Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.122
      1 /*	$NetBSD: kern_subr.c,v 1.122 2005/12/27 00:27:34 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Copyright (c) 1992, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * This software was developed by the Computer Systems Engineering group
     53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     54  * contributed to Berkeley.
     55  *
     56  * All advertising materials mentioning features or use of this software
     57  * must display the following acknowledgement:
     58  *	This product includes software developed by the University of
     59  *	California, Lawrence Berkeley Laboratory.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  * 2. Redistributions in binary form must reproduce the above copyright
     67  *    notice, this list of conditions and the following disclaimer in the
     68  *    documentation and/or other materials provided with the distribution.
     69  * 3. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.122 2005/12/27 00:27:34 chs Exp $");
     90 
     91 #include "opt_ddb.h"
     92 #include "opt_md.h"
     93 #include "opt_syscall_debug.h"
     94 #include "opt_ktrace.h"
     95 #include "opt_systrace.h"
     96 
     97 #include <sys/param.h>
     98 #include <sys/systm.h>
     99 #include <sys/proc.h>
    100 #include <sys/malloc.h>
    101 #include <sys/mount.h>
    102 #include <sys/device.h>
    103 #include <sys/reboot.h>
    104 #include <sys/conf.h>
    105 #include <sys/disklabel.h>
    106 #include <sys/queue.h>
    107 #include <sys/systrace.h>
    108 #include <sys/ktrace.h>
    109 #include <sys/fcntl.h>
    110 
    111 #include <uvm/uvm_extern.h>
    112 
    113 #include <dev/cons.h>
    114 
    115 #include <net/if.h>
    116 
    117 /* XXX these should eventually move to subr_autoconf.c */
    118 static struct device *finddevice(const char *);
    119 static struct device *getdisk(char *, int, int, dev_t *, int);
    120 static struct device *parsedisk(char *, int, int, dev_t *);
    121 
    122 /*
    123  * A generic linear hook.
    124  */
    125 struct hook_desc {
    126 	LIST_ENTRY(hook_desc) hk_list;
    127 	void	(*hk_fn)(void *);
    128 	void	*hk_arg;
    129 };
    130 typedef LIST_HEAD(, hook_desc) hook_list_t;
    131 
    132 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
    133 
    134 int
    135 uiomove(void *buf, size_t n, struct uio *uio)
    136 {
    137 	struct iovec *iov;
    138 	u_int cnt;
    139 	int error = 0;
    140 	char *cp = buf;
    141 	struct lwp *l;
    142 	struct proc *p;
    143 	int hold_count;
    144 
    145 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    146 
    147 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    148 	spinlock_switchcheck();
    149 #endif
    150 #ifdef LOCKDEBUG
    151 	simple_lock_only_held(NULL, "uiomove");
    152 #endif
    153 
    154 #ifdef DIAGNOSTIC
    155 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    156 		panic("uiomove: mode");
    157 #endif
    158 	while (n > 0 && uio->uio_resid) {
    159 		iov = uio->uio_iov;
    160 		cnt = iov->iov_len;
    161 		if (cnt == 0) {
    162 			KASSERT(uio->uio_iovcnt > 0);
    163 			uio->uio_iov++;
    164 			uio->uio_iovcnt--;
    165 			continue;
    166 		}
    167 		if (cnt > n)
    168 			cnt = n;
    169 		switch (uio->uio_segflg) {
    170 
    171 		case UIO_USERSPACE:
    172 			l = uio->uio_lwp;
    173 			p = l ? l->l_proc : NULL;
    174 
    175 			if (curcpu()->ci_schedstate.spc_flags &
    176 			    SPCF_SHOULDYIELD)
    177 				preempt(1);
    178 			if (uio->uio_rw == UIO_READ)
    179 				error = copyout_proc(p, cp, iov->iov_base, cnt);
    180 			else
    181 				error = copyin_proc(p, iov->iov_base, cp, cnt);
    182 			if (error)
    183 				goto out;
    184 			break;
    185 
    186 		case UIO_SYSSPACE:
    187 			if (uio->uio_rw == UIO_READ)
    188 				error = kcopy(cp, iov->iov_base, cnt);
    189 			else
    190 				error = kcopy(iov->iov_base, cp, cnt);
    191 			if (error)
    192 				goto out;
    193 			break;
    194 		}
    195 		iov->iov_base = (caddr_t)iov->iov_base + cnt;
    196 		iov->iov_len -= cnt;
    197 		uio->uio_resid -= cnt;
    198 		uio->uio_offset += cnt;
    199 		cp += cnt;
    200 		KDASSERT(cnt <= n);
    201 		n -= cnt;
    202 	}
    203 out:
    204 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
    205 	return (error);
    206 }
    207 
    208 /*
    209  * Wrapper for uiomove() that validates the arguments against a known-good
    210  * kernel buffer.
    211  */
    212 int
    213 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    214 {
    215 	size_t offset;
    216 
    217 	if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
    218 	    (offset = uio->uio_offset) != uio->uio_offset)
    219 		return (EINVAL);
    220 	if (offset >= buflen)
    221 		return (0);
    222 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    223 }
    224 
    225 /*
    226  * Give next character to user as result of read.
    227  */
    228 int
    229 ureadc(int c, struct uio *uio)
    230 {
    231 	struct iovec *iov;
    232 
    233 	if (uio->uio_resid <= 0)
    234 		panic("ureadc: non-positive resid");
    235 again:
    236 	if (uio->uio_iovcnt <= 0)
    237 		panic("ureadc: non-positive iovcnt");
    238 	iov = uio->uio_iov;
    239 	if (iov->iov_len <= 0) {
    240 		uio->uio_iovcnt--;
    241 		uio->uio_iov++;
    242 		goto again;
    243 	}
    244 	switch (uio->uio_segflg) {
    245 
    246 	case UIO_USERSPACE:
    247 		if (subyte(iov->iov_base, c) < 0)
    248 			return (EFAULT);
    249 		break;
    250 
    251 	case UIO_SYSSPACE:
    252 		*(char *)iov->iov_base = c;
    253 		break;
    254 	}
    255 	iov->iov_base = (caddr_t)iov->iov_base + 1;
    256 	iov->iov_len--;
    257 	uio->uio_resid--;
    258 	uio->uio_offset++;
    259 	return (0);
    260 }
    261 
    262 /*
    263  * Like copyin(), but operates on an arbitrary process.
    264  */
    265 int
    266 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    267 {
    268 	struct iovec iov;
    269 	struct uio uio;
    270 	int error;
    271 
    272 	if (len == 0)
    273 		return (0);
    274 
    275 	if (__predict_true(p == curproc))
    276 		return copyin(uaddr, kaddr, len);
    277 
    278 	iov.iov_base = kaddr;
    279 	iov.iov_len = len;
    280 	uio.uio_iov = &iov;
    281 	uio.uio_iovcnt = 1;
    282 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    283 	uio.uio_resid = len;
    284 	uio.uio_segflg = UIO_SYSSPACE;
    285 	uio.uio_rw = UIO_READ;
    286 	uio.uio_lwp = NULL;
    287 
    288 	/* XXXCDC: how should locking work here? */
    289 	if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
    290 		return (EFAULT);
    291 	p->p_vmspace->vm_refcnt++;	/* XXX */
    292 	error = uvm_io(&p->p_vmspace->vm_map, &uio);
    293 	uvmspace_free(p->p_vmspace);
    294 
    295 	return (error);
    296 }
    297 
    298 /*
    299  * Like copyout(), but operates on an arbitrary process.
    300  */
    301 int
    302 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    303 {
    304 	struct iovec iov;
    305 	struct uio uio;
    306 	int error;
    307 
    308 	if (len == 0)
    309 		return (0);
    310 
    311 	if (__predict_true(p == curproc))
    312 		return copyout(kaddr, uaddr, len);
    313 
    314 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    315 	iov.iov_len = len;
    316 	uio.uio_iov = &iov;
    317 	uio.uio_iovcnt = 1;
    318 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    319 	uio.uio_resid = len;
    320 	uio.uio_segflg = UIO_SYSSPACE;
    321 	uio.uio_rw = UIO_WRITE;
    322 	uio.uio_lwp = NULL;
    323 
    324 	/* XXXCDC: how should locking work here? */
    325 	if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
    326 		return (EFAULT);
    327 	p->p_vmspace->vm_refcnt++;	/* XXX */
    328 	error = uvm_io(&p->p_vmspace->vm_map, &uio);
    329 	uvmspace_free(p->p_vmspace);
    330 
    331 	return (error);
    332 }
    333 
    334 /*
    335  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    336  * flag is passed in `ioctlflags' from the ioctl call.
    337  */
    338 int
    339 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    340 {
    341 	if (ioctlflags & FKIOCTL)
    342 		return kcopy(src, dst, len);
    343 	return copyin(src, dst, len);
    344 }
    345 
    346 /*
    347  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    348  * flag is passed in `ioctlflags' from the ioctl call.
    349  */
    350 int
    351 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    352 {
    353 	if (ioctlflags & FKIOCTL)
    354 		return kcopy(src, dst, len);
    355 	return copyout(src, dst, len);
    356 }
    357 
    358 /*
    359  * General routine to allocate a hash table.
    360  * Allocate enough memory to hold at least `elements' list-head pointers.
    361  * Return a pointer to the allocated space and set *hashmask to a pattern
    362  * suitable for masking a value to use as an index into the returned array.
    363  */
    364 void *
    365 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
    366     int mflags, u_long *hashmask)
    367 {
    368 	u_long hashsize, i;
    369 	LIST_HEAD(, generic) *hashtbl_list;
    370 	TAILQ_HEAD(, generic) *hashtbl_tailq;
    371 	size_t esize;
    372 	void *p;
    373 
    374 	if (elements == 0)
    375 		panic("hashinit: bad cnt");
    376 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
    377 		continue;
    378 
    379 	switch (htype) {
    380 	case HASH_LIST:
    381 		esize = sizeof(*hashtbl_list);
    382 		break;
    383 	case HASH_TAILQ:
    384 		esize = sizeof(*hashtbl_tailq);
    385 		break;
    386 	default:
    387 #ifdef DIAGNOSTIC
    388 		panic("hashinit: invalid table type");
    389 #else
    390 		return NULL;
    391 #endif
    392 	}
    393 
    394 	if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
    395 		return (NULL);
    396 
    397 	switch (htype) {
    398 	case HASH_LIST:
    399 		hashtbl_list = p;
    400 		for (i = 0; i < hashsize; i++)
    401 			LIST_INIT(&hashtbl_list[i]);
    402 		break;
    403 	case HASH_TAILQ:
    404 		hashtbl_tailq = p;
    405 		for (i = 0; i < hashsize; i++)
    406 			TAILQ_INIT(&hashtbl_tailq[i]);
    407 		break;
    408 	}
    409 	*hashmask = hashsize - 1;
    410 	return (p);
    411 }
    412 
    413 /*
    414  * Free memory from hash table previosly allocated via hashinit().
    415  */
    416 void
    417 hashdone(void *hashtbl, struct malloc_type *mtype)
    418 {
    419 
    420 	free(hashtbl, mtype);
    421 }
    422 
    423 
    424 static void *
    425 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    426 {
    427 	struct hook_desc *hd;
    428 
    429 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    430 	if (hd == NULL)
    431 		return (NULL);
    432 
    433 	hd->hk_fn = fn;
    434 	hd->hk_arg = arg;
    435 	LIST_INSERT_HEAD(list, hd, hk_list);
    436 
    437 	return (hd);
    438 }
    439 
    440 static void
    441 hook_disestablish(hook_list_t *list, void *vhook)
    442 {
    443 #ifdef DIAGNOSTIC
    444 	struct hook_desc *hd;
    445 
    446 	LIST_FOREACH(hd, list, hk_list) {
    447                 if (hd == vhook)
    448 			break;
    449 	}
    450 
    451 	if (hd == NULL)
    452 		panic("hook_disestablish: hook %p not established", vhook);
    453 #endif
    454 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    455 	free(vhook, M_DEVBUF);
    456 }
    457 
    458 static void
    459 hook_destroy(hook_list_t *list)
    460 {
    461 	struct hook_desc *hd;
    462 
    463 	while ((hd = LIST_FIRST(list)) != NULL) {
    464 		LIST_REMOVE(hd, hk_list);
    465 		free(hd, M_DEVBUF);
    466 	}
    467 }
    468 
    469 static void
    470 hook_proc_run(hook_list_t *list, struct proc *p)
    471 {
    472 	struct hook_desc *hd;
    473 
    474 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
    475 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
    476 		    hd->hk_arg);
    477 	}
    478 }
    479 
    480 /*
    481  * "Shutdown hook" types, functions, and variables.
    482  *
    483  * Should be invoked immediately before the
    484  * system is halted or rebooted, i.e. after file systems unmounted,
    485  * after crash dump done, etc.
    486  *
    487  * Each shutdown hook is removed from the list before it's run, so that
    488  * it won't be run again.
    489  */
    490 
    491 static hook_list_t shutdownhook_list;
    492 
    493 void *
    494 shutdownhook_establish(void (*fn)(void *), void *arg)
    495 {
    496 	return hook_establish(&shutdownhook_list, fn, arg);
    497 }
    498 
    499 void
    500 shutdownhook_disestablish(void *vhook)
    501 {
    502 	hook_disestablish(&shutdownhook_list, vhook);
    503 }
    504 
    505 /*
    506  * Run shutdown hooks.  Should be invoked immediately before the
    507  * system is halted or rebooted, i.e. after file systems unmounted,
    508  * after crash dump done, etc.
    509  *
    510  * Each shutdown hook is removed from the list before it's run, so that
    511  * it won't be run again.
    512  */
    513 void
    514 doshutdownhooks(void)
    515 {
    516 	struct hook_desc *dp;
    517 
    518 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    519 		LIST_REMOVE(dp, hk_list);
    520 		(*dp->hk_fn)(dp->hk_arg);
    521 #if 0
    522 		/*
    523 		 * Don't bother freeing the hook structure,, since we may
    524 		 * be rebooting because of a memory corruption problem,
    525 		 * and this might only make things worse.  It doesn't
    526 		 * matter, anyway, since the system is just about to
    527 		 * reboot.
    528 		 */
    529 		free(dp, M_DEVBUF);
    530 #endif
    531 	}
    532 }
    533 
    534 /*
    535  * "Mountroot hook" types, functions, and variables.
    536  */
    537 
    538 static hook_list_t mountroothook_list;
    539 
    540 void *
    541 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
    542 {
    543 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    544 }
    545 
    546 void
    547 mountroothook_disestablish(void *vhook)
    548 {
    549 	hook_disestablish(&mountroothook_list, vhook);
    550 }
    551 
    552 void
    553 mountroothook_destroy(void)
    554 {
    555 	hook_destroy(&mountroothook_list);
    556 }
    557 
    558 void
    559 domountroothook(void)
    560 {
    561 	struct hook_desc *hd;
    562 
    563 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    564 		if (hd->hk_arg == (void *)root_device) {
    565 			(*hd->hk_fn)(hd->hk_arg);
    566 			return;
    567 		}
    568 	}
    569 }
    570 
    571 static hook_list_t exechook_list;
    572 
    573 void *
    574 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    575 {
    576 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    577 }
    578 
    579 void
    580 exechook_disestablish(void *vhook)
    581 {
    582 	hook_disestablish(&exechook_list, vhook);
    583 }
    584 
    585 /*
    586  * Run exec hooks.
    587  */
    588 void
    589 doexechooks(struct proc *p)
    590 {
    591 	hook_proc_run(&exechook_list, p);
    592 }
    593 
    594 static hook_list_t exithook_list;
    595 
    596 void *
    597 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    598 {
    599 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    600 }
    601 
    602 void
    603 exithook_disestablish(void *vhook)
    604 {
    605 	hook_disestablish(&exithook_list, vhook);
    606 }
    607 
    608 /*
    609  * Run exit hooks.
    610  */
    611 void
    612 doexithooks(struct proc *p)
    613 {
    614 	hook_proc_run(&exithook_list, p);
    615 }
    616 
    617 static hook_list_t forkhook_list;
    618 
    619 void *
    620 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    621 {
    622 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    623 }
    624 
    625 void
    626 forkhook_disestablish(void *vhook)
    627 {
    628 	hook_disestablish(&forkhook_list, vhook);
    629 }
    630 
    631 /*
    632  * Run fork hooks.
    633  */
    634 void
    635 doforkhooks(struct proc *p2, struct proc *p1)
    636 {
    637 	struct hook_desc *hd;
    638 
    639 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    640 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    641 		    (p2, p1);
    642 	}
    643 }
    644 
    645 /*
    646  * "Power hook" types, functions, and variables.
    647  * The list of power hooks is kept ordered with the last registered hook
    648  * first.
    649  * When running the hooks on power down the hooks are called in reverse
    650  * registration order, when powering up in registration order.
    651  */
    652 struct powerhook_desc {
    653 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    654 	void	(*sfd_fn)(int, void *);
    655 	void	*sfd_arg;
    656 };
    657 
    658 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    659     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    660 
    661 void *
    662 powerhook_establish(void (*fn)(int, void *), void *arg)
    663 {
    664 	struct powerhook_desc *ndp;
    665 
    666 	ndp = (struct powerhook_desc *)
    667 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    668 	if (ndp == NULL)
    669 		return (NULL);
    670 
    671 	ndp->sfd_fn = fn;
    672 	ndp->sfd_arg = arg;
    673 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    674 
    675 	return (ndp);
    676 }
    677 
    678 void
    679 powerhook_disestablish(void *vhook)
    680 {
    681 #ifdef DIAGNOSTIC
    682 	struct powerhook_desc *dp;
    683 
    684 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    685                 if (dp == vhook)
    686 			goto found;
    687 	panic("powerhook_disestablish: hook %p not established", vhook);
    688  found:
    689 #endif
    690 
    691 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    692 	    sfd_list);
    693 	free(vhook, M_DEVBUF);
    694 }
    695 
    696 /*
    697  * Run power hooks.
    698  */
    699 void
    700 dopowerhooks(int why)
    701 {
    702 	struct powerhook_desc *dp;
    703 
    704 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    705 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    706 			(*dp->sfd_fn)(why, dp->sfd_arg);
    707 		}
    708 	} else {
    709 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    710 			(*dp->sfd_fn)(why, dp->sfd_arg);
    711 		}
    712 	}
    713 }
    714 
    715 /*
    716  * Determine the root device and, if instructed to, the root file system.
    717  */
    718 
    719 #include "md.h"
    720 #if NMD == 0
    721 #undef MEMORY_DISK_HOOKS
    722 #endif
    723 
    724 #ifdef MEMORY_DISK_HOOKS
    725 static struct device fakemdrootdev[NMD];
    726 #endif
    727 
    728 #ifdef MEMORY_DISK_IS_ROOT
    729 #define BOOT_FROM_MEMORY_HOOKS 1
    730 #endif
    731 
    732 #include "raid.h"
    733 #if NRAID == 1
    734 #define BOOT_FROM_RAID_HOOKS 1
    735 #endif
    736 
    737 #ifdef BOOT_FROM_RAID_HOOKS
    738 extern int numraid;
    739 extern struct device *raidrootdev;
    740 #endif
    741 
    742 /*
    743  * The device and wedge that we booted from.  If booted_wedge is NULL,
    744  * the we might consult booted_partition.
    745  */
    746 struct device *booted_device;
    747 struct device *booted_wedge;
    748 int booted_partition;
    749 
    750 /*
    751  * Use partition letters if it's a disk class but not a wedge.
    752  * XXX Check for wedge is kinda gross.
    753  */
    754 #define	DEV_USES_PARTITIONS(dv)						\
    755 	((dv)->dv_class == DV_DISK &&					\
    756 	((dv)->dv_cfdata == NULL ||					\
    757 	 strcmp((dv)->dv_cfdata->cf_name, "dk") != 0))
    758 
    759 void
    760 setroot(struct device *bootdv, int bootpartition)
    761 {
    762 	struct device *dv;
    763 	int len;
    764 #ifdef MEMORY_DISK_HOOKS
    765 	int i;
    766 #endif
    767 	dev_t nrootdev;
    768 	dev_t ndumpdev = NODEV;
    769 	char buf[128];
    770 	const char *rootdevname;
    771 	const char *dumpdevname;
    772 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
    773 	struct device *dumpdv = NULL;
    774 	struct ifnet *ifp;
    775 	const char *deffsname;
    776 	struct vfsops *vops;
    777 
    778 #ifdef MEMORY_DISK_HOOKS
    779 	for (i = 0; i < NMD; i++) {
    780 		fakemdrootdev[i].dv_class  = DV_DISK;
    781 		fakemdrootdev[i].dv_cfdata = NULL;
    782 		fakemdrootdev[i].dv_unit   = i;
    783 		fakemdrootdev[i].dv_parent = NULL;
    784 		snprintf(fakemdrootdev[i].dv_xname,
    785 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
    786 	}
    787 #endif /* MEMORY_DISK_HOOKS */
    788 
    789 #ifdef MEMORY_DISK_IS_ROOT
    790 	bootdv = &fakemdrootdev[0];
    791 	bootpartition = 0;
    792 #endif
    793 
    794 	/*
    795 	 * If NFS is specified as the file system, and we found
    796 	 * a DV_DISK boot device (or no boot device at all), then
    797 	 * find a reasonable network interface for "rootspec".
    798 	 */
    799 	vops = vfs_getopsbyname("nfs");
    800 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
    801 	    rootspec == NULL &&
    802 	    (bootdv == NULL || bootdv->dv_class != DV_IFNET)) {
    803 		IFNET_FOREACH(ifp) {
    804 			if ((ifp->if_flags &
    805 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    806 				break;
    807 		}
    808 		if (ifp == NULL) {
    809 			/*
    810 			 * Can't find a suitable interface; ask the
    811 			 * user.
    812 			 */
    813 			boothowto |= RB_ASKNAME;
    814 		} else {
    815 			/*
    816 			 * Have a suitable interface; behave as if
    817 			 * the user specified this interface.
    818 			 */
    819 			rootspec = (const char *)ifp->if_xname;
    820 		}
    821 	}
    822 
    823 	/*
    824 	 * If wildcarded root and we the boot device wasn't determined,
    825 	 * ask the user.
    826 	 */
    827 	if (rootspec == NULL && bootdv == NULL)
    828 		boothowto |= RB_ASKNAME;
    829 
    830  top:
    831 	if (boothowto & RB_ASKNAME) {
    832 		struct device *defdumpdv;
    833 
    834 		for (;;) {
    835 			printf("root device");
    836 			if (bootdv != NULL) {
    837 				printf(" (default %s", bootdv->dv_xname);
    838 				if (DEV_USES_PARTITIONS(bootdv))
    839 					printf("%c", bootpartition + 'a');
    840 				printf(")");
    841 			}
    842 			printf(": ");
    843 			len = cngetsn(buf, sizeof(buf));
    844 			if (len == 0 && bootdv != NULL) {
    845 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
    846 				len = strlen(buf);
    847 			}
    848 			if (len > 0 && buf[len - 1] == '*') {
    849 				buf[--len] = '\0';
    850 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    851 				if (dv != NULL) {
    852 					rootdv = dv;
    853 					break;
    854 				}
    855 			}
    856 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    857 			if (dv != NULL) {
    858 				rootdv = dv;
    859 				break;
    860 			}
    861 		}
    862 
    863 		/*
    864 		 * Set up the default dump device.  If root is on
    865 		 * a network device, there is no default dump
    866 		 * device, since we don't support dumps to the
    867 		 * network.
    868 		 */
    869 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    870 			defdumpdv = NULL;
    871 		else
    872 			defdumpdv = rootdv;
    873 
    874 		for (;;) {
    875 			printf("dump device");
    876 			if (defdumpdv != NULL) {
    877 				/*
    878 				 * Note, we know it's a disk if we get here.
    879 				 */
    880 				printf(" (default %sb)", defdumpdv->dv_xname);
    881 			}
    882 			printf(": ");
    883 			len = cngetsn(buf, sizeof(buf));
    884 			if (len == 0) {
    885 				if (defdumpdv != NULL) {
    886 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    887 					    DISKUNIT(nrootdev), 1);
    888 				}
    889 				dumpdv = defdumpdv;
    890 				break;
    891 			}
    892 			if (len == 4 && strcmp(buf, "none") == 0) {
    893 				dumpdv = NULL;
    894 				break;
    895 			}
    896 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    897 			if (dv != NULL) {
    898 				dumpdv = dv;
    899 				break;
    900 			}
    901 		}
    902 
    903 		rootdev = nrootdev;
    904 		dumpdev = ndumpdev;
    905 
    906 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    907 		     vops = LIST_NEXT(vops, vfs_list)) {
    908 			if (vops->vfs_mountroot != NULL &&
    909 			    vops->vfs_mountroot == mountroot)
    910 			break;
    911 		}
    912 
    913 		if (vops == NULL) {
    914 			mountroot = NULL;
    915 			deffsname = "generic";
    916 		} else
    917 			deffsname = vops->vfs_name;
    918 
    919 		for (;;) {
    920 			printf("file system (default %s): ", deffsname);
    921 			len = cngetsn(buf, sizeof(buf));
    922 			if (len == 0)
    923 				break;
    924 			if (len == 4 && strcmp(buf, "halt") == 0)
    925 				cpu_reboot(RB_HALT, NULL);
    926 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    927 				cpu_reboot(0, NULL);
    928 #if defined(DDB)
    929 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    930 				console_debugger();
    931 			}
    932 #endif
    933 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    934 				mountroot = NULL;
    935 				break;
    936 			}
    937 			vops = vfs_getopsbyname(buf);
    938 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    939 				printf("use one of: generic");
    940 				for (vops = LIST_FIRST(&vfs_list);
    941 				     vops != NULL;
    942 				     vops = LIST_NEXT(vops, vfs_list)) {
    943 					if (vops->vfs_mountroot != NULL)
    944 						printf(" %s", vops->vfs_name);
    945 				}
    946 #if defined(DDB)
    947 				printf(" ddb");
    948 #endif
    949 				printf(" halt reboot\n");
    950 			} else {
    951 				mountroot = vops->vfs_mountroot;
    952 				break;
    953 			}
    954 		}
    955 
    956 	} else if (rootspec == NULL) {
    957 		int majdev;
    958 
    959 		/*
    960 		 * Wildcarded root; use the boot device.
    961 		 */
    962 		rootdv = bootdv;
    963 
    964 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
    965 		if (majdev >= 0) {
    966 			/*
    967 			 * Root is on a disk.  `bootpartition' is root,
    968 			 * unless the device does not use partitions.
    969 			 */
    970 			if (DEV_USES_PARTITIONS(bootdv))
    971 				rootdev = MAKEDISKDEV(majdev, bootdv->dv_unit,
    972 				    bootpartition);
    973 			else
    974 				rootdev = makedev(majdev, bootdv->dv_unit);
    975 		}
    976 	} else {
    977 
    978 		/*
    979 		 * `root on <dev> ...'
    980 		 */
    981 
    982 		/*
    983 		 * If it's a network interface, we can bail out
    984 		 * early.
    985 		 */
    986 		dv = finddevice(rootspec);
    987 		if (dv != NULL && dv->dv_class == DV_IFNET) {
    988 			rootdv = dv;
    989 			goto haveroot;
    990 		}
    991 
    992 		rootdevname = devsw_blk2name(major(rootdev));
    993 		if (rootdevname == NULL) {
    994 			printf("unknown device major 0x%x\n", rootdev);
    995 			boothowto |= RB_ASKNAME;
    996 			goto top;
    997 		}
    998 		memset(buf, 0, sizeof(buf));
    999 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
   1000 		    DISKUNIT(rootdev));
   1001 
   1002 		rootdv = finddevice(buf);
   1003 		if (rootdv == NULL) {
   1004 			printf("device %s (0x%x) not configured\n",
   1005 			    buf, rootdev);
   1006 			boothowto |= RB_ASKNAME;
   1007 			goto top;
   1008 		}
   1009 	}
   1010 
   1011  haveroot:
   1012 
   1013 	root_device = rootdv;
   1014 
   1015 	switch (rootdv->dv_class) {
   1016 	case DV_IFNET:
   1017 		aprint_normal("root on %s", rootdv->dv_xname);
   1018 		break;
   1019 
   1020 	case DV_DISK:
   1021 		aprint_normal("root on %s%c", rootdv->dv_xname,
   1022 		    DISKPART(rootdev) + 'a');
   1023 		break;
   1024 
   1025 	default:
   1026 		printf("can't determine root device\n");
   1027 		boothowto |= RB_ASKNAME;
   1028 		goto top;
   1029 	}
   1030 
   1031 	/*
   1032 	 * Now configure the dump device.
   1033 	 *
   1034 	 * If we haven't figured out the dump device, do so, with
   1035 	 * the following rules:
   1036 	 *
   1037 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1038 	 *
   1039 	 *	(b) If dumpspec is set, try to use it.  If the device
   1040 	 *	    is not available, punt.
   1041 	 *
   1042 	 *	(c) If dumpspec is not set, the dump device is
   1043 	 *	    wildcarded or unspecified.  If the root device
   1044 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1045 	 *	    of the root device.
   1046 	 */
   1047 
   1048 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1049 		if (dumpdv == NULL)
   1050 			goto nodumpdev;
   1051 	} else if (dumpspec != NULL) {		/* (b) */
   1052 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1053 			/*
   1054 			 * Operator doesn't want a dump device.
   1055 			 * Or looks like they tried to pick a network
   1056 			 * device.  Oops.
   1057 			 */
   1058 			goto nodumpdev;
   1059 		}
   1060 
   1061 		dumpdevname = devsw_blk2name(major(dumpdev));
   1062 		if (dumpdevname == NULL)
   1063 			goto nodumpdev;
   1064 		memset(buf, 0, sizeof(buf));
   1065 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
   1066 		    DISKUNIT(dumpdev));
   1067 
   1068 		dumpdv = finddevice(buf);
   1069 		if (dumpdv == NULL) {
   1070 			/*
   1071 			 * Device not configured.
   1072 			 */
   1073 			goto nodumpdev;
   1074 		}
   1075 	} else {				/* (c) */
   1076 		if (DEV_USES_PARTITIONS(rootdv) == 0)
   1077 			goto nodumpdev;
   1078 		else {
   1079 			dumpdv = rootdv;
   1080 			dumpdev = MAKEDISKDEV(major(rootdev),
   1081 			    dumpdv->dv_unit, 1);
   1082 		}
   1083 	}
   1084 
   1085 	aprint_normal(" dumps on %s%c\n", dumpdv->dv_xname,
   1086 	    DISKPART(dumpdev) + 'a');
   1087 	return;
   1088 
   1089  nodumpdev:
   1090 	dumpdev = NODEV;
   1091 	aprint_normal("\n");
   1092 }
   1093 
   1094 static struct device *
   1095 finddevice(const char *name)
   1096 {
   1097 	struct device *dv;
   1098 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
   1099 	int j;
   1100 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
   1101 
   1102 #ifdef BOOT_FROM_RAID_HOOKS
   1103 	for (j = 0; j < numraid; j++) {
   1104 		if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
   1105 			dv = &raidrootdev[j];
   1106 			return (dv);
   1107 		}
   1108 	}
   1109 #endif /* BOOT_FROM_RAID_HOOKS */
   1110 
   1111 #ifdef BOOT_FROM_MEMORY_HOOKS
   1112 	for (j = 0; j < NMD; j++) {
   1113 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
   1114 			dv = &fakemdrootdev[j];
   1115 			return (dv);
   1116 		}
   1117 	}
   1118 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1119 
   1120 	for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1121 	    dv = TAILQ_NEXT(dv, dv_list))
   1122 		if (strcmp(dv->dv_xname, name) == 0)
   1123 			break;
   1124 	return (dv);
   1125 }
   1126 
   1127 static struct device *
   1128 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1129 {
   1130 	struct device	*dv;
   1131 #ifdef MEMORY_DISK_HOOKS
   1132 	int		i;
   1133 #endif
   1134 #ifdef BOOT_FROM_RAID_HOOKS
   1135 	int 		j;
   1136 #endif
   1137 
   1138 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1139 		printf("use one of:");
   1140 #ifdef MEMORY_DISK_HOOKS
   1141 		if (isdump == 0)
   1142 			for (i = 0; i < NMD; i++)
   1143 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
   1144 				    'a' + MAXPARTITIONS - 1);
   1145 #endif
   1146 #ifdef BOOT_FROM_RAID_HOOKS
   1147 		if (isdump == 0)
   1148 			for (j = 0; j < numraid; j++)
   1149 				printf(" %s[a-%c]", raidrootdev[j].dv_xname,
   1150 				    'a' + MAXPARTITIONS - 1);
   1151 #endif
   1152 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1153 			if (DEV_USES_PARTITIONS(dv))
   1154 				printf(" %s[a-%c]", dv->dv_xname,
   1155 				    'a' + MAXPARTITIONS - 1);
   1156 			else if (dv->dv_class == DV_DISK)
   1157 				printf(" %s", dv->dv_xname);
   1158 			if (isdump == 0 && dv->dv_class == DV_IFNET)
   1159 				printf(" %s", dv->dv_xname);
   1160 		}
   1161 		if (isdump)
   1162 			printf(" none");
   1163 #if defined(DDB)
   1164 		printf(" ddb");
   1165 #endif
   1166 		printf(" halt reboot\n");
   1167 	}
   1168 	return (dv);
   1169 }
   1170 
   1171 static struct device *
   1172 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1173 {
   1174 	struct device *dv;
   1175 	char *cp, c;
   1176 	int majdev, part;
   1177 #ifdef MEMORY_DISK_HOOKS
   1178 	int i;
   1179 #endif
   1180 	if (len == 0)
   1181 		return (NULL);
   1182 
   1183 	if (len == 4 && strcmp(str, "halt") == 0)
   1184 		cpu_reboot(RB_HALT, NULL);
   1185 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1186 		cpu_reboot(0, NULL);
   1187 #if defined(DDB)
   1188 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1189 		console_debugger();
   1190 #endif
   1191 
   1192 	cp = str + len - 1;
   1193 	c = *cp;
   1194 	if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1195 		part = c - 'a';
   1196 		*cp = '\0';
   1197 	} else
   1198 		part = defpart;
   1199 
   1200 #ifdef MEMORY_DISK_HOOKS
   1201 	for (i = 0; i < NMD; i++)
   1202 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
   1203 			dv = &fakemdrootdev[i];
   1204 			goto gotdisk;
   1205 		}
   1206 #endif
   1207 
   1208 	dv = finddevice(str);
   1209 	if (dv != NULL) {
   1210 		if (dv->dv_class == DV_DISK) {
   1211 #ifdef MEMORY_DISK_HOOKS
   1212  gotdisk:
   1213 #endif
   1214 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1215 			if (majdev < 0)
   1216 				panic("parsedisk");
   1217 			if (DEV_USES_PARTITIONS(dv))
   1218 				*devp = MAKEDISKDEV(majdev, dv->dv_unit, part);
   1219 			else
   1220 				*devp = makedev(majdev, dv->dv_unit);
   1221 		}
   1222 
   1223 		if (dv->dv_class == DV_IFNET)
   1224 			*devp = NODEV;
   1225 	}
   1226 
   1227 	*cp = c;
   1228 	return (dv);
   1229 }
   1230 
   1231 /*
   1232  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1233  * plus a possible `x' + suffix extension) fits into len bytes (including
   1234  * the terminating NUL).
   1235  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1236  * E.g, given a len of 9 and a suffix of `B':
   1237  *	bytes		result
   1238  *	-----		------
   1239  *	99999		`99999 B'
   1240  *	100000		`97 kB'
   1241  *	66715648	`65152 kB'
   1242  *	252215296	`240 MB'
   1243  */
   1244 int
   1245 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1246     int divisor)
   1247 {
   1248        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1249 	const char *prefixes;
   1250 	int		r;
   1251 	uint64_t	umax;
   1252 	size_t		i, suffixlen;
   1253 
   1254 	if (buf == NULL || suffix == NULL)
   1255 		return (-1);
   1256 	if (len > 0)
   1257 		buf[0] = '\0';
   1258 	suffixlen = strlen(suffix);
   1259 	/* check if enough room for `x y' + suffix + `\0' */
   1260 	if (len < 4 + suffixlen)
   1261 		return (-1);
   1262 
   1263 	if (divisor == 1024) {
   1264 		/*
   1265 		 * binary multiplies
   1266 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1267 		 */
   1268 		prefixes = " KMGTPE";
   1269 	} else
   1270 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1271 
   1272 	umax = 1;
   1273 	for (i = 0; i < len - suffixlen - 3; i++)
   1274 		umax *= 10;
   1275 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1276 		bytes /= divisor;
   1277 
   1278 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1279 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1280 
   1281 	return (r);
   1282 }
   1283 
   1284 int
   1285 format_bytes(char *buf, size_t len, uint64_t bytes)
   1286 {
   1287 	int	rv;
   1288 	size_t	nlen;
   1289 
   1290 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1291 	if (rv != -1) {
   1292 			/* nuke the trailing ` B' if it exists */
   1293 		nlen = strlen(buf) - 2;
   1294 		if (strcmp(&buf[nlen], " B") == 0)
   1295 			buf[nlen] = '\0';
   1296 	}
   1297 	return (rv);
   1298 }
   1299 
   1300 /*
   1301  * Start trace of particular system call. If process is being traced,
   1302  * this routine is called by MD syscall dispatch code just before
   1303  * a system call is actually executed.
   1304  * MD caller guarantees the passed 'code' is within the supported
   1305  * system call number range for emulation the process runs under.
   1306  */
   1307 int
   1308 trace_enter(struct lwp *l, register_t code,
   1309     register_t realcode, const struct sysent *callp, void *args)
   1310 {
   1311 #if defined(KTRACE) || defined(SYSTRACE)
   1312 	struct proc *p = l->l_proc;
   1313 #endif
   1314 
   1315 #ifdef SYSCALL_DEBUG
   1316 	scdebug_call(l, code, args);
   1317 #endif /* SYSCALL_DEBUG */
   1318 
   1319 #ifdef KTRACE
   1320 	if (KTRPOINT(p, KTR_SYSCALL))
   1321 		ktrsyscall(l, code, realcode, callp, args);
   1322 #endif /* KTRACE */
   1323 
   1324 #ifdef SYSTRACE
   1325 	if (ISSET(p->p_flag, P_SYSTRACE))
   1326 		return systrace_enter(p, code, args);
   1327 #endif
   1328 	return 0;
   1329 }
   1330 
   1331 /*
   1332  * End trace of particular system call. If process is being traced,
   1333  * this routine is called by MD syscall dispatch code just after
   1334  * a system call finishes.
   1335  * MD caller guarantees the passed 'code' is within the supported
   1336  * system call number range for emulation the process runs under.
   1337  */
   1338 void
   1339 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
   1340     int error)
   1341 {
   1342 #if defined(KTRACE) || defined(SYSTRACE)
   1343 	struct proc *p = l->l_proc;
   1344 #endif
   1345 
   1346 #ifdef SYSCALL_DEBUG
   1347 	scdebug_ret(l, code, error, rval);
   1348 #endif /* SYSCALL_DEBUG */
   1349 
   1350 #ifdef KTRACE
   1351 	if (KTRPOINT(p, KTR_SYSRET)) {
   1352 		KERNEL_PROC_LOCK(l);
   1353 		ktrsysret(l, code, error, rval);
   1354 		KERNEL_PROC_UNLOCK(l);
   1355 	}
   1356 #endif /* KTRACE */
   1357 
   1358 #ifdef SYSTRACE
   1359 	if (ISSET(p->p_flag, P_SYSTRACE)) {
   1360 		KERNEL_PROC_LOCK(l);
   1361 		systrace_exit(p, code, args, rval, error);
   1362 		KERNEL_PROC_UNLOCK(l);
   1363 	}
   1364 #endif
   1365 }
   1366