202 } softint_t;
    203 
    204 typedef struct softhand {
    205 	SIMPLEQ_ENTRY(softhand)	sh_q;
    206 	void			(*sh_func)(void *);
    207 	void			*sh_arg;
    208 	softint_t		*sh_isr;
    209 	u_int			sh_flags;
    210 	u_int			sh_ipi_id;
    211 } softhand_t;
    212 
    213 typedef struct softcpu {
    214 	struct cpu_info		*sc_cpu;
    215 	softint_t		sc_int[SOFTINT_COUNT];
    216 	softhand_t		sc_hand[1];
    217 } softcpu_t;
    218 
    219 static void	softint_thread(void *);
    220 
    221 u_int		softint_bytes = 32768;
    222 u_int		softint_timing;
    223 static u_int	softint_max;
    224 static kmutex_t	softint_lock;
    225 
    226 /*
    227  * softint_init_isr:
    228  *
    229  *	Initialize a single interrupt level for a single CPU.
    230  */
    231 static void
    232 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
    233     int ipl)
    234 {
    235 	struct cpu_info *ci;
    236 	softint_t *si;
    237 	int error;
    238 
    239 	si = &sc->sc_int[level];
    240 	ci = sc->sc_cpu;
    241 	si->si_cpu = ci;
    242 
    243 	SIMPLEQ_INIT(&si->si_q);
    244 
    245 	error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
    246 	    KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
    247 	    "soft%s/%u", desc, ci->ci_index);
    248 	if (error != 0)
    249 		panic("softint_init_isr: error %d", error);
    250 
    251 	snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
    252 	    ci->ci_index);
    253 	evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
    254 	   "softint", si->si_name);
    255 	snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
    256 	    desc, ci->ci_index);
    257 	evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
    258 	   "softint", si->si_name_block);
    259 
    260 	si->si_ipl = ipl;
    261 	si->si_lwp->l_private = si;
    262 	softint_init_md(si->si_lwp, level, &si->si_machdep);
    263 }
    264 
    265 /*
    266  * softint_init:
    267  *
    268  *	Initialize per-CPU data structures.  Called from mi_cpu_attach().
    269  */
    270 void
    271 softint_init(struct cpu_info *ci)
    272 {
    273 	static struct cpu_info *first;
    274 	softcpu_t *sc, *scfirst;
    275 	softhand_t *sh, *shmax;
    276 
    277 	if (first == NULL) {
    278 		/* Boot CPU. */
    279 		first = ci;
    280 		mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
    281 		softint_bytes = round_page(softint_bytes);
    282 		softint_max = (softint_bytes - sizeof(softcpu_t)) /
    283 		    sizeof(softhand_t);
    284 	}
    285 
    286 	/* Use uvm_km(9) for persistent, page-aligned allocation. */
    287 	sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
    288 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
    289 	if (sc == NULL)
    290 		panic("softint_init_cpu: cannot allocate memory");
    291 
    292 	ci->ci_data.cpu_softcpu = sc;
    293 	ci->ci_data.cpu_softints = 0;
    294 	sc->sc_cpu = ci;
    295 
    296 	softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
    297 	    IPL_SOFTNET);
    298 	softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
    299 	    IPL_SOFTBIO);
    300 	softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
    301 	    IPL_SOFTCLOCK);
    302 	softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
    303 	    IPL_SOFTSERIAL);
    304 
    305 	if (first != ci) {
    306 		mutex_enter(&softint_lock);
    307 		scfirst = first->ci_data.cpu_softcpu;
    308 		sh = sc->sc_hand;
    309 		memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
    310 		/* Update pointers for this CPU. */
    311 		for (shmax = sh + softint_max; sh < shmax; sh++) {
    312 			if (sh->sh_func == NULL)
    313 				continue;
    314 			sh->sh_isr =
    315 			    &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
    316 		}
    317 		mutex_exit(&softint_lock);
    318 	}
    319 }
    320 
    321 /*
    322  * softint_establish:
    323  *
    324  *	Register a software interrupt handler.
    325  */
    326 void *
    327 softint_establish(u_int flags, void (*func)(void *), void *arg)
    328 {
    329 	CPU_INFO_ITERATOR cii;
    330 	struct cpu_info *ci;
    331 	softcpu_t *sc;
    332 	softhand_t *sh;
    333 	u_int level, index;
    334 	u_int ipi_id = 0;
    335 	void *sih;
    336 
    337 	level = (flags & SOFTINT_LVLMASK);
    338 	KASSERT(level < SOFTINT_COUNT);
    339 	KASSERT((flags & SOFTINT_IMPMASK) == 0);
    340 
    341 	mutex_enter(&softint_lock);
    342 
    343 	/* Find a free slot. */
    344 	sc = curcpu()->ci_data.cpu_softcpu;
    345 	for (index = 1; index < softint_max; index++) {
    346 		if (sc->sc_hand[index].sh_func == NULL)
    347 			break;
    348 	}
    349 	if (index == softint_max) {
    350 		mutex_exit(&softint_lock);
    351 		printf("WARNING: softint_establish: table full, "
    352 		    "increase softint_bytes\n");
    353 		return NULL;
    354 	}
    355 	sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
    356 
    357 	if (flags & SOFTINT_RCPU) {
    358 		if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
    359 			mutex_exit(&softint_lock);
    360 			return NULL;
    361 		}
    362 	}
    363 
    364 	/* Set up the handler on each CPU. */
    365 	if (ncpu < 2) {
    366 		/* XXX hack for machines with no CPU_INFO_FOREACH() early on */
    367 		sc = curcpu()->ci_data.cpu_softcpu;
    368 		sh = &sc->sc_hand[index];
    369 		sh->sh_isr = &sc->sc_int[level];
    370 		sh->sh_func = func;
    371 		sh->sh_arg = arg;
    372 		sh->sh_flags = flags;
    373 		sh->sh_ipi_id = ipi_id;
    374 	} else for (CPU_INFO_FOREACH(cii, ci)) {
    375 		sc = ci->ci_data.cpu_softcpu;
    376 		sh = &sc->sc_hand[index];
    377 		sh->sh_isr = &sc->sc_int[level];
    378 		sh->sh_func = func;
    379 		sh->sh_arg = arg;
    380 		sh->sh_flags = flags;
    381 		sh->sh_ipi_id = ipi_id;
    382 	}
    383 	mutex_exit(&softint_lock);
    384 
    385 	return sih;
    386 }
    387 
    388 /*
    389  * softint_disestablish:
    390  *
    391  *	Unregister a software interrupt handler.  The soft interrupt could
    392  *	still be active at this point, but the caller commits not to try
    393  *	and trigger it again once this call is made.  The caller must not
    394  *	hold any locks that could be taken from soft interrupt context,
    395  *	because we will wait for the softint to complete if it's still
    396  *	running.
    397  */
    398 void
    399 softint_disestablish(void *arg)
    400 {
    401 	CPU_INFO_ITERATOR cii;
    402 	struct cpu_info *ci;
    403 	softcpu_t *sc;
    404 	softhand_t *sh;
    405 	uintptr_t offset;
    406 
    407 	offset = (uintptr_t)arg;
    408 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    409 	    offset, softint_bytes);
    410 
    411 	/*
    412 	 * Unregister IPI handler if there is any.  Note: there is no need
    413 	 * to disable preemption here - ID is stable.
    414 	 */
    415 	sc = curcpu()->ci_data.cpu_softcpu;
    416 	sh = (softhand_t *)((uint8_t *)sc + offset);
    417 	if (sh->sh_ipi_id) {
    418 		ipi_unregister(sh->sh_ipi_id);
    419 	}
    420 
    421 	/*
    422 	 * Run a dummy softint at the same level on all CPUs and wait for
    423 	 * completion, to make sure this softint is no longer running
    424 	 * anywhere.
    425 	 */
    426 	xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));
    427 
    428 	/* Clear the handler on each CPU. */
    429 	mutex_enter(&softint_lock);
    430 	for (CPU_INFO_FOREACH(cii, ci)) {
    431 		sc = ci->ci_data.cpu_softcpu;
    432 		sh = (softhand_t *)((uint8_t *)sc + offset);
    433 		KASSERT(sh->sh_func != NULL);
    434 		sh->sh_func = NULL;
    435 	}
    436 	mutex_exit(&softint_lock);
    437 }
    438 
    439 /*
    440  * softint_schedule:
    441  *
    442  *	Trigger a software interrupt.  Must be called from a hardware
    443  *	interrupt handler, or with preemption disabled (since we are
    444  *	using the value of curcpu()).
    445  */
    446 void
    447 softint_schedule(void *arg)
    448 {
    449 	softhand_t *sh;
    450 	softint_t *si;
    451 	uintptr_t offset;
    452 	int s;
    453 
    454 	/*
    455 	 * If this assert fires, rather than disabling preemption explicitly
    456 	 * to make it stop, consider that you are probably using a softint
    457 	 * when you don't need to.
    458 	 */
    459 	KASSERT(kpreempt_disabled());
    460 
    461 	/* Find the handler record for this CPU. */
    462 	offset = (uintptr_t)arg;
    463 	KASSERTMSG(offset != 0 && offset < softint_bytes, "%"PRIuPTR" %u",
    464 	    offset, softint_bytes);
    465 	sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
    466 
    467 	/* If it's already pending there's nothing to do. */
    468 	if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
    469 		return;
    470 	}
    471 
    472 	/*
    473 	 * Enqueue the handler into the LWP's pending list.
    474 	 * If the LWP is completely idle, then make it run.
    475 	 */
    476 	s = splhigh();
    477 	if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
    478 		si = sh->sh_isr;
    479 		sh->sh_flags |= SOFTINT_PENDING;
    480 		SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
    481 		if (si->si_active == 0) {
    482 			si->si_active = 1;
    483 			softint_trigger(si->si_machdep);
    484 		}
    485 	}
    486 	splx(s);
    487 }
    488 
    489 /*
    490  * softint_schedule_cpu:
    491  *
    492  *	Trigger a software interrupt on a target CPU.  This invokes
    493  *	softint_schedule() for the local CPU or send an IPI to invoke
    494  *	this routine on the remote CPU.  Preemption must be disabled.
    495  */
    496 void
    497 softint_schedule_cpu(void *arg, struct cpu_info *ci)
    498 {
    499 	KASSERT(kpreempt_disabled());
    500 
    501 	if (curcpu() != ci) {
    502 		const softcpu_t *sc = ci->ci_data.cpu_softcpu;
    503 		const uintptr_t offset = (uintptr_t)arg;
    504 		const softhand_t *sh;
    505 
    506 		sh = (const softhand_t *)((const uint8_t *)sc + offset);
    507 		KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
    508 		ipi_trigger(sh->sh_ipi_id, ci);
    509 		return;
    510 	}
    511 
    512 	/* Just a local CPU. */
    513 	softint_schedule(arg);
    514 }
    515 
    516 /*
    517  * softint_execute:
    518  *
    519  *	Invoke handlers for the specified soft interrupt.
    520  *	Must be entered at splhigh.  Will drop the priority
    521  *	to the level specified, but returns back at splhigh.
    522  */
    523 static inline void
    524 softint_execute(lwp_t *l, int s)
    525 {
    526 	softint_t *si = l->l_private;
    527 	softhand_t *sh;
    528 
    529 	KASSERT(si->si_lwp == curlwp);
    530 	KASSERT(si->si_cpu == curcpu());
    531 	KASSERT(si->si_lwp->l_wchan == NULL);
    532 	KASSERT(si->si_active);
    533 
    534 	/*
    535 	 * Note: due to priority inheritance we may have interrupted a
    536 	 * higher priority LWP.  Since the soft interrupt must be quick
    537 	 * and is non-preemptable, we don't bother yielding.
    538 	 */
    539 
    540 	while (!SIMPLEQ_EMPTY(&si->si_q)) {
    541 		/*
    542 		 * Pick the longest waiting handler to run.  We block
    543 		 * interrupts but do not lock in order to do this, as
    544 		 * we are protecting against the local CPU only.
    545 		 */
    546 		sh = SIMPLEQ_FIRST(&si->si_q);
    547 		SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
    548 		KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
    549 		sh->sh_flags ^= SOFTINT_PENDING;
    550 		splx(s);
    551 
    552 		/* Run the handler. */
    553 		if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
    554 			(*sh->sh_func)(sh->sh_arg);
    555 		} else {
    556 			KERNEL_LOCK(1, l);
    557 			(*sh->sh_func)(sh->sh_arg);
    558 			KERNEL_UNLOCK_ONE(l);
    559 		}
    560 
    561 		/* Diagnostic: check that spin-locks have not leaked. */
    562 		KASSERTMSG(curcpu()->ci_mtx_count == 0,
    563 		    "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
    564 		    __func__, curcpu()->ci_mtx_count, sh->sh_func);
    565 		/* Diagnostic: check that psrefs have not leaked. */
    566 		KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
    567 		    __func__, l->l_psrefs, sh->sh_func);
    568 		/* Diagnostic: check that biglocks have not leaked. */
    569 		KASSERTMSG(l->l_blcnt == 0,
    570 		    "%s: sh_func=%p leaked %d biglocks",
    571 		    __func__, sh->sh_func, curlwp->l_blcnt);
    572 
    573 		(void)splhigh();
    574 	}
    575 
    576 	PSREF_DEBUG_BARRIER();
    577 
    578 	CPU_COUNT(CPU_COUNT_NSOFT, 1);
    579 
    580 	KASSERT(si->si_cpu == curcpu());
    581 	KASSERT(si->si_lwp->l_wchan == NULL);
    582 	KASSERT(si->si_active);
    583 	si->si_evcnt.ev_count++;
    584 	si->si_active = 0;
    585 }
    586 
    587 /*
    588  * softint_block:
    589  *
    590  *	Update statistics when the soft interrupt blocks.
    591  */
    592 void
    593 softint_block(lwp_t *l)
    594 {
    595 	softint_t *si = l->l_private;
    596 
    597 	KASSERT((l->l_pflag & LP_INTR) != 0);
    598 	si->si_evcnt_block.ev_count++;
    599 }
    600 
    601 #ifndef __HAVE_FAST_SOFTINTS
    602 
    603 #ifdef __HAVE_PREEMPTION
    604 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
    605 #endif
    606 
    607 /*
    608  * softint_init_md:
    609  *
    610  *	Slow path: perform machine-dependent initialization.
    611  */
    612 void
    613 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
    614 {
    615 	struct proc *p;
    616 	softint_t *si;
    617 
    618 	*machdep = (1 << level);
    619 	si = l->l_private;
    620 	p = l->l_proc;
    621 
    622 	mutex_enter(p->p_lock);
    623 	lwp_lock(l);
    624 	/* Cheat and make the KASSERT in softint_thread() happy. */
    625 	si->si_active = 1;
    626 	setrunnable(l);
    627 	/* LWP now unlocked */
    628 	mutex_exit(p->p_lock);
    629 }
    630 
    631 /*
    632  * softint_trigger:
    633  *
    634  *	Slow path: cause a soft interrupt handler to begin executing.
    635  *	Called at IPL_HIGH.
    636  */
    637 void
    638 softint_trigger(uintptr_t machdep)
    639 {
    640 	struct cpu_info *ci;
    641 	lwp_t *l;
    642 
    643 	ci = curcpu();
    644 	ci->ci_data.cpu_softints |= machdep;
    645 	l = ci->ci_onproc;
    646 
    647 	/*
    648 	 * Arrange for mi_switch() to be called.  If called from interrupt
    649 	 * mode, we don't know if curlwp is executing in kernel or user, so
    650 	 * post an AST and have it take a trip through userret().  If not in
    651 	 * interrupt mode, curlwp is running in kernel and will notice the
    652 	 * resched soon enough; avoid the AST.
    653 	 */
    654 	if (l == ci->ci_data.cpu_idlelwp) {
    655 		atomic_or_uint(&ci->ci_want_resched,
    656 		    RESCHED_IDLE | RESCHED_UPREEMPT);
    657 	} else {
    658 		atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
    659 		if (cpu_intr_p()) {
    660 			cpu_signotify(l);
    661 		}
    662 	}
    663 }
    664 
    665 /*
    666  * softint_thread:
    667  *
    668  *	Slow path: MI software interrupt dispatch.
    669  */
    670 void
    671 softint_thread(void *cookie)
    672 {
    673 	softint_t *si;
    674 	lwp_t *l;
    675 	int s;
    676 
    677 	l = curlwp;
    678 	si = l->l_private;
    679 
    680 	for (;;) {
    681 		/* Clear pending status and run it. */
    682 		s = splhigh();
    683 		l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
    684 		softint_execute(l, s);
    685 		splx(s);
    686 
    687 		/* Interrupts allowed to run again before switching. */
    688 		lwp_lock(l);
    689 		l->l_stat = LSIDL;
    690 		spc_lock(l->l_cpu);
    691 		mi_switch(l);
    692 	}
    693 }
    694 
    695 /*
    696  * softint_picklwp:
    697  *
    698  *	Slow path: called from mi_switch() to pick the highest priority
    699  *	soft interrupt LWP that needs to run.
    700  */
    701 lwp_t *
    702 softint_picklwp(void)
    703 {
    704 	struct cpu_info *ci;
    705 	u_int mask;
    706 	softint_t *si;
    707 	lwp_t *l;
    708 
    709 	ci = curcpu();
    710 	si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
    711 	mask = ci->ci_data.cpu_softints;
    712 
    713 	if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
    714 		l = si[SOFTINT_SERIAL].si_lwp;
    715 	} else if ((mask & (1 << SOFTINT_NET)) != 0) {
    716 		l = si[SOFTINT_NET].si_lwp;
    717 	} else if ((mask & (1 << SOFTINT_BIO)) != 0) {
    718 		l = si[SOFTINT_BIO].si_lwp;
    719 	} else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
    720 		l = si[SOFTINT_CLOCK].si_lwp;
    721 	} else {
    722 		panic("softint_picklwp");
    723 	}
    724 
    725 	return l;
    726 }
    727 
    728 #else	/*  !__HAVE_FAST_SOFTINTS */
    729 
    730 /*
    731  * softint_thread:
    732  *
    733  *	Fast path: the LWP is switched to without restoring any state,
    734  *	so we should not arrive here - there is a direct handoff between
    735  *	the interrupt stub and softint_dispatch().
    736  */
    737 void
    738 softint_thread(void *cookie)
    739 {
    740 
    741 	panic("softint_thread");
    742 }
    743 
    744 /*
    745  * softint_dispatch:
    746  *
    747  *	Fast path: entry point from machine-dependent code.
    748  */
    749 void
    750 softint_dispatch(lwp_t *pinned, int s)
    751 {
    752 	struct bintime now;
    753 	u_int timing;
    754 	lwp_t *l;
    755 
    756 #ifdef DIAGNOSTIC
    757 	if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
    758 		struct lwp *onproc = curcpu()->ci_onproc;
    759 		int s2 = splhigh();
    760 		printf("curcpu=%d, spl=%d curspl=%d\n"
    761 			"onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    762 			"curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
    763 			"pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
    764 			cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
    765 			onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
    766 			curlwp->l_stat, curlwp->l_flag,
    767 			cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
    768 			pinned->l_flag, cpu_index(pinned->l_cpu));
    769 		splx(s2);
    770 		panic("softint screwup");
    771 	}
    772 #endif
    773 
    774 	/*
    775 	 * Note the interrupted LWP, and mark the current LWP as running
    776 	 * before proceeding.  Although this must as a rule be done with
    777 	 * the LWP locked, at this point no external agents will want to
    778 	 * modify the interrupt LWP's state.
    779 	 */
    780 	timing = softint_timing;
    781 	l = curlwp;
    782 	l->l_switchto = pinned;
    783 	l->l_stat = LSONPROC;
    784 
    785 	/*
    786 	 * Dispatch the interrupt.  If softints are being timed, charge
    787 	 * for it.
    788 	 */
    789 	if (timing) {
    790 		binuptime(&l->l_stime);
    791 		membar_producer();	/* for calcru */
    792 		l->l_pflag |= LP_TIMEINTR;
    793 	}
    794 	l->l_pflag |= LP_RUNNING;
    795 	softint_execute(l, s);
    796 	if (timing) {
    797 		binuptime(&now);
    798 		updatertime(l, &now);
    799 		l->l_pflag &= ~LP_TIMEINTR;
    800 	}
    801 
    802 	/*
    803 	 * If we blocked while handling the interrupt, the pinned LWP is
    804 	 * gone and we are now running as a kthread, so find another LWP to
    805 	 * run.  softint_dispatch() won't be reentered until the priority is
    806 	 * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
    807 	 */
    808 	l->l_stat = LSIDL;
    809 	if (l->l_switchto == NULL) {
    810 		lwp_lock(l);
    811 		spc_lock(l->l_cpu);
    812 		mi_switch(l);
    813 		/* NOTREACHED */
    814 	}
    815 	l->l_switchto = NULL;
    816 	l->l_pflag &= ~LP_RUNNING;
    817 }
    818 
    819 #endif	/* !__HAVE_FAST_SOFTINTS */
    820