Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.128
      1 /*	$NetBSD: kern_subr.c,v 1.128 2006/03/05 07:21:38 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Copyright (c) 1992, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * This software was developed by the Computer Systems Engineering group
     53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     54  * contributed to Berkeley.
     55  *
     56  * All advertising materials mentioning features or use of this software
     57  * must display the following acknowledgement:
     58  *	This product includes software developed by the University of
     59  *	California, Lawrence Berkeley Laboratory.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  * 2. Redistributions in binary form must reproduce the above copyright
     67  *    notice, this list of conditions and the following disclaimer in the
     68  *    documentation and/or other materials provided with the distribution.
     69  * 3. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.128 2006/03/05 07:21:38 christos Exp $");
     90 
     91 #include "opt_ddb.h"
     92 #include "opt_md.h"
     93 #include "opt_syscall_debug.h"
     94 #include "opt_ktrace.h"
     95 #include "opt_systrace.h"
     96 
     97 #include <sys/param.h>
     98 #include <sys/systm.h>
     99 #include <sys/proc.h>
    100 #include <sys/malloc.h>
    101 #include <sys/mount.h>
    102 #include <sys/device.h>
    103 #include <sys/reboot.h>
    104 #include <sys/conf.h>
    105 #include <sys/disklabel.h>
    106 #include <sys/queue.h>
    107 #include <sys/systrace.h>
    108 #include <sys/ktrace.h>
    109 #include <sys/ptrace.h>
    110 #include <sys/fcntl.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 
    114 #include <dev/cons.h>
    115 
    116 #include <net/if.h>
    117 
    118 /* XXX these should eventually move to subr_autoconf.c */
    119 static struct device *finddevice(const char *);
    120 static struct device *getdisk(char *, int, int, dev_t *, int);
    121 static struct device *parsedisk(char *, int, int, dev_t *);
    122 
    123 /*
    124  * A generic linear hook.
    125  */
    126 struct hook_desc {
    127 	LIST_ENTRY(hook_desc) hk_list;
    128 	void	(*hk_fn)(void *);
    129 	void	*hk_arg;
    130 };
    131 typedef LIST_HEAD(, hook_desc) hook_list_t;
    132 
    133 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
    134 
    135 void
    136 uio_setup_sysspace(struct uio *uio)
    137 {
    138 
    139 	uio->uio_vmspace = vmspace_kernel();
    140 }
    141 
    142 int
    143 uiomove(void *buf, size_t n, struct uio *uio)
    144 {
    145 	struct vmspace *vm = uio->uio_vmspace;
    146 	struct iovec *iov;
    147 	u_int cnt;
    148 	int error = 0;
    149 	char *cp = buf;
    150 	int hold_count;
    151 
    152 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    153 
    154 #ifdef LOCKDEBUG
    155 	spinlock_switchcheck();
    156 	simple_lock_only_held(NULL, "uiomove");
    157 #endif
    158 
    159 #ifdef DIAGNOSTIC
    160 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    161 		panic("uiomove: mode");
    162 #endif
    163 	while (n > 0 && uio->uio_resid) {
    164 		iov = uio->uio_iov;
    165 		cnt = iov->iov_len;
    166 		if (cnt == 0) {
    167 			KASSERT(uio->uio_iovcnt > 0);
    168 			uio->uio_iov++;
    169 			uio->uio_iovcnt--;
    170 			continue;
    171 		}
    172 		if (cnt > n)
    173 			cnt = n;
    174 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    175 			if (curcpu()->ci_schedstate.spc_flags &
    176 			    SPCF_SHOULDYIELD)
    177 				preempt(1);
    178 		}
    179 
    180 		if (uio->uio_rw == UIO_READ) {
    181 			error = copyout_vmspace(vm, cp, iov->iov_base,
    182 			    cnt);
    183 		} else {
    184 			error = copyin_vmspace(vm, iov->iov_base, cp,
    185 			    cnt);
    186 		}
    187 		if (error) {
    188 			break;
    189 		}
    190 		iov->iov_base = (caddr_t)iov->iov_base + cnt;
    191 		iov->iov_len -= cnt;
    192 		uio->uio_resid -= cnt;
    193 		uio->uio_offset += cnt;
    194 		cp += cnt;
    195 		KDASSERT(cnt <= n);
    196 		n -= cnt;
    197 	}
    198 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
    199 	return (error);
    200 }
    201 
    202 /*
    203  * Wrapper for uiomove() that validates the arguments against a known-good
    204  * kernel buffer.
    205  */
    206 int
    207 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    208 {
    209 	size_t offset;
    210 
    211 	if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
    212 	    (offset = uio->uio_offset) != uio->uio_offset)
    213 		return (EINVAL);
    214 	if (offset >= buflen)
    215 		return (0);
    216 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    217 }
    218 
    219 /*
    220  * Give next character to user as result of read.
    221  */
    222 int
    223 ureadc(int c, struct uio *uio)
    224 {
    225 	struct iovec *iov;
    226 
    227 	if (uio->uio_resid <= 0)
    228 		panic("ureadc: non-positive resid");
    229 again:
    230 	if (uio->uio_iovcnt <= 0)
    231 		panic("ureadc: non-positive iovcnt");
    232 	iov = uio->uio_iov;
    233 	if (iov->iov_len <= 0) {
    234 		uio->uio_iovcnt--;
    235 		uio->uio_iov++;
    236 		goto again;
    237 	}
    238 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    239 		if (subyte(iov->iov_base, c) < 0)
    240 			return (EFAULT);
    241 	} else {
    242 		*(char *)iov->iov_base = c;
    243 	}
    244 	iov->iov_base = (caddr_t)iov->iov_base + 1;
    245 	iov->iov_len--;
    246 	uio->uio_resid--;
    247 	uio->uio_offset++;
    248 	return (0);
    249 }
    250 
    251 /*
    252  * Like copyin(), but operates on an arbitrary vmspace.
    253  */
    254 int
    255 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    256 {
    257 	struct iovec iov;
    258 	struct uio uio;
    259 	int error;
    260 
    261 	if (len == 0)
    262 		return (0);
    263 
    264 	if (VMSPACE_IS_KERNEL_P(vm)) {
    265 		return kcopy(uaddr, kaddr, len);
    266 	}
    267 	if (__predict_true(vm == curproc->p_vmspace)) {
    268 		return copyin(uaddr, kaddr, len);
    269 	}
    270 
    271 	iov.iov_base = kaddr;
    272 	iov.iov_len = len;
    273 	uio.uio_iov = &iov;
    274 	uio.uio_iovcnt = 1;
    275 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    276 	uio.uio_resid = len;
    277 	uio.uio_rw = UIO_READ;
    278 	uio.uio_vmspace = vm;
    279 	error = uvm_io(&vm->vm_map, &uio);
    280 
    281 	return (error);
    282 }
    283 
    284 /*
    285  * Like copyout(), but operates on an arbitrary vmspace.
    286  */
    287 int
    288 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    289 {
    290 	struct iovec iov;
    291 	struct uio uio;
    292 	int error;
    293 
    294 	if (len == 0)
    295 		return (0);
    296 
    297 	if (VMSPACE_IS_KERNEL_P(vm)) {
    298 		return kcopy(kaddr, uaddr, len);
    299 	}
    300 	if (__predict_true(vm == curproc->p_vmspace)) {
    301 		return copyout(kaddr, uaddr, len);
    302 	}
    303 
    304 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    305 	iov.iov_len = len;
    306 	uio.uio_iov = &iov;
    307 	uio.uio_iovcnt = 1;
    308 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    309 	uio.uio_resid = len;
    310 	uio.uio_rw = UIO_WRITE;
    311 	uio.uio_vmspace = vm;
    312 	error = uvm_io(&vm->vm_map, &uio);
    313 
    314 	return (error);
    315 }
    316 
    317 /*
    318  * Like copyin(), but operates on an arbitrary process.
    319  */
    320 int
    321 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    322 {
    323 	struct vmspace *vm;
    324 	int error;
    325 
    326 	error = proc_vmspace_getref(p, &vm);
    327 	if (error) {
    328 		return error;
    329 	}
    330 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    331 	uvmspace_free(vm);
    332 
    333 	return error;
    334 }
    335 
    336 /*
    337  * Like copyout(), but operates on an arbitrary process.
    338  */
    339 int
    340 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    341 {
    342 	struct vmspace *vm;
    343 	int error;
    344 
    345 	error = proc_vmspace_getref(p, &vm);
    346 	if (error) {
    347 		return error;
    348 	}
    349 	error = copyin_vmspace(vm, kaddr, uaddr, len);
    350 	uvmspace_free(vm);
    351 
    352 	return error;
    353 }
    354 
    355 /*
    356  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    357  * flag is passed in `ioctlflags' from the ioctl call.
    358  */
    359 int
    360 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    361 {
    362 	if (ioctlflags & FKIOCTL)
    363 		return kcopy(src, dst, len);
    364 	return copyin(src, dst, len);
    365 }
    366 
    367 /*
    368  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    369  * flag is passed in `ioctlflags' from the ioctl call.
    370  */
    371 int
    372 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    373 {
    374 	if (ioctlflags & FKIOCTL)
    375 		return kcopy(src, dst, len);
    376 	return copyout(src, dst, len);
    377 }
    378 
    379 /*
    380  * General routine to allocate a hash table.
    381  * Allocate enough memory to hold at least `elements' list-head pointers.
    382  * Return a pointer to the allocated space and set *hashmask to a pattern
    383  * suitable for masking a value to use as an index into the returned array.
    384  */
    385 void *
    386 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
    387     int mflags, u_long *hashmask)
    388 {
    389 	u_long hashsize, i;
    390 	LIST_HEAD(, generic) *hashtbl_list;
    391 	TAILQ_HEAD(, generic) *hashtbl_tailq;
    392 	size_t esize;
    393 	void *p;
    394 
    395 	if (elements == 0)
    396 		panic("hashinit: bad cnt");
    397 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
    398 		continue;
    399 
    400 	switch (htype) {
    401 	case HASH_LIST:
    402 		esize = sizeof(*hashtbl_list);
    403 		break;
    404 	case HASH_TAILQ:
    405 		esize = sizeof(*hashtbl_tailq);
    406 		break;
    407 	default:
    408 #ifdef DIAGNOSTIC
    409 		panic("hashinit: invalid table type");
    410 #else
    411 		return NULL;
    412 #endif
    413 	}
    414 
    415 	if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
    416 		return (NULL);
    417 
    418 	switch (htype) {
    419 	case HASH_LIST:
    420 		hashtbl_list = p;
    421 		for (i = 0; i < hashsize; i++)
    422 			LIST_INIT(&hashtbl_list[i]);
    423 		break;
    424 	case HASH_TAILQ:
    425 		hashtbl_tailq = p;
    426 		for (i = 0; i < hashsize; i++)
    427 			TAILQ_INIT(&hashtbl_tailq[i]);
    428 		break;
    429 	}
    430 	*hashmask = hashsize - 1;
    431 	return (p);
    432 }
    433 
    434 /*
    435  * Free memory from hash table previosly allocated via hashinit().
    436  */
    437 void
    438 hashdone(void *hashtbl, struct malloc_type *mtype)
    439 {
    440 
    441 	free(hashtbl, mtype);
    442 }
    443 
    444 
    445 static void *
    446 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    447 {
    448 	struct hook_desc *hd;
    449 
    450 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    451 	if (hd == NULL)
    452 		return (NULL);
    453 
    454 	hd->hk_fn = fn;
    455 	hd->hk_arg = arg;
    456 	LIST_INSERT_HEAD(list, hd, hk_list);
    457 
    458 	return (hd);
    459 }
    460 
    461 static void
    462 hook_disestablish(hook_list_t *list, void *vhook)
    463 {
    464 #ifdef DIAGNOSTIC
    465 	struct hook_desc *hd;
    466 
    467 	LIST_FOREACH(hd, list, hk_list) {
    468                 if (hd == vhook)
    469 			break;
    470 	}
    471 
    472 	if (hd == NULL)
    473 		panic("hook_disestablish: hook %p not established", vhook);
    474 #endif
    475 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    476 	free(vhook, M_DEVBUF);
    477 }
    478 
    479 static void
    480 hook_destroy(hook_list_t *list)
    481 {
    482 	struct hook_desc *hd;
    483 
    484 	while ((hd = LIST_FIRST(list)) != NULL) {
    485 		LIST_REMOVE(hd, hk_list);
    486 		free(hd, M_DEVBUF);
    487 	}
    488 }
    489 
    490 static void
    491 hook_proc_run(hook_list_t *list, struct proc *p)
    492 {
    493 	struct hook_desc *hd;
    494 
    495 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
    496 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
    497 		    hd->hk_arg);
    498 	}
    499 }
    500 
    501 /*
    502  * "Shutdown hook" types, functions, and variables.
    503  *
    504  * Should be invoked immediately before the
    505  * system is halted or rebooted, i.e. after file systems unmounted,
    506  * after crash dump done, etc.
    507  *
    508  * Each shutdown hook is removed from the list before it's run, so that
    509  * it won't be run again.
    510  */
    511 
    512 static hook_list_t shutdownhook_list;
    513 
    514 void *
    515 shutdownhook_establish(void (*fn)(void *), void *arg)
    516 {
    517 	return hook_establish(&shutdownhook_list, fn, arg);
    518 }
    519 
    520 void
    521 shutdownhook_disestablish(void *vhook)
    522 {
    523 	hook_disestablish(&shutdownhook_list, vhook);
    524 }
    525 
    526 /*
    527  * Run shutdown hooks.  Should be invoked immediately before the
    528  * system is halted or rebooted, i.e. after file systems unmounted,
    529  * after crash dump done, etc.
    530  *
    531  * Each shutdown hook is removed from the list before it's run, so that
    532  * it won't be run again.
    533  */
    534 void
    535 doshutdownhooks(void)
    536 {
    537 	struct hook_desc *dp;
    538 
    539 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    540 		LIST_REMOVE(dp, hk_list);
    541 		(*dp->hk_fn)(dp->hk_arg);
    542 #if 0
    543 		/*
    544 		 * Don't bother freeing the hook structure,, since we may
    545 		 * be rebooting because of a memory corruption problem,
    546 		 * and this might only make things worse.  It doesn't
    547 		 * matter, anyway, since the system is just about to
    548 		 * reboot.
    549 		 */
    550 		free(dp, M_DEVBUF);
    551 #endif
    552 	}
    553 }
    554 
    555 /*
    556  * "Mountroot hook" types, functions, and variables.
    557  */
    558 
    559 static hook_list_t mountroothook_list;
    560 
    561 void *
    562 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
    563 {
    564 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    565 }
    566 
    567 void
    568 mountroothook_disestablish(void *vhook)
    569 {
    570 	hook_disestablish(&mountroothook_list, vhook);
    571 }
    572 
    573 void
    574 mountroothook_destroy(void)
    575 {
    576 	hook_destroy(&mountroothook_list);
    577 }
    578 
    579 void
    580 domountroothook(void)
    581 {
    582 	struct hook_desc *hd;
    583 
    584 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    585 		if (hd->hk_arg == (void *)root_device) {
    586 			(*hd->hk_fn)(hd->hk_arg);
    587 			return;
    588 		}
    589 	}
    590 }
    591 
    592 static hook_list_t exechook_list;
    593 
    594 void *
    595 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    596 {
    597 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    598 }
    599 
    600 void
    601 exechook_disestablish(void *vhook)
    602 {
    603 	hook_disestablish(&exechook_list, vhook);
    604 }
    605 
    606 /*
    607  * Run exec hooks.
    608  */
    609 void
    610 doexechooks(struct proc *p)
    611 {
    612 	hook_proc_run(&exechook_list, p);
    613 }
    614 
    615 static hook_list_t exithook_list;
    616 
    617 void *
    618 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    619 {
    620 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    621 }
    622 
    623 void
    624 exithook_disestablish(void *vhook)
    625 {
    626 	hook_disestablish(&exithook_list, vhook);
    627 }
    628 
    629 /*
    630  * Run exit hooks.
    631  */
    632 void
    633 doexithooks(struct proc *p)
    634 {
    635 	hook_proc_run(&exithook_list, p);
    636 }
    637 
    638 static hook_list_t forkhook_list;
    639 
    640 void *
    641 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    642 {
    643 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    644 }
    645 
    646 void
    647 forkhook_disestablish(void *vhook)
    648 {
    649 	hook_disestablish(&forkhook_list, vhook);
    650 }
    651 
    652 /*
    653  * Run fork hooks.
    654  */
    655 void
    656 doforkhooks(struct proc *p2, struct proc *p1)
    657 {
    658 	struct hook_desc *hd;
    659 
    660 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    661 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    662 		    (p2, p1);
    663 	}
    664 }
    665 
    666 /*
    667  * "Power hook" types, functions, and variables.
    668  * The list of power hooks is kept ordered with the last registered hook
    669  * first.
    670  * When running the hooks on power down the hooks are called in reverse
    671  * registration order, when powering up in registration order.
    672  */
    673 struct powerhook_desc {
    674 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    675 	void	(*sfd_fn)(int, void *);
    676 	void	*sfd_arg;
    677 };
    678 
    679 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    680     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    681 
    682 void *
    683 powerhook_establish(void (*fn)(int, void *), void *arg)
    684 {
    685 	struct powerhook_desc *ndp;
    686 
    687 	ndp = (struct powerhook_desc *)
    688 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    689 	if (ndp == NULL)
    690 		return (NULL);
    691 
    692 	ndp->sfd_fn = fn;
    693 	ndp->sfd_arg = arg;
    694 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    695 
    696 	return (ndp);
    697 }
    698 
    699 void
    700 powerhook_disestablish(void *vhook)
    701 {
    702 #ifdef DIAGNOSTIC
    703 	struct powerhook_desc *dp;
    704 
    705 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    706                 if (dp == vhook)
    707 			goto found;
    708 	panic("powerhook_disestablish: hook %p not established", vhook);
    709  found:
    710 #endif
    711 
    712 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    713 	    sfd_list);
    714 	free(vhook, M_DEVBUF);
    715 }
    716 
    717 /*
    718  * Run power hooks.
    719  */
    720 void
    721 dopowerhooks(int why)
    722 {
    723 	struct powerhook_desc *dp;
    724 
    725 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    726 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    727 			(*dp->sfd_fn)(why, dp->sfd_arg);
    728 		}
    729 	} else {
    730 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    731 			(*dp->sfd_fn)(why, dp->sfd_arg);
    732 		}
    733 	}
    734 }
    735 
    736 /*
    737  * Determine the root device and, if instructed to, the root file system.
    738  */
    739 
    740 #include "md.h"
    741 #if NMD == 0
    742 #undef MEMORY_DISK_HOOKS
    743 #endif
    744 
    745 #ifdef MEMORY_DISK_HOOKS
    746 static struct device fakemdrootdev[NMD];
    747 extern struct cfdriver md_cd;
    748 #endif
    749 
    750 #ifdef MEMORY_DISK_IS_ROOT
    751 #define BOOT_FROM_MEMORY_HOOKS 1
    752 #endif
    753 
    754 #include "raid.h"
    755 #if NRAID == 1
    756 #define BOOT_FROM_RAID_HOOKS 1
    757 #endif
    758 
    759 #ifdef BOOT_FROM_RAID_HOOKS
    760 extern int numraid;
    761 extern struct device *raidrootdev;
    762 #endif
    763 
    764 /*
    765  * The device and wedge that we booted from.  If booted_wedge is NULL,
    766  * the we might consult booted_partition.
    767  */
    768 struct device *booted_device;
    769 struct device *booted_wedge;
    770 int booted_partition;
    771 
    772 /*
    773  * Use partition letters if it's a disk class but not a wedge.
    774  * XXX Check for wedge is kinda gross.
    775  */
    776 #define	DEV_USES_PARTITIONS(dv)						\
    777 	(device_class((dv)) == DV_DISK &&				\
    778 	 !device_is_a((dv), "dk"))
    779 
    780 void
    781 setroot(struct device *bootdv, int bootpartition)
    782 {
    783 	struct device *dv;
    784 	int len;
    785 #ifdef MEMORY_DISK_HOOKS
    786 	int i;
    787 #endif
    788 	dev_t nrootdev;
    789 	dev_t ndumpdev = NODEV;
    790 	char buf[128];
    791 	const char *rootdevname;
    792 	const char *dumpdevname;
    793 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
    794 	struct device *dumpdv = NULL;
    795 	struct ifnet *ifp;
    796 	const char *deffsname;
    797 	struct vfsops *vops;
    798 
    799 #ifdef MEMORY_DISK_HOOKS
    800 	for (i = 0; i < NMD; i++) {
    801 		fakemdrootdev[i].dv_class  = DV_DISK;
    802 		fakemdrootdev[i].dv_cfdata = NULL;
    803 		fakemdrootdev[i].dv_cfdriver = &md_cd;
    804 		fakemdrootdev[i].dv_unit   = i;
    805 		fakemdrootdev[i].dv_parent = NULL;
    806 		snprintf(fakemdrootdev[i].dv_xname,
    807 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
    808 	}
    809 #endif /* MEMORY_DISK_HOOKS */
    810 
    811 #ifdef MEMORY_DISK_IS_ROOT
    812 	bootdv = &fakemdrootdev[0];
    813 	bootpartition = 0;
    814 #endif
    815 
    816 	/*
    817 	 * If NFS is specified as the file system, and we found
    818 	 * a DV_DISK boot device (or no boot device at all), then
    819 	 * find a reasonable network interface for "rootspec".
    820 	 */
    821 	vops = vfs_getopsbyname("nfs");
    822 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
    823 	    rootspec == NULL &&
    824 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
    825 		IFNET_FOREACH(ifp) {
    826 			if ((ifp->if_flags &
    827 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    828 				break;
    829 		}
    830 		if (ifp == NULL) {
    831 			/*
    832 			 * Can't find a suitable interface; ask the
    833 			 * user.
    834 			 */
    835 			boothowto |= RB_ASKNAME;
    836 		} else {
    837 			/*
    838 			 * Have a suitable interface; behave as if
    839 			 * the user specified this interface.
    840 			 */
    841 			rootspec = (const char *)ifp->if_xname;
    842 		}
    843 	}
    844 
    845 	/*
    846 	 * If wildcarded root and we the boot device wasn't determined,
    847 	 * ask the user.
    848 	 */
    849 	if (rootspec == NULL && bootdv == NULL)
    850 		boothowto |= RB_ASKNAME;
    851 
    852  top:
    853 	if (boothowto & RB_ASKNAME) {
    854 		struct device *defdumpdv;
    855 
    856 		for (;;) {
    857 			printf("root device");
    858 			if (bootdv != NULL) {
    859 				printf(" (default %s", bootdv->dv_xname);
    860 				if (DEV_USES_PARTITIONS(bootdv))
    861 					printf("%c", bootpartition + 'a');
    862 				printf(")");
    863 			}
    864 			printf(": ");
    865 			len = cngetsn(buf, sizeof(buf));
    866 			if (len == 0 && bootdv != NULL) {
    867 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
    868 				len = strlen(buf);
    869 			}
    870 			if (len > 0 && buf[len - 1] == '*') {
    871 				buf[--len] = '\0';
    872 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    873 				if (dv != NULL) {
    874 					rootdv = dv;
    875 					break;
    876 				}
    877 			}
    878 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    879 			if (dv != NULL) {
    880 				rootdv = dv;
    881 				break;
    882 			}
    883 		}
    884 
    885 		/*
    886 		 * Set up the default dump device.  If root is on
    887 		 * a network device, there is no default dump
    888 		 * device, since we don't support dumps to the
    889 		 * network.
    890 		 */
    891 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    892 			defdumpdv = NULL;
    893 		else
    894 			defdumpdv = rootdv;
    895 
    896 		for (;;) {
    897 			printf("dump device");
    898 			if (defdumpdv != NULL) {
    899 				/*
    900 				 * Note, we know it's a disk if we get here.
    901 				 */
    902 				printf(" (default %sb)", defdumpdv->dv_xname);
    903 			}
    904 			printf(": ");
    905 			len = cngetsn(buf, sizeof(buf));
    906 			if (len == 0) {
    907 				if (defdumpdv != NULL) {
    908 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    909 					    DISKUNIT(nrootdev), 1);
    910 				}
    911 				dumpdv = defdumpdv;
    912 				break;
    913 			}
    914 			if (len == 4 && strcmp(buf, "none") == 0) {
    915 				dumpdv = NULL;
    916 				break;
    917 			}
    918 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    919 			if (dv != NULL) {
    920 				dumpdv = dv;
    921 				break;
    922 			}
    923 		}
    924 
    925 		rootdev = nrootdev;
    926 		dumpdev = ndumpdev;
    927 
    928 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    929 		     vops = LIST_NEXT(vops, vfs_list)) {
    930 			if (vops->vfs_mountroot != NULL &&
    931 			    vops->vfs_mountroot == mountroot)
    932 			break;
    933 		}
    934 
    935 		if (vops == NULL) {
    936 			mountroot = NULL;
    937 			deffsname = "generic";
    938 		} else
    939 			deffsname = vops->vfs_name;
    940 
    941 		for (;;) {
    942 			printf("file system (default %s): ", deffsname);
    943 			len = cngetsn(buf, sizeof(buf));
    944 			if (len == 0)
    945 				break;
    946 			if (len == 4 && strcmp(buf, "halt") == 0)
    947 				cpu_reboot(RB_HALT, NULL);
    948 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    949 				cpu_reboot(0, NULL);
    950 #if defined(DDB)
    951 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    952 				console_debugger();
    953 			}
    954 #endif
    955 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    956 				mountroot = NULL;
    957 				break;
    958 			}
    959 			vops = vfs_getopsbyname(buf);
    960 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    961 				printf("use one of: generic");
    962 				for (vops = LIST_FIRST(&vfs_list);
    963 				     vops != NULL;
    964 				     vops = LIST_NEXT(vops, vfs_list)) {
    965 					if (vops->vfs_mountroot != NULL)
    966 						printf(" %s", vops->vfs_name);
    967 				}
    968 #if defined(DDB)
    969 				printf(" ddb");
    970 #endif
    971 				printf(" halt reboot\n");
    972 			} else {
    973 				mountroot = vops->vfs_mountroot;
    974 				break;
    975 			}
    976 		}
    977 
    978 	} else if (rootspec == NULL) {
    979 		int majdev;
    980 
    981 		/*
    982 		 * Wildcarded root; use the boot device.
    983 		 */
    984 		rootdv = bootdv;
    985 
    986 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
    987 		if (majdev >= 0) {
    988 			/*
    989 			 * Root is on a disk.  `bootpartition' is root,
    990 			 * unless the device does not use partitions.
    991 			 */
    992 			if (DEV_USES_PARTITIONS(bootdv))
    993 				rootdev = MAKEDISKDEV(majdev, bootdv->dv_unit,
    994 				    bootpartition);
    995 			else
    996 				rootdev = makedev(majdev, bootdv->dv_unit);
    997 		}
    998 	} else {
    999 
   1000 		/*
   1001 		 * `root on <dev> ...'
   1002 		 */
   1003 
   1004 		/*
   1005 		 * If it's a network interface, we can bail out
   1006 		 * early.
   1007 		 */
   1008 		dv = finddevice(rootspec);
   1009 		if (dv != NULL && device_class(dv) == DV_IFNET) {
   1010 			rootdv = dv;
   1011 			goto haveroot;
   1012 		}
   1013 
   1014 		rootdevname = devsw_blk2name(major(rootdev));
   1015 		if (rootdevname == NULL) {
   1016 			printf("unknown device major 0x%x\n", rootdev);
   1017 			boothowto |= RB_ASKNAME;
   1018 			goto top;
   1019 		}
   1020 		memset(buf, 0, sizeof(buf));
   1021 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
   1022 		    DISKUNIT(rootdev));
   1023 
   1024 		rootdv = finddevice(buf);
   1025 		if (rootdv == NULL) {
   1026 			printf("device %s (0x%x) not configured\n",
   1027 			    buf, rootdev);
   1028 			boothowto |= RB_ASKNAME;
   1029 			goto top;
   1030 		}
   1031 	}
   1032 
   1033  haveroot:
   1034 
   1035 	root_device = rootdv;
   1036 
   1037 	switch (device_class(rootdv)) {
   1038 	case DV_IFNET:
   1039 		aprint_normal("root on %s", rootdv->dv_xname);
   1040 		break;
   1041 
   1042 	case DV_DISK:
   1043 		aprint_normal("root on %s%c", rootdv->dv_xname,
   1044 		    DISKPART(rootdev) + 'a');
   1045 		break;
   1046 
   1047 	default:
   1048 		printf("can't determine root device\n");
   1049 		boothowto |= RB_ASKNAME;
   1050 		goto top;
   1051 	}
   1052 
   1053 	/*
   1054 	 * Now configure the dump device.
   1055 	 *
   1056 	 * If we haven't figured out the dump device, do so, with
   1057 	 * the following rules:
   1058 	 *
   1059 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1060 	 *
   1061 	 *	(b) If dumpspec is set, try to use it.  If the device
   1062 	 *	    is not available, punt.
   1063 	 *
   1064 	 *	(c) If dumpspec is not set, the dump device is
   1065 	 *	    wildcarded or unspecified.  If the root device
   1066 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1067 	 *	    of the root device.
   1068 	 */
   1069 
   1070 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1071 		if (dumpdv == NULL)
   1072 			goto nodumpdev;
   1073 	} else if (dumpspec != NULL) {		/* (b) */
   1074 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1075 			/*
   1076 			 * Operator doesn't want a dump device.
   1077 			 * Or looks like they tried to pick a network
   1078 			 * device.  Oops.
   1079 			 */
   1080 			goto nodumpdev;
   1081 		}
   1082 
   1083 		dumpdevname = devsw_blk2name(major(dumpdev));
   1084 		if (dumpdevname == NULL)
   1085 			goto nodumpdev;
   1086 		memset(buf, 0, sizeof(buf));
   1087 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
   1088 		    DISKUNIT(dumpdev));
   1089 
   1090 		dumpdv = finddevice(buf);
   1091 		if (dumpdv == NULL) {
   1092 			/*
   1093 			 * Device not configured.
   1094 			 */
   1095 			goto nodumpdev;
   1096 		}
   1097 	} else {				/* (c) */
   1098 		if (DEV_USES_PARTITIONS(rootdv) == 0)
   1099 			goto nodumpdev;
   1100 		else {
   1101 			dumpdv = rootdv;
   1102 			dumpdev = MAKEDISKDEV(major(rootdev),
   1103 			    dumpdv->dv_unit, 1);
   1104 		}
   1105 	}
   1106 
   1107 	aprint_normal(" dumps on %s%c\n", dumpdv->dv_xname,
   1108 	    DISKPART(dumpdev) + 'a');
   1109 	return;
   1110 
   1111  nodumpdev:
   1112 	dumpdev = NODEV;
   1113 	aprint_normal("\n");
   1114 }
   1115 
   1116 static struct device *
   1117 finddevice(const char *name)
   1118 {
   1119 	struct device *dv;
   1120 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
   1121 	int j;
   1122 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
   1123 
   1124 #ifdef BOOT_FROM_RAID_HOOKS
   1125 	for (j = 0; j < numraid; j++) {
   1126 		if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
   1127 			dv = &raidrootdev[j];
   1128 			return (dv);
   1129 		}
   1130 	}
   1131 #endif /* BOOT_FROM_RAID_HOOKS */
   1132 
   1133 #ifdef BOOT_FROM_MEMORY_HOOKS
   1134 	for (j = 0; j < NMD; j++) {
   1135 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
   1136 			dv = &fakemdrootdev[j];
   1137 			return (dv);
   1138 		}
   1139 	}
   1140 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1141 
   1142 	for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1143 	    dv = TAILQ_NEXT(dv, dv_list))
   1144 		if (strcmp(dv->dv_xname, name) == 0)
   1145 			break;
   1146 	return (dv);
   1147 }
   1148 
   1149 static struct device *
   1150 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1151 {
   1152 	struct device	*dv;
   1153 #ifdef MEMORY_DISK_HOOKS
   1154 	int		i;
   1155 #endif
   1156 #ifdef BOOT_FROM_RAID_HOOKS
   1157 	int 		j;
   1158 #endif
   1159 
   1160 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1161 		printf("use one of:");
   1162 #ifdef MEMORY_DISK_HOOKS
   1163 		if (isdump == 0)
   1164 			for (i = 0; i < NMD; i++)
   1165 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
   1166 				    'a' + MAXPARTITIONS - 1);
   1167 #endif
   1168 #ifdef BOOT_FROM_RAID_HOOKS
   1169 		if (isdump == 0)
   1170 			for (j = 0; j < numraid; j++)
   1171 				printf(" %s[a-%c]", raidrootdev[j].dv_xname,
   1172 				    'a' + MAXPARTITIONS - 1);
   1173 #endif
   1174 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1175 			if (DEV_USES_PARTITIONS(dv))
   1176 				printf(" %s[a-%c]", dv->dv_xname,
   1177 				    'a' + MAXPARTITIONS - 1);
   1178 			else if (device_class(dv) == DV_DISK)
   1179 				printf(" %s", dv->dv_xname);
   1180 			if (isdump == 0 && device_class(dv) == DV_IFNET)
   1181 				printf(" %s", dv->dv_xname);
   1182 		}
   1183 		if (isdump)
   1184 			printf(" none");
   1185 #if defined(DDB)
   1186 		printf(" ddb");
   1187 #endif
   1188 		printf(" halt reboot\n");
   1189 	}
   1190 	return (dv);
   1191 }
   1192 
   1193 static struct device *
   1194 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1195 {
   1196 	struct device *dv;
   1197 	char *cp, c;
   1198 	int majdev, part;
   1199 #ifdef MEMORY_DISK_HOOKS
   1200 	int i;
   1201 #endif
   1202 	if (len == 0)
   1203 		return (NULL);
   1204 
   1205 	if (len == 4 && strcmp(str, "halt") == 0)
   1206 		cpu_reboot(RB_HALT, NULL);
   1207 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1208 		cpu_reboot(0, NULL);
   1209 #if defined(DDB)
   1210 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1211 		console_debugger();
   1212 #endif
   1213 
   1214 	cp = str + len - 1;
   1215 	c = *cp;
   1216 	if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1217 		part = c - 'a';
   1218 		*cp = '\0';
   1219 	} else
   1220 		part = defpart;
   1221 
   1222 #ifdef MEMORY_DISK_HOOKS
   1223 	for (i = 0; i < NMD; i++)
   1224 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
   1225 			dv = &fakemdrootdev[i];
   1226 			goto gotdisk;
   1227 		}
   1228 #endif
   1229 
   1230 	dv = finddevice(str);
   1231 	if (dv != NULL) {
   1232 		if (device_class(dv) == DV_DISK) {
   1233 #ifdef MEMORY_DISK_HOOKS
   1234  gotdisk:
   1235 #endif
   1236 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1237 			if (majdev < 0)
   1238 				panic("parsedisk");
   1239 			if (DEV_USES_PARTITIONS(dv))
   1240 				*devp = MAKEDISKDEV(majdev, dv->dv_unit, part);
   1241 			else
   1242 				*devp = makedev(majdev, dv->dv_unit);
   1243 		}
   1244 
   1245 		if (device_class(dv) == DV_IFNET)
   1246 			*devp = NODEV;
   1247 	}
   1248 
   1249 	*cp = c;
   1250 	return (dv);
   1251 }
   1252 
   1253 /*
   1254  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1255  * plus a possible `x' + suffix extension) fits into len bytes (including
   1256  * the terminating NUL).
   1257  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1258  * E.g, given a len of 9 and a suffix of `B':
   1259  *	bytes		result
   1260  *	-----		------
   1261  *	99999		`99999 B'
   1262  *	100000		`97 kB'
   1263  *	66715648	`65152 kB'
   1264  *	252215296	`240 MB'
   1265  */
   1266 int
   1267 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1268     int divisor)
   1269 {
   1270        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1271 	const char *prefixes;
   1272 	int		r;
   1273 	uint64_t	umax;
   1274 	size_t		i, suffixlen;
   1275 
   1276 	if (buf == NULL || suffix == NULL)
   1277 		return (-1);
   1278 	if (len > 0)
   1279 		buf[0] = '\0';
   1280 	suffixlen = strlen(suffix);
   1281 	/* check if enough room for `x y' + suffix + `\0' */
   1282 	if (len < 4 + suffixlen)
   1283 		return (-1);
   1284 
   1285 	if (divisor == 1024) {
   1286 		/*
   1287 		 * binary multiplies
   1288 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1289 		 */
   1290 		prefixes = " KMGTPE";
   1291 	} else
   1292 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1293 
   1294 	umax = 1;
   1295 	for (i = 0; i < len - suffixlen - 3; i++)
   1296 		umax *= 10;
   1297 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1298 		bytes /= divisor;
   1299 
   1300 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1301 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1302 
   1303 	return (r);
   1304 }
   1305 
   1306 int
   1307 format_bytes(char *buf, size_t len, uint64_t bytes)
   1308 {
   1309 	int	rv;
   1310 	size_t	nlen;
   1311 
   1312 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1313 	if (rv != -1) {
   1314 			/* nuke the trailing ` B' if it exists */
   1315 		nlen = strlen(buf) - 2;
   1316 		if (strcmp(&buf[nlen], " B") == 0)
   1317 			buf[nlen] = '\0';
   1318 	}
   1319 	return (rv);
   1320 }
   1321 
   1322 /*
   1323  * Start trace of particular system call. If process is being traced,
   1324  * this routine is called by MD syscall dispatch code just before
   1325  * a system call is actually executed.
   1326  * MD caller guarantees the passed 'code' is within the supported
   1327  * system call number range for emulation the process runs under.
   1328  */
   1329 int
   1330 trace_enter(struct lwp *l, register_t code,
   1331     register_t realcode, const struct sysent *callp, void *args)
   1332 {
   1333 #if defined(KTRACE) || defined(SYSTRACE)
   1334 	struct proc *p = l->l_proc;
   1335 #endif
   1336 
   1337 #ifdef SYSCALL_DEBUG
   1338 	scdebug_call(l, code, args);
   1339 #endif /* SYSCALL_DEBUG */
   1340 
   1341 #ifdef KTRACE
   1342 	if (KTRPOINT(p, KTR_SYSCALL))
   1343 		ktrsyscall(l, code, realcode, callp, args);
   1344 #endif /* KTRACE */
   1345 
   1346 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
   1347 		process_stoptrace(l);
   1348 
   1349 #ifdef SYSTRACE
   1350 	if (ISSET(p->p_flag, P_SYSTRACE))
   1351 		return systrace_enter(p, code, args);
   1352 #endif
   1353 	return 0;
   1354 }
   1355 
   1356 /*
   1357  * End trace of particular system call. If process is being traced,
   1358  * this routine is called by MD syscall dispatch code just after
   1359  * a system call finishes.
   1360  * MD caller guarantees the passed 'code' is within the supported
   1361  * system call number range for emulation the process runs under.
   1362  */
   1363 void
   1364 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
   1365     int error)
   1366 {
   1367 #if defined(KTRACE) || defined(SYSTRACE)
   1368 	struct proc *p = l->l_proc;
   1369 #endif
   1370 
   1371 #ifdef SYSCALL_DEBUG
   1372 	scdebug_ret(l, code, error, rval);
   1373 #endif /* SYSCALL_DEBUG */
   1374 
   1375 #ifdef KTRACE
   1376 	if (KTRPOINT(p, KTR_SYSRET)) {
   1377 		KERNEL_PROC_LOCK(l);
   1378 		ktrsysret(l, code, error, rval);
   1379 		KERNEL_PROC_UNLOCK(l);
   1380 	}
   1381 #endif /* KTRACE */
   1382 
   1383 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
   1384 		process_stoptrace(l);
   1385 
   1386 #ifdef SYSTRACE
   1387 	if (ISSET(p->p_flag, P_SYSTRACE)) {
   1388 		KERNEL_PROC_LOCK(l);
   1389 		systrace_exit(p, code, args, rval, error);
   1390 		KERNEL_PROC_UNLOCK(l);
   1391 	}
   1392 #endif
   1393 }
   1394