kern_subr.c revision 1.127 1 /* $NetBSD: kern_subr.c,v 1.127 2006/03/01 22:12:09 cube Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.127 2006/03/01 22:12:09 cube Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_systrace.h"
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/proc.h>
100 #include <sys/malloc.h>
101 #include <sys/mount.h>
102 #include <sys/device.h>
103 #include <sys/reboot.h>
104 #include <sys/conf.h>
105 #include <sys/disklabel.h>
106 #include <sys/queue.h>
107 #include <sys/systrace.h>
108 #include <sys/ktrace.h>
109 #include <sys/fcntl.h>
110
111 #include <uvm/uvm_extern.h>
112
113 #include <dev/cons.h>
114
115 #include <net/if.h>
116
117 /* XXX these should eventually move to subr_autoconf.c */
118 static struct device *finddevice(const char *);
119 static struct device *getdisk(char *, int, int, dev_t *, int);
120 static struct device *parsedisk(char *, int, int, dev_t *);
121
122 /*
123 * A generic linear hook.
124 */
125 struct hook_desc {
126 LIST_ENTRY(hook_desc) hk_list;
127 void (*hk_fn)(void *);
128 void *hk_arg;
129 };
130 typedef LIST_HEAD(, hook_desc) hook_list_t;
131
132 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
133
134 void
135 uio_setup_sysspace(struct uio *uio)
136 {
137
138 uio->uio_vmspace = vmspace_kernel();
139 }
140
141 int
142 uiomove(void *buf, size_t n, struct uio *uio)
143 {
144 struct vmspace *vm = uio->uio_vmspace;
145 struct iovec *iov;
146 u_int cnt;
147 int error = 0;
148 char *cp = buf;
149 int hold_count;
150
151 hold_count = KERNEL_LOCK_RELEASE_ALL();
152
153 #ifdef LOCKDEBUG
154 spinlock_switchcheck();
155 simple_lock_only_held(NULL, "uiomove");
156 #endif
157
158 #ifdef DIAGNOSTIC
159 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
160 panic("uiomove: mode");
161 #endif
162 while (n > 0 && uio->uio_resid) {
163 iov = uio->uio_iov;
164 cnt = iov->iov_len;
165 if (cnt == 0) {
166 KASSERT(uio->uio_iovcnt > 0);
167 uio->uio_iov++;
168 uio->uio_iovcnt--;
169 continue;
170 }
171 if (cnt > n)
172 cnt = n;
173 if (!VMSPACE_IS_KERNEL_P(vm)) {
174 if (curcpu()->ci_schedstate.spc_flags &
175 SPCF_SHOULDYIELD)
176 preempt(1);
177 }
178
179 if (uio->uio_rw == UIO_READ) {
180 error = copyout_vmspace(vm, cp, iov->iov_base,
181 cnt);
182 } else {
183 error = copyin_vmspace(vm, iov->iov_base, cp,
184 cnt);
185 }
186 if (error) {
187 break;
188 }
189 iov->iov_base = (caddr_t)iov->iov_base + cnt;
190 iov->iov_len -= cnt;
191 uio->uio_resid -= cnt;
192 uio->uio_offset += cnt;
193 cp += cnt;
194 KDASSERT(cnt <= n);
195 n -= cnt;
196 }
197 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
198 return (error);
199 }
200
201 /*
202 * Wrapper for uiomove() that validates the arguments against a known-good
203 * kernel buffer.
204 */
205 int
206 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
207 {
208 size_t offset;
209
210 if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
211 (offset = uio->uio_offset) != uio->uio_offset)
212 return (EINVAL);
213 if (offset >= buflen)
214 return (0);
215 return (uiomove((char *)buf + offset, buflen - offset, uio));
216 }
217
218 /*
219 * Give next character to user as result of read.
220 */
221 int
222 ureadc(int c, struct uio *uio)
223 {
224 struct iovec *iov;
225
226 if (uio->uio_resid <= 0)
227 panic("ureadc: non-positive resid");
228 again:
229 if (uio->uio_iovcnt <= 0)
230 panic("ureadc: non-positive iovcnt");
231 iov = uio->uio_iov;
232 if (iov->iov_len <= 0) {
233 uio->uio_iovcnt--;
234 uio->uio_iov++;
235 goto again;
236 }
237 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
238 if (subyte(iov->iov_base, c) < 0)
239 return (EFAULT);
240 } else {
241 *(char *)iov->iov_base = c;
242 }
243 iov->iov_base = (caddr_t)iov->iov_base + 1;
244 iov->iov_len--;
245 uio->uio_resid--;
246 uio->uio_offset++;
247 return (0);
248 }
249
250 /*
251 * Like copyin(), but operates on an arbitrary vmspace.
252 */
253 int
254 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
255 {
256 struct iovec iov;
257 struct uio uio;
258 int error;
259
260 if (len == 0)
261 return (0);
262
263 if (VMSPACE_IS_KERNEL_P(vm)) {
264 return kcopy(uaddr, kaddr, len);
265 }
266 if (__predict_true(vm == curproc->p_vmspace)) {
267 return copyin(uaddr, kaddr, len);
268 }
269
270 iov.iov_base = kaddr;
271 iov.iov_len = len;
272 uio.uio_iov = &iov;
273 uio.uio_iovcnt = 1;
274 uio.uio_offset = (off_t)(intptr_t)uaddr;
275 uio.uio_resid = len;
276 uio.uio_rw = UIO_READ;
277 uio.uio_vmspace = vm;
278 error = uvm_io(&vm->vm_map, &uio);
279
280 return (error);
281 }
282
283 /*
284 * Like copyout(), but operates on an arbitrary vmspace.
285 */
286 int
287 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
288 {
289 struct iovec iov;
290 struct uio uio;
291 int error;
292
293 if (len == 0)
294 return (0);
295
296 if (VMSPACE_IS_KERNEL_P(vm)) {
297 return kcopy(kaddr, uaddr, len);
298 }
299 if (__predict_true(vm == curproc->p_vmspace)) {
300 return copyout(kaddr, uaddr, len);
301 }
302
303 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
304 iov.iov_len = len;
305 uio.uio_iov = &iov;
306 uio.uio_iovcnt = 1;
307 uio.uio_offset = (off_t)(intptr_t)uaddr;
308 uio.uio_resid = len;
309 uio.uio_rw = UIO_WRITE;
310 uio.uio_vmspace = vm;
311 error = uvm_io(&vm->vm_map, &uio);
312
313 return (error);
314 }
315
316 /*
317 * Like copyin(), but operates on an arbitrary process.
318 */
319 int
320 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
321 {
322 struct vmspace *vm;
323 int error;
324
325 error = proc_vmspace_getref(p, &vm);
326 if (error) {
327 return error;
328 }
329 error = copyin_vmspace(vm, uaddr, kaddr, len);
330 uvmspace_free(vm);
331
332 return error;
333 }
334
335 /*
336 * Like copyout(), but operates on an arbitrary process.
337 */
338 int
339 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
340 {
341 struct vmspace *vm;
342 int error;
343
344 error = proc_vmspace_getref(p, &vm);
345 if (error) {
346 return error;
347 }
348 error = copyin_vmspace(vm, kaddr, uaddr, len);
349 uvmspace_free(vm);
350
351 return error;
352 }
353
354 /*
355 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
356 * flag is passed in `ioctlflags' from the ioctl call.
357 */
358 int
359 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
360 {
361 if (ioctlflags & FKIOCTL)
362 return kcopy(src, dst, len);
363 return copyin(src, dst, len);
364 }
365
366 /*
367 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
368 * flag is passed in `ioctlflags' from the ioctl call.
369 */
370 int
371 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
372 {
373 if (ioctlflags & FKIOCTL)
374 return kcopy(src, dst, len);
375 return copyout(src, dst, len);
376 }
377
378 /*
379 * General routine to allocate a hash table.
380 * Allocate enough memory to hold at least `elements' list-head pointers.
381 * Return a pointer to the allocated space and set *hashmask to a pattern
382 * suitable for masking a value to use as an index into the returned array.
383 */
384 void *
385 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
386 int mflags, u_long *hashmask)
387 {
388 u_long hashsize, i;
389 LIST_HEAD(, generic) *hashtbl_list;
390 TAILQ_HEAD(, generic) *hashtbl_tailq;
391 size_t esize;
392 void *p;
393
394 if (elements == 0)
395 panic("hashinit: bad cnt");
396 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
397 continue;
398
399 switch (htype) {
400 case HASH_LIST:
401 esize = sizeof(*hashtbl_list);
402 break;
403 case HASH_TAILQ:
404 esize = sizeof(*hashtbl_tailq);
405 break;
406 default:
407 #ifdef DIAGNOSTIC
408 panic("hashinit: invalid table type");
409 #else
410 return NULL;
411 #endif
412 }
413
414 if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
415 return (NULL);
416
417 switch (htype) {
418 case HASH_LIST:
419 hashtbl_list = p;
420 for (i = 0; i < hashsize; i++)
421 LIST_INIT(&hashtbl_list[i]);
422 break;
423 case HASH_TAILQ:
424 hashtbl_tailq = p;
425 for (i = 0; i < hashsize; i++)
426 TAILQ_INIT(&hashtbl_tailq[i]);
427 break;
428 }
429 *hashmask = hashsize - 1;
430 return (p);
431 }
432
433 /*
434 * Free memory from hash table previosly allocated via hashinit().
435 */
436 void
437 hashdone(void *hashtbl, struct malloc_type *mtype)
438 {
439
440 free(hashtbl, mtype);
441 }
442
443
444 static void *
445 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
446 {
447 struct hook_desc *hd;
448
449 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
450 if (hd == NULL)
451 return (NULL);
452
453 hd->hk_fn = fn;
454 hd->hk_arg = arg;
455 LIST_INSERT_HEAD(list, hd, hk_list);
456
457 return (hd);
458 }
459
460 static void
461 hook_disestablish(hook_list_t *list, void *vhook)
462 {
463 #ifdef DIAGNOSTIC
464 struct hook_desc *hd;
465
466 LIST_FOREACH(hd, list, hk_list) {
467 if (hd == vhook)
468 break;
469 }
470
471 if (hd == NULL)
472 panic("hook_disestablish: hook %p not established", vhook);
473 #endif
474 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
475 free(vhook, M_DEVBUF);
476 }
477
478 static void
479 hook_destroy(hook_list_t *list)
480 {
481 struct hook_desc *hd;
482
483 while ((hd = LIST_FIRST(list)) != NULL) {
484 LIST_REMOVE(hd, hk_list);
485 free(hd, M_DEVBUF);
486 }
487 }
488
489 static void
490 hook_proc_run(hook_list_t *list, struct proc *p)
491 {
492 struct hook_desc *hd;
493
494 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
495 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
496 hd->hk_arg);
497 }
498 }
499
500 /*
501 * "Shutdown hook" types, functions, and variables.
502 *
503 * Should be invoked immediately before the
504 * system is halted or rebooted, i.e. after file systems unmounted,
505 * after crash dump done, etc.
506 *
507 * Each shutdown hook is removed from the list before it's run, so that
508 * it won't be run again.
509 */
510
511 static hook_list_t shutdownhook_list;
512
513 void *
514 shutdownhook_establish(void (*fn)(void *), void *arg)
515 {
516 return hook_establish(&shutdownhook_list, fn, arg);
517 }
518
519 void
520 shutdownhook_disestablish(void *vhook)
521 {
522 hook_disestablish(&shutdownhook_list, vhook);
523 }
524
525 /*
526 * Run shutdown hooks. Should be invoked immediately before the
527 * system is halted or rebooted, i.e. after file systems unmounted,
528 * after crash dump done, etc.
529 *
530 * Each shutdown hook is removed from the list before it's run, so that
531 * it won't be run again.
532 */
533 void
534 doshutdownhooks(void)
535 {
536 struct hook_desc *dp;
537
538 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
539 LIST_REMOVE(dp, hk_list);
540 (*dp->hk_fn)(dp->hk_arg);
541 #if 0
542 /*
543 * Don't bother freeing the hook structure,, since we may
544 * be rebooting because of a memory corruption problem,
545 * and this might only make things worse. It doesn't
546 * matter, anyway, since the system is just about to
547 * reboot.
548 */
549 free(dp, M_DEVBUF);
550 #endif
551 }
552 }
553
554 /*
555 * "Mountroot hook" types, functions, and variables.
556 */
557
558 static hook_list_t mountroothook_list;
559
560 void *
561 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
562 {
563 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
564 }
565
566 void
567 mountroothook_disestablish(void *vhook)
568 {
569 hook_disestablish(&mountroothook_list, vhook);
570 }
571
572 void
573 mountroothook_destroy(void)
574 {
575 hook_destroy(&mountroothook_list);
576 }
577
578 void
579 domountroothook(void)
580 {
581 struct hook_desc *hd;
582
583 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
584 if (hd->hk_arg == (void *)root_device) {
585 (*hd->hk_fn)(hd->hk_arg);
586 return;
587 }
588 }
589 }
590
591 static hook_list_t exechook_list;
592
593 void *
594 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
595 {
596 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
597 }
598
599 void
600 exechook_disestablish(void *vhook)
601 {
602 hook_disestablish(&exechook_list, vhook);
603 }
604
605 /*
606 * Run exec hooks.
607 */
608 void
609 doexechooks(struct proc *p)
610 {
611 hook_proc_run(&exechook_list, p);
612 }
613
614 static hook_list_t exithook_list;
615
616 void *
617 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
618 {
619 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
620 }
621
622 void
623 exithook_disestablish(void *vhook)
624 {
625 hook_disestablish(&exithook_list, vhook);
626 }
627
628 /*
629 * Run exit hooks.
630 */
631 void
632 doexithooks(struct proc *p)
633 {
634 hook_proc_run(&exithook_list, p);
635 }
636
637 static hook_list_t forkhook_list;
638
639 void *
640 forkhook_establish(void (*fn)(struct proc *, struct proc *))
641 {
642 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
643 }
644
645 void
646 forkhook_disestablish(void *vhook)
647 {
648 hook_disestablish(&forkhook_list, vhook);
649 }
650
651 /*
652 * Run fork hooks.
653 */
654 void
655 doforkhooks(struct proc *p2, struct proc *p1)
656 {
657 struct hook_desc *hd;
658
659 LIST_FOREACH(hd, &forkhook_list, hk_list) {
660 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
661 (p2, p1);
662 }
663 }
664
665 /*
666 * "Power hook" types, functions, and variables.
667 * The list of power hooks is kept ordered with the last registered hook
668 * first.
669 * When running the hooks on power down the hooks are called in reverse
670 * registration order, when powering up in registration order.
671 */
672 struct powerhook_desc {
673 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
674 void (*sfd_fn)(int, void *);
675 void *sfd_arg;
676 };
677
678 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
679 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
680
681 void *
682 powerhook_establish(void (*fn)(int, void *), void *arg)
683 {
684 struct powerhook_desc *ndp;
685
686 ndp = (struct powerhook_desc *)
687 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
688 if (ndp == NULL)
689 return (NULL);
690
691 ndp->sfd_fn = fn;
692 ndp->sfd_arg = arg;
693 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
694
695 return (ndp);
696 }
697
698 void
699 powerhook_disestablish(void *vhook)
700 {
701 #ifdef DIAGNOSTIC
702 struct powerhook_desc *dp;
703
704 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
705 if (dp == vhook)
706 goto found;
707 panic("powerhook_disestablish: hook %p not established", vhook);
708 found:
709 #endif
710
711 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
712 sfd_list);
713 free(vhook, M_DEVBUF);
714 }
715
716 /*
717 * Run power hooks.
718 */
719 void
720 dopowerhooks(int why)
721 {
722 struct powerhook_desc *dp;
723
724 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
725 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
726 (*dp->sfd_fn)(why, dp->sfd_arg);
727 }
728 } else {
729 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
730 (*dp->sfd_fn)(why, dp->sfd_arg);
731 }
732 }
733 }
734
735 /*
736 * Determine the root device and, if instructed to, the root file system.
737 */
738
739 #include "md.h"
740 #if NMD == 0
741 #undef MEMORY_DISK_HOOKS
742 #endif
743
744 #ifdef MEMORY_DISK_HOOKS
745 static struct device fakemdrootdev[NMD];
746 extern struct cfdriver md_cd;
747 #endif
748
749 #ifdef MEMORY_DISK_IS_ROOT
750 #define BOOT_FROM_MEMORY_HOOKS 1
751 #endif
752
753 #include "raid.h"
754 #if NRAID == 1
755 #define BOOT_FROM_RAID_HOOKS 1
756 #endif
757
758 #ifdef BOOT_FROM_RAID_HOOKS
759 extern int numraid;
760 extern struct device *raidrootdev;
761 #endif
762
763 /*
764 * The device and wedge that we booted from. If booted_wedge is NULL,
765 * the we might consult booted_partition.
766 */
767 struct device *booted_device;
768 struct device *booted_wedge;
769 int booted_partition;
770
771 /*
772 * Use partition letters if it's a disk class but not a wedge.
773 * XXX Check for wedge is kinda gross.
774 */
775 #define DEV_USES_PARTITIONS(dv) \
776 (device_class((dv)) == DV_DISK && \
777 !device_is_a((dv), "dk"))
778
779 void
780 setroot(struct device *bootdv, int bootpartition)
781 {
782 struct device *dv;
783 int len;
784 #ifdef MEMORY_DISK_HOOKS
785 int i;
786 #endif
787 dev_t nrootdev;
788 dev_t ndumpdev = NODEV;
789 char buf[128];
790 const char *rootdevname;
791 const char *dumpdevname;
792 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
793 struct device *dumpdv = NULL;
794 struct ifnet *ifp;
795 const char *deffsname;
796 struct vfsops *vops;
797
798 #ifdef MEMORY_DISK_HOOKS
799 for (i = 0; i < NMD; i++) {
800 fakemdrootdev[i].dv_class = DV_DISK;
801 fakemdrootdev[i].dv_cfdata = NULL;
802 fakemdrootdev[i].dv_cfdriver = &md_cd;
803 fakemdrootdev[i].dv_unit = i;
804 fakemdrootdev[i].dv_parent = NULL;
805 snprintf(fakemdrootdev[i].dv_xname,
806 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
807 }
808 #endif /* MEMORY_DISK_HOOKS */
809
810 #ifdef MEMORY_DISK_IS_ROOT
811 bootdv = &fakemdrootdev[0];
812 bootpartition = 0;
813 #endif
814
815 /*
816 * If NFS is specified as the file system, and we found
817 * a DV_DISK boot device (or no boot device at all), then
818 * find a reasonable network interface for "rootspec".
819 */
820 vops = vfs_getopsbyname("nfs");
821 if (vops != NULL && vops->vfs_mountroot == mountroot &&
822 rootspec == NULL &&
823 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
824 IFNET_FOREACH(ifp) {
825 if ((ifp->if_flags &
826 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
827 break;
828 }
829 if (ifp == NULL) {
830 /*
831 * Can't find a suitable interface; ask the
832 * user.
833 */
834 boothowto |= RB_ASKNAME;
835 } else {
836 /*
837 * Have a suitable interface; behave as if
838 * the user specified this interface.
839 */
840 rootspec = (const char *)ifp->if_xname;
841 }
842 }
843
844 /*
845 * If wildcarded root and we the boot device wasn't determined,
846 * ask the user.
847 */
848 if (rootspec == NULL && bootdv == NULL)
849 boothowto |= RB_ASKNAME;
850
851 top:
852 if (boothowto & RB_ASKNAME) {
853 struct device *defdumpdv;
854
855 for (;;) {
856 printf("root device");
857 if (bootdv != NULL) {
858 printf(" (default %s", bootdv->dv_xname);
859 if (DEV_USES_PARTITIONS(bootdv))
860 printf("%c", bootpartition + 'a');
861 printf(")");
862 }
863 printf(": ");
864 len = cngetsn(buf, sizeof(buf));
865 if (len == 0 && bootdv != NULL) {
866 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
867 len = strlen(buf);
868 }
869 if (len > 0 && buf[len - 1] == '*') {
870 buf[--len] = '\0';
871 dv = getdisk(buf, len, 1, &nrootdev, 0);
872 if (dv != NULL) {
873 rootdv = dv;
874 break;
875 }
876 }
877 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
878 if (dv != NULL) {
879 rootdv = dv;
880 break;
881 }
882 }
883
884 /*
885 * Set up the default dump device. If root is on
886 * a network device, there is no default dump
887 * device, since we don't support dumps to the
888 * network.
889 */
890 if (DEV_USES_PARTITIONS(rootdv) == 0)
891 defdumpdv = NULL;
892 else
893 defdumpdv = rootdv;
894
895 for (;;) {
896 printf("dump device");
897 if (defdumpdv != NULL) {
898 /*
899 * Note, we know it's a disk if we get here.
900 */
901 printf(" (default %sb)", defdumpdv->dv_xname);
902 }
903 printf(": ");
904 len = cngetsn(buf, sizeof(buf));
905 if (len == 0) {
906 if (defdumpdv != NULL) {
907 ndumpdev = MAKEDISKDEV(major(nrootdev),
908 DISKUNIT(nrootdev), 1);
909 }
910 dumpdv = defdumpdv;
911 break;
912 }
913 if (len == 4 && strcmp(buf, "none") == 0) {
914 dumpdv = NULL;
915 break;
916 }
917 dv = getdisk(buf, len, 1, &ndumpdev, 1);
918 if (dv != NULL) {
919 dumpdv = dv;
920 break;
921 }
922 }
923
924 rootdev = nrootdev;
925 dumpdev = ndumpdev;
926
927 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
928 vops = LIST_NEXT(vops, vfs_list)) {
929 if (vops->vfs_mountroot != NULL &&
930 vops->vfs_mountroot == mountroot)
931 break;
932 }
933
934 if (vops == NULL) {
935 mountroot = NULL;
936 deffsname = "generic";
937 } else
938 deffsname = vops->vfs_name;
939
940 for (;;) {
941 printf("file system (default %s): ", deffsname);
942 len = cngetsn(buf, sizeof(buf));
943 if (len == 0)
944 break;
945 if (len == 4 && strcmp(buf, "halt") == 0)
946 cpu_reboot(RB_HALT, NULL);
947 else if (len == 6 && strcmp(buf, "reboot") == 0)
948 cpu_reboot(0, NULL);
949 #if defined(DDB)
950 else if (len == 3 && strcmp(buf, "ddb") == 0) {
951 console_debugger();
952 }
953 #endif
954 else if (len == 7 && strcmp(buf, "generic") == 0) {
955 mountroot = NULL;
956 break;
957 }
958 vops = vfs_getopsbyname(buf);
959 if (vops == NULL || vops->vfs_mountroot == NULL) {
960 printf("use one of: generic");
961 for (vops = LIST_FIRST(&vfs_list);
962 vops != NULL;
963 vops = LIST_NEXT(vops, vfs_list)) {
964 if (vops->vfs_mountroot != NULL)
965 printf(" %s", vops->vfs_name);
966 }
967 #if defined(DDB)
968 printf(" ddb");
969 #endif
970 printf(" halt reboot\n");
971 } else {
972 mountroot = vops->vfs_mountroot;
973 break;
974 }
975 }
976
977 } else if (rootspec == NULL) {
978 int majdev;
979
980 /*
981 * Wildcarded root; use the boot device.
982 */
983 rootdv = bootdv;
984
985 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
986 if (majdev >= 0) {
987 /*
988 * Root is on a disk. `bootpartition' is root,
989 * unless the device does not use partitions.
990 */
991 if (DEV_USES_PARTITIONS(bootdv))
992 rootdev = MAKEDISKDEV(majdev, bootdv->dv_unit,
993 bootpartition);
994 else
995 rootdev = makedev(majdev, bootdv->dv_unit);
996 }
997 } else {
998
999 /*
1000 * `root on <dev> ...'
1001 */
1002
1003 /*
1004 * If it's a network interface, we can bail out
1005 * early.
1006 */
1007 dv = finddevice(rootspec);
1008 if (dv != NULL && device_class(dv) == DV_IFNET) {
1009 rootdv = dv;
1010 goto haveroot;
1011 }
1012
1013 rootdevname = devsw_blk2name(major(rootdev));
1014 if (rootdevname == NULL) {
1015 printf("unknown device major 0x%x\n", rootdev);
1016 boothowto |= RB_ASKNAME;
1017 goto top;
1018 }
1019 memset(buf, 0, sizeof(buf));
1020 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1021 DISKUNIT(rootdev));
1022
1023 rootdv = finddevice(buf);
1024 if (rootdv == NULL) {
1025 printf("device %s (0x%x) not configured\n",
1026 buf, rootdev);
1027 boothowto |= RB_ASKNAME;
1028 goto top;
1029 }
1030 }
1031
1032 haveroot:
1033
1034 root_device = rootdv;
1035
1036 switch (device_class(rootdv)) {
1037 case DV_IFNET:
1038 aprint_normal("root on %s", rootdv->dv_xname);
1039 break;
1040
1041 case DV_DISK:
1042 aprint_normal("root on %s%c", rootdv->dv_xname,
1043 DISKPART(rootdev) + 'a');
1044 break;
1045
1046 default:
1047 printf("can't determine root device\n");
1048 boothowto |= RB_ASKNAME;
1049 goto top;
1050 }
1051
1052 /*
1053 * Now configure the dump device.
1054 *
1055 * If we haven't figured out the dump device, do so, with
1056 * the following rules:
1057 *
1058 * (a) We already know dumpdv in the RB_ASKNAME case.
1059 *
1060 * (b) If dumpspec is set, try to use it. If the device
1061 * is not available, punt.
1062 *
1063 * (c) If dumpspec is not set, the dump device is
1064 * wildcarded or unspecified. If the root device
1065 * is DV_IFNET, punt. Otherwise, use partition b
1066 * of the root device.
1067 */
1068
1069 if (boothowto & RB_ASKNAME) { /* (a) */
1070 if (dumpdv == NULL)
1071 goto nodumpdev;
1072 } else if (dumpspec != NULL) { /* (b) */
1073 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1074 /*
1075 * Operator doesn't want a dump device.
1076 * Or looks like they tried to pick a network
1077 * device. Oops.
1078 */
1079 goto nodumpdev;
1080 }
1081
1082 dumpdevname = devsw_blk2name(major(dumpdev));
1083 if (dumpdevname == NULL)
1084 goto nodumpdev;
1085 memset(buf, 0, sizeof(buf));
1086 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1087 DISKUNIT(dumpdev));
1088
1089 dumpdv = finddevice(buf);
1090 if (dumpdv == NULL) {
1091 /*
1092 * Device not configured.
1093 */
1094 goto nodumpdev;
1095 }
1096 } else { /* (c) */
1097 if (DEV_USES_PARTITIONS(rootdv) == 0)
1098 goto nodumpdev;
1099 else {
1100 dumpdv = rootdv;
1101 dumpdev = MAKEDISKDEV(major(rootdev),
1102 dumpdv->dv_unit, 1);
1103 }
1104 }
1105
1106 aprint_normal(" dumps on %s%c\n", dumpdv->dv_xname,
1107 DISKPART(dumpdev) + 'a');
1108 return;
1109
1110 nodumpdev:
1111 dumpdev = NODEV;
1112 aprint_normal("\n");
1113 }
1114
1115 static struct device *
1116 finddevice(const char *name)
1117 {
1118 struct device *dv;
1119 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
1120 int j;
1121 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
1122
1123 #ifdef BOOT_FROM_RAID_HOOKS
1124 for (j = 0; j < numraid; j++) {
1125 if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
1126 dv = &raidrootdev[j];
1127 return (dv);
1128 }
1129 }
1130 #endif /* BOOT_FROM_RAID_HOOKS */
1131
1132 #ifdef BOOT_FROM_MEMORY_HOOKS
1133 for (j = 0; j < NMD; j++) {
1134 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
1135 dv = &fakemdrootdev[j];
1136 return (dv);
1137 }
1138 }
1139 #endif /* BOOT_FROM_MEMORY_HOOKS */
1140
1141 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1142 dv = TAILQ_NEXT(dv, dv_list))
1143 if (strcmp(dv->dv_xname, name) == 0)
1144 break;
1145 return (dv);
1146 }
1147
1148 static struct device *
1149 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1150 {
1151 struct device *dv;
1152 #ifdef MEMORY_DISK_HOOKS
1153 int i;
1154 #endif
1155 #ifdef BOOT_FROM_RAID_HOOKS
1156 int j;
1157 #endif
1158
1159 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1160 printf("use one of:");
1161 #ifdef MEMORY_DISK_HOOKS
1162 if (isdump == 0)
1163 for (i = 0; i < NMD; i++)
1164 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1165 'a' + MAXPARTITIONS - 1);
1166 #endif
1167 #ifdef BOOT_FROM_RAID_HOOKS
1168 if (isdump == 0)
1169 for (j = 0; j < numraid; j++)
1170 printf(" %s[a-%c]", raidrootdev[j].dv_xname,
1171 'a' + MAXPARTITIONS - 1);
1172 #endif
1173 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1174 if (DEV_USES_PARTITIONS(dv))
1175 printf(" %s[a-%c]", dv->dv_xname,
1176 'a' + MAXPARTITIONS - 1);
1177 else if (device_class(dv) == DV_DISK)
1178 printf(" %s", dv->dv_xname);
1179 if (isdump == 0 && device_class(dv) == DV_IFNET)
1180 printf(" %s", dv->dv_xname);
1181 }
1182 if (isdump)
1183 printf(" none");
1184 #if defined(DDB)
1185 printf(" ddb");
1186 #endif
1187 printf(" halt reboot\n");
1188 }
1189 return (dv);
1190 }
1191
1192 static struct device *
1193 parsedisk(char *str, int len, int defpart, dev_t *devp)
1194 {
1195 struct device *dv;
1196 char *cp, c;
1197 int majdev, part;
1198 #ifdef MEMORY_DISK_HOOKS
1199 int i;
1200 #endif
1201 if (len == 0)
1202 return (NULL);
1203
1204 if (len == 4 && strcmp(str, "halt") == 0)
1205 cpu_reboot(RB_HALT, NULL);
1206 else if (len == 6 && strcmp(str, "reboot") == 0)
1207 cpu_reboot(0, NULL);
1208 #if defined(DDB)
1209 else if (len == 3 && strcmp(str, "ddb") == 0)
1210 console_debugger();
1211 #endif
1212
1213 cp = str + len - 1;
1214 c = *cp;
1215 if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1216 part = c - 'a';
1217 *cp = '\0';
1218 } else
1219 part = defpart;
1220
1221 #ifdef MEMORY_DISK_HOOKS
1222 for (i = 0; i < NMD; i++)
1223 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1224 dv = &fakemdrootdev[i];
1225 goto gotdisk;
1226 }
1227 #endif
1228
1229 dv = finddevice(str);
1230 if (dv != NULL) {
1231 if (device_class(dv) == DV_DISK) {
1232 #ifdef MEMORY_DISK_HOOKS
1233 gotdisk:
1234 #endif
1235 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1236 if (majdev < 0)
1237 panic("parsedisk");
1238 if (DEV_USES_PARTITIONS(dv))
1239 *devp = MAKEDISKDEV(majdev, dv->dv_unit, part);
1240 else
1241 *devp = makedev(majdev, dv->dv_unit);
1242 }
1243
1244 if (device_class(dv) == DV_IFNET)
1245 *devp = NODEV;
1246 }
1247
1248 *cp = c;
1249 return (dv);
1250 }
1251
1252 /*
1253 * snprintf() `bytes' into `buf', reformatting it so that the number,
1254 * plus a possible `x' + suffix extension) fits into len bytes (including
1255 * the terminating NUL).
1256 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1257 * E.g, given a len of 9 and a suffix of `B':
1258 * bytes result
1259 * ----- ------
1260 * 99999 `99999 B'
1261 * 100000 `97 kB'
1262 * 66715648 `65152 kB'
1263 * 252215296 `240 MB'
1264 */
1265 int
1266 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1267 int divisor)
1268 {
1269 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1270 const char *prefixes;
1271 int r;
1272 uint64_t umax;
1273 size_t i, suffixlen;
1274
1275 if (buf == NULL || suffix == NULL)
1276 return (-1);
1277 if (len > 0)
1278 buf[0] = '\0';
1279 suffixlen = strlen(suffix);
1280 /* check if enough room for `x y' + suffix + `\0' */
1281 if (len < 4 + suffixlen)
1282 return (-1);
1283
1284 if (divisor == 1024) {
1285 /*
1286 * binary multiplies
1287 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1288 */
1289 prefixes = " KMGTPE";
1290 } else
1291 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1292
1293 umax = 1;
1294 for (i = 0; i < len - suffixlen - 3; i++)
1295 umax *= 10;
1296 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1297 bytes /= divisor;
1298
1299 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1300 i == 0 ? "" : " ", prefixes[i], suffix);
1301
1302 return (r);
1303 }
1304
1305 int
1306 format_bytes(char *buf, size_t len, uint64_t bytes)
1307 {
1308 int rv;
1309 size_t nlen;
1310
1311 rv = humanize_number(buf, len, bytes, "B", 1024);
1312 if (rv != -1) {
1313 /* nuke the trailing ` B' if it exists */
1314 nlen = strlen(buf) - 2;
1315 if (strcmp(&buf[nlen], " B") == 0)
1316 buf[nlen] = '\0';
1317 }
1318 return (rv);
1319 }
1320
1321 /*
1322 * Start trace of particular system call. If process is being traced,
1323 * this routine is called by MD syscall dispatch code just before
1324 * a system call is actually executed.
1325 * MD caller guarantees the passed 'code' is within the supported
1326 * system call number range for emulation the process runs under.
1327 */
1328 int
1329 trace_enter(struct lwp *l, register_t code,
1330 register_t realcode, const struct sysent *callp, void *args)
1331 {
1332 #if defined(KTRACE) || defined(SYSTRACE)
1333 struct proc *p = l->l_proc;
1334 #endif
1335
1336 #ifdef SYSCALL_DEBUG
1337 scdebug_call(l, code, args);
1338 #endif /* SYSCALL_DEBUG */
1339
1340 #ifdef KTRACE
1341 if (KTRPOINT(p, KTR_SYSCALL))
1342 ktrsyscall(l, code, realcode, callp, args);
1343 #endif /* KTRACE */
1344
1345 #ifdef SYSTRACE
1346 if (ISSET(p->p_flag, P_SYSTRACE))
1347 return systrace_enter(p, code, args);
1348 #endif
1349 return 0;
1350 }
1351
1352 /*
1353 * End trace of particular system call. If process is being traced,
1354 * this routine is called by MD syscall dispatch code just after
1355 * a system call finishes.
1356 * MD caller guarantees the passed 'code' is within the supported
1357 * system call number range for emulation the process runs under.
1358 */
1359 void
1360 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1361 int error)
1362 {
1363 #if defined(KTRACE) || defined(SYSTRACE)
1364 struct proc *p = l->l_proc;
1365 #endif
1366
1367 #ifdef SYSCALL_DEBUG
1368 scdebug_ret(l, code, error, rval);
1369 #endif /* SYSCALL_DEBUG */
1370
1371 #ifdef KTRACE
1372 if (KTRPOINT(p, KTR_SYSRET)) {
1373 KERNEL_PROC_LOCK(l);
1374 ktrsysret(l, code, error, rval);
1375 KERNEL_PROC_UNLOCK(l);
1376 }
1377 #endif /* KTRACE */
1378
1379 #ifdef SYSTRACE
1380 if (ISSET(p->p_flag, P_SYSTRACE)) {
1381 KERNEL_PROC_LOCK(l);
1382 systrace_exit(p, code, args, rval, error);
1383 KERNEL_PROC_UNLOCK(l);
1384 }
1385 #endif
1386 }
1387