kern_subr.c revision 1.136 1 /* $NetBSD: kern_subr.c,v 1.136 2006/06/11 07:32:18 rjs Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.136 2006/06/11 07:32:18 rjs Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_systrace.h"
96 #include "opt_lockdebug.h"
97
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 #include <sys/malloc.h>
102 #include <sys/mount.h>
103 #include <sys/device.h>
104 #include <sys/reboot.h>
105 #include <sys/conf.h>
106 #include <sys/disklabel.h>
107 #include <sys/queue.h>
108 #include <sys/systrace.h>
109 #include <sys/ktrace.h>
110 #include <sys/ptrace.h>
111 #include <sys/fcntl.h>
112
113 #include <uvm/uvm_extern.h>
114
115 #include <dev/cons.h>
116
117 #include <net/if.h>
118
119 /* XXX these should eventually move to subr_autoconf.c */
120 static struct device *finddevice(const char *);
121 static struct device *getdisk(char *, int, int, dev_t *, int);
122 static struct device *parsedisk(char *, int, int, dev_t *);
123
124 /*
125 * A generic linear hook.
126 */
127 struct hook_desc {
128 LIST_ENTRY(hook_desc) hk_list;
129 void (*hk_fn)(void *);
130 void *hk_arg;
131 };
132 typedef LIST_HEAD(, hook_desc) hook_list_t;
133
134 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
135
136 void
137 uio_setup_sysspace(struct uio *uio)
138 {
139
140 uio->uio_vmspace = vmspace_kernel();
141 }
142
143 int
144 uiomove(void *buf, size_t n, struct uio *uio)
145 {
146 struct vmspace *vm = uio->uio_vmspace;
147 struct iovec *iov;
148 u_int cnt;
149 int error = 0;
150 char *cp = buf;
151 int hold_count;
152
153 hold_count = KERNEL_LOCK_RELEASE_ALL();
154
155 #ifdef LOCKDEBUG
156 spinlock_switchcheck();
157 simple_lock_only_held(NULL, "uiomove");
158 #endif
159
160 #ifdef DIAGNOSTIC
161 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
162 panic("uiomove: mode");
163 #endif
164 while (n > 0 && uio->uio_resid) {
165 iov = uio->uio_iov;
166 cnt = iov->iov_len;
167 if (cnt == 0) {
168 KASSERT(uio->uio_iovcnt > 0);
169 uio->uio_iov++;
170 uio->uio_iovcnt--;
171 continue;
172 }
173 if (cnt > n)
174 cnt = n;
175 if (!VMSPACE_IS_KERNEL_P(vm)) {
176 if (curcpu()->ci_schedstate.spc_flags &
177 SPCF_SHOULDYIELD)
178 preempt(1);
179 }
180
181 if (uio->uio_rw == UIO_READ) {
182 error = copyout_vmspace(vm, cp, iov->iov_base,
183 cnt);
184 } else {
185 error = copyin_vmspace(vm, iov->iov_base, cp,
186 cnt);
187 }
188 if (error) {
189 break;
190 }
191 iov->iov_base = (caddr_t)iov->iov_base + cnt;
192 iov->iov_len -= cnt;
193 uio->uio_resid -= cnt;
194 uio->uio_offset += cnt;
195 cp += cnt;
196 KDASSERT(cnt <= n);
197 n -= cnt;
198 }
199 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
200 return (error);
201 }
202
203 /*
204 * Wrapper for uiomove() that validates the arguments against a known-good
205 * kernel buffer.
206 */
207 int
208 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
209 {
210 size_t offset;
211
212 if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
213 (offset = uio->uio_offset) != uio->uio_offset)
214 return (EINVAL);
215 if (offset >= buflen)
216 return (0);
217 return (uiomove((char *)buf + offset, buflen - offset, uio));
218 }
219
220 /*
221 * Give next character to user as result of read.
222 */
223 int
224 ureadc(int c, struct uio *uio)
225 {
226 struct iovec *iov;
227
228 if (uio->uio_resid <= 0)
229 panic("ureadc: non-positive resid");
230 again:
231 if (uio->uio_iovcnt <= 0)
232 panic("ureadc: non-positive iovcnt");
233 iov = uio->uio_iov;
234 if (iov->iov_len <= 0) {
235 uio->uio_iovcnt--;
236 uio->uio_iov++;
237 goto again;
238 }
239 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
240 if (subyte(iov->iov_base, c) < 0)
241 return (EFAULT);
242 } else {
243 *(char *)iov->iov_base = c;
244 }
245 iov->iov_base = (caddr_t)iov->iov_base + 1;
246 iov->iov_len--;
247 uio->uio_resid--;
248 uio->uio_offset++;
249 return (0);
250 }
251
252 /*
253 * Like copyin(), but operates on an arbitrary vmspace.
254 */
255 int
256 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
257 {
258 struct iovec iov;
259 struct uio uio;
260 int error;
261
262 if (len == 0)
263 return (0);
264
265 if (VMSPACE_IS_KERNEL_P(vm)) {
266 return kcopy(uaddr, kaddr, len);
267 }
268 if (__predict_true(vm == curproc->p_vmspace)) {
269 return copyin(uaddr, kaddr, len);
270 }
271
272 iov.iov_base = kaddr;
273 iov.iov_len = len;
274 uio.uio_iov = &iov;
275 uio.uio_iovcnt = 1;
276 uio.uio_offset = (off_t)(intptr_t)uaddr;
277 uio.uio_resid = len;
278 uio.uio_rw = UIO_READ;
279 UIO_SETUP_SYSSPACE(&uio);
280 error = uvm_io(&vm->vm_map, &uio);
281
282 return (error);
283 }
284
285 /*
286 * Like copyout(), but operates on an arbitrary vmspace.
287 */
288 int
289 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
290 {
291 struct iovec iov;
292 struct uio uio;
293 int error;
294
295 if (len == 0)
296 return (0);
297
298 if (VMSPACE_IS_KERNEL_P(vm)) {
299 return kcopy(kaddr, uaddr, len);
300 }
301 if (__predict_true(vm == curproc->p_vmspace)) {
302 return copyout(kaddr, uaddr, len);
303 }
304
305 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
306 iov.iov_len = len;
307 uio.uio_iov = &iov;
308 uio.uio_iovcnt = 1;
309 uio.uio_offset = (off_t)(intptr_t)uaddr;
310 uio.uio_resid = len;
311 uio.uio_rw = UIO_WRITE;
312 UIO_SETUP_SYSSPACE(&uio);
313 error = uvm_io(&vm->vm_map, &uio);
314
315 return (error);
316 }
317
318 /*
319 * Like copyin(), but operates on an arbitrary process.
320 */
321 int
322 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
323 {
324 struct vmspace *vm;
325 int error;
326
327 error = proc_vmspace_getref(p, &vm);
328 if (error) {
329 return error;
330 }
331 error = copyin_vmspace(vm, uaddr, kaddr, len);
332 uvmspace_free(vm);
333
334 return error;
335 }
336
337 /*
338 * Like copyout(), but operates on an arbitrary process.
339 */
340 int
341 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
342 {
343 struct vmspace *vm;
344 int error;
345
346 error = proc_vmspace_getref(p, &vm);
347 if (error) {
348 return error;
349 }
350 error = copyout_vmspace(vm, kaddr, uaddr, len);
351 uvmspace_free(vm);
352
353 return error;
354 }
355
356 /*
357 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
358 * flag is passed in `ioctlflags' from the ioctl call.
359 */
360 int
361 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
362 {
363 if (ioctlflags & FKIOCTL)
364 return kcopy(src, dst, len);
365 return copyin(src, dst, len);
366 }
367
368 /*
369 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
370 * flag is passed in `ioctlflags' from the ioctl call.
371 */
372 int
373 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
374 {
375 if (ioctlflags & FKIOCTL)
376 return kcopy(src, dst, len);
377 return copyout(src, dst, len);
378 }
379
380 /*
381 * General routine to allocate a hash table.
382 * Allocate enough memory to hold at least `elements' list-head pointers.
383 * Return a pointer to the allocated space and set *hashmask to a pattern
384 * suitable for masking a value to use as an index into the returned array.
385 */
386 void *
387 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
388 int mflags, u_long *hashmask)
389 {
390 u_long hashsize, i;
391 LIST_HEAD(, generic) *hashtbl_list;
392 TAILQ_HEAD(, generic) *hashtbl_tailq;
393 size_t esize;
394 void *p;
395
396 if (elements == 0)
397 panic("hashinit: bad cnt");
398 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
399 continue;
400
401 switch (htype) {
402 case HASH_LIST:
403 esize = sizeof(*hashtbl_list);
404 break;
405 case HASH_TAILQ:
406 esize = sizeof(*hashtbl_tailq);
407 break;
408 default:
409 #ifdef DIAGNOSTIC
410 panic("hashinit: invalid table type");
411 #else
412 return NULL;
413 #endif
414 }
415
416 if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
417 return (NULL);
418
419 switch (htype) {
420 case HASH_LIST:
421 hashtbl_list = p;
422 for (i = 0; i < hashsize; i++)
423 LIST_INIT(&hashtbl_list[i]);
424 break;
425 case HASH_TAILQ:
426 hashtbl_tailq = p;
427 for (i = 0; i < hashsize; i++)
428 TAILQ_INIT(&hashtbl_tailq[i]);
429 break;
430 }
431 *hashmask = hashsize - 1;
432 return (p);
433 }
434
435 /*
436 * Free memory from hash table previosly allocated via hashinit().
437 */
438 void
439 hashdone(void *hashtbl, struct malloc_type *mtype)
440 {
441
442 free(hashtbl, mtype);
443 }
444
445
446 static void *
447 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
448 {
449 struct hook_desc *hd;
450
451 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
452 if (hd == NULL)
453 return (NULL);
454
455 hd->hk_fn = fn;
456 hd->hk_arg = arg;
457 LIST_INSERT_HEAD(list, hd, hk_list);
458
459 return (hd);
460 }
461
462 static void
463 hook_disestablish(hook_list_t *list, void *vhook)
464 {
465 #ifdef DIAGNOSTIC
466 struct hook_desc *hd;
467
468 LIST_FOREACH(hd, list, hk_list) {
469 if (hd == vhook)
470 break;
471 }
472
473 if (hd == NULL)
474 panic("hook_disestablish: hook %p not established", vhook);
475 #endif
476 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
477 free(vhook, M_DEVBUF);
478 }
479
480 static void
481 hook_destroy(hook_list_t *list)
482 {
483 struct hook_desc *hd;
484
485 while ((hd = LIST_FIRST(list)) != NULL) {
486 LIST_REMOVE(hd, hk_list);
487 free(hd, M_DEVBUF);
488 }
489 }
490
491 static void
492 hook_proc_run(hook_list_t *list, struct proc *p)
493 {
494 struct hook_desc *hd;
495
496 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
497 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
498 hd->hk_arg);
499 }
500 }
501
502 /*
503 * "Shutdown hook" types, functions, and variables.
504 *
505 * Should be invoked immediately before the
506 * system is halted or rebooted, i.e. after file systems unmounted,
507 * after crash dump done, etc.
508 *
509 * Each shutdown hook is removed from the list before it's run, so that
510 * it won't be run again.
511 */
512
513 static hook_list_t shutdownhook_list;
514
515 void *
516 shutdownhook_establish(void (*fn)(void *), void *arg)
517 {
518 return hook_establish(&shutdownhook_list, fn, arg);
519 }
520
521 void
522 shutdownhook_disestablish(void *vhook)
523 {
524 hook_disestablish(&shutdownhook_list, vhook);
525 }
526
527 /*
528 * Run shutdown hooks. Should be invoked immediately before the
529 * system is halted or rebooted, i.e. after file systems unmounted,
530 * after crash dump done, etc.
531 *
532 * Each shutdown hook is removed from the list before it's run, so that
533 * it won't be run again.
534 */
535 void
536 doshutdownhooks(void)
537 {
538 struct hook_desc *dp;
539
540 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
541 LIST_REMOVE(dp, hk_list);
542 (*dp->hk_fn)(dp->hk_arg);
543 #if 0
544 /*
545 * Don't bother freeing the hook structure,, since we may
546 * be rebooting because of a memory corruption problem,
547 * and this might only make things worse. It doesn't
548 * matter, anyway, since the system is just about to
549 * reboot.
550 */
551 free(dp, M_DEVBUF);
552 #endif
553 }
554 }
555
556 /*
557 * "Mountroot hook" types, functions, and variables.
558 */
559
560 static hook_list_t mountroothook_list;
561
562 void *
563 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
564 {
565 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
566 }
567
568 void
569 mountroothook_disestablish(void *vhook)
570 {
571 hook_disestablish(&mountroothook_list, vhook);
572 }
573
574 void
575 mountroothook_destroy(void)
576 {
577 hook_destroy(&mountroothook_list);
578 }
579
580 void
581 domountroothook(void)
582 {
583 struct hook_desc *hd;
584
585 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
586 if (hd->hk_arg == (void *)root_device) {
587 (*hd->hk_fn)(hd->hk_arg);
588 return;
589 }
590 }
591 }
592
593 static hook_list_t exechook_list;
594
595 void *
596 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
597 {
598 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
599 }
600
601 void
602 exechook_disestablish(void *vhook)
603 {
604 hook_disestablish(&exechook_list, vhook);
605 }
606
607 /*
608 * Run exec hooks.
609 */
610 void
611 doexechooks(struct proc *p)
612 {
613 hook_proc_run(&exechook_list, p);
614 }
615
616 static hook_list_t exithook_list;
617
618 void *
619 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
620 {
621 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
622 }
623
624 void
625 exithook_disestablish(void *vhook)
626 {
627 hook_disestablish(&exithook_list, vhook);
628 }
629
630 /*
631 * Run exit hooks.
632 */
633 void
634 doexithooks(struct proc *p)
635 {
636 hook_proc_run(&exithook_list, p);
637 }
638
639 static hook_list_t forkhook_list;
640
641 void *
642 forkhook_establish(void (*fn)(struct proc *, struct proc *))
643 {
644 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
645 }
646
647 void
648 forkhook_disestablish(void *vhook)
649 {
650 hook_disestablish(&forkhook_list, vhook);
651 }
652
653 /*
654 * Run fork hooks.
655 */
656 void
657 doforkhooks(struct proc *p2, struct proc *p1)
658 {
659 struct hook_desc *hd;
660
661 LIST_FOREACH(hd, &forkhook_list, hk_list) {
662 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
663 (p2, p1);
664 }
665 }
666
667 /*
668 * "Power hook" types, functions, and variables.
669 * The list of power hooks is kept ordered with the last registered hook
670 * first.
671 * When running the hooks on power down the hooks are called in reverse
672 * registration order, when powering up in registration order.
673 */
674 struct powerhook_desc {
675 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
676 void (*sfd_fn)(int, void *);
677 void *sfd_arg;
678 };
679
680 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
681 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
682
683 void *
684 powerhook_establish(void (*fn)(int, void *), void *arg)
685 {
686 struct powerhook_desc *ndp;
687
688 ndp = (struct powerhook_desc *)
689 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
690 if (ndp == NULL)
691 return (NULL);
692
693 ndp->sfd_fn = fn;
694 ndp->sfd_arg = arg;
695 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
696
697 return (ndp);
698 }
699
700 void
701 powerhook_disestablish(void *vhook)
702 {
703 #ifdef DIAGNOSTIC
704 struct powerhook_desc *dp;
705
706 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
707 if (dp == vhook)
708 goto found;
709 panic("powerhook_disestablish: hook %p not established", vhook);
710 found:
711 #endif
712
713 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
714 sfd_list);
715 free(vhook, M_DEVBUF);
716 }
717
718 /*
719 * Run power hooks.
720 */
721 void
722 dopowerhooks(int why)
723 {
724 struct powerhook_desc *dp;
725
726 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
727 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
728 (*dp->sfd_fn)(why, dp->sfd_arg);
729 }
730 } else {
731 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
732 (*dp->sfd_fn)(why, dp->sfd_arg);
733 }
734 }
735 }
736
737 /*
738 * Determine the root device and, if instructed to, the root file system.
739 */
740
741 #include "md.h"
742 #if NMD == 0
743 #undef MEMORY_DISK_HOOKS
744 #endif
745
746 #ifdef MEMORY_DISK_HOOKS
747 static struct device fakemdrootdev[NMD];
748 extern struct cfdriver md_cd;
749 #endif
750
751 #ifdef MEMORY_DISK_IS_ROOT
752 #define BOOT_FROM_MEMORY_HOOKS 1
753 #endif
754
755 #include "raid.h"
756 #if NRAID == 1
757 #define BOOT_FROM_RAID_HOOKS 1
758 #endif
759
760 #ifdef BOOT_FROM_RAID_HOOKS
761 extern int numraid;
762 extern struct device *raidrootdev;
763 #endif
764
765 /*
766 * The device and wedge that we booted from. If booted_wedge is NULL,
767 * the we might consult booted_partition.
768 */
769 struct device *booted_device;
770 struct device *booted_wedge;
771 int booted_partition;
772
773 /*
774 * Use partition letters if it's a disk class but not a wedge.
775 * XXX Check for wedge is kinda gross.
776 */
777 #define DEV_USES_PARTITIONS(dv) \
778 (device_class((dv)) == DV_DISK && \
779 !device_is_a((dv), "dk"))
780
781 void
782 setroot(struct device *bootdv, int bootpartition)
783 {
784 struct device *dv;
785 int len;
786 #ifdef MEMORY_DISK_HOOKS
787 int i;
788 #endif
789 dev_t nrootdev;
790 dev_t ndumpdev = NODEV;
791 char buf[128];
792 const char *rootdevname;
793 const char *dumpdevname;
794 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
795 struct device *dumpdv = NULL;
796 struct ifnet *ifp;
797 const char *deffsname;
798 struct vfsops *vops;
799
800 #ifdef MEMORY_DISK_HOOKS
801 for (i = 0; i < NMD; i++) {
802 fakemdrootdev[i].dv_class = DV_DISK;
803 fakemdrootdev[i].dv_cfdata = NULL;
804 fakemdrootdev[i].dv_cfdriver = &md_cd;
805 fakemdrootdev[i].dv_unit = i;
806 fakemdrootdev[i].dv_parent = NULL;
807 snprintf(fakemdrootdev[i].dv_xname,
808 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
809 }
810 #endif /* MEMORY_DISK_HOOKS */
811
812 #ifdef MEMORY_DISK_IS_ROOT
813 bootdv = &fakemdrootdev[0];
814 bootpartition = 0;
815 #endif
816
817 /*
818 * If NFS is specified as the file system, and we found
819 * a DV_DISK boot device (or no boot device at all), then
820 * find a reasonable network interface for "rootspec".
821 */
822 vops = vfs_getopsbyname("nfs");
823 if (vops != NULL && vops->vfs_mountroot == mountroot &&
824 rootspec == NULL &&
825 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
826 IFNET_FOREACH(ifp) {
827 if ((ifp->if_flags &
828 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
829 break;
830 }
831 if (ifp == NULL) {
832 /*
833 * Can't find a suitable interface; ask the
834 * user.
835 */
836 boothowto |= RB_ASKNAME;
837 } else {
838 /*
839 * Have a suitable interface; behave as if
840 * the user specified this interface.
841 */
842 rootspec = (const char *)ifp->if_xname;
843 }
844 }
845
846 /*
847 * If wildcarded root and we the boot device wasn't determined,
848 * ask the user.
849 */
850 if (rootspec == NULL && bootdv == NULL)
851 boothowto |= RB_ASKNAME;
852
853 top:
854 if (boothowto & RB_ASKNAME) {
855 struct device *defdumpdv;
856
857 for (;;) {
858 printf("root device");
859 if (bootdv != NULL) {
860 printf(" (default %s", bootdv->dv_xname);
861 if (DEV_USES_PARTITIONS(bootdv))
862 printf("%c", bootpartition + 'a');
863 printf(")");
864 }
865 printf(": ");
866 len = cngetsn(buf, sizeof(buf));
867 if (len == 0 && bootdv != NULL) {
868 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
869 len = strlen(buf);
870 }
871 if (len > 0 && buf[len - 1] == '*') {
872 buf[--len] = '\0';
873 dv = getdisk(buf, len, 1, &nrootdev, 0);
874 if (dv != NULL) {
875 rootdv = dv;
876 break;
877 }
878 }
879 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
880 if (dv != NULL) {
881 rootdv = dv;
882 break;
883 }
884 }
885
886 /*
887 * Set up the default dump device. If root is on
888 * a network device, there is no default dump
889 * device, since we don't support dumps to the
890 * network.
891 */
892 if (DEV_USES_PARTITIONS(rootdv) == 0)
893 defdumpdv = NULL;
894 else
895 defdumpdv = rootdv;
896
897 for (;;) {
898 printf("dump device");
899 if (defdumpdv != NULL) {
900 /*
901 * Note, we know it's a disk if we get here.
902 */
903 printf(" (default %sb)", defdumpdv->dv_xname);
904 }
905 printf(": ");
906 len = cngetsn(buf, sizeof(buf));
907 if (len == 0) {
908 if (defdumpdv != NULL) {
909 ndumpdev = MAKEDISKDEV(major(nrootdev),
910 DISKUNIT(nrootdev), 1);
911 }
912 dumpdv = defdumpdv;
913 break;
914 }
915 if (len == 4 && strcmp(buf, "none") == 0) {
916 dumpdv = NULL;
917 break;
918 }
919 dv = getdisk(buf, len, 1, &ndumpdev, 1);
920 if (dv != NULL) {
921 dumpdv = dv;
922 break;
923 }
924 }
925
926 rootdev = nrootdev;
927 dumpdev = ndumpdev;
928
929 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
930 vops = LIST_NEXT(vops, vfs_list)) {
931 if (vops->vfs_mountroot != NULL &&
932 vops->vfs_mountroot == mountroot)
933 break;
934 }
935
936 if (vops == NULL) {
937 mountroot = NULL;
938 deffsname = "generic";
939 } else
940 deffsname = vops->vfs_name;
941
942 for (;;) {
943 printf("file system (default %s): ", deffsname);
944 len = cngetsn(buf, sizeof(buf));
945 if (len == 0)
946 break;
947 if (len == 4 && strcmp(buf, "halt") == 0)
948 cpu_reboot(RB_HALT, NULL);
949 else if (len == 6 && strcmp(buf, "reboot") == 0)
950 cpu_reboot(0, NULL);
951 #if defined(DDB)
952 else if (len == 3 && strcmp(buf, "ddb") == 0) {
953 console_debugger();
954 }
955 #endif
956 else if (len == 7 && strcmp(buf, "generic") == 0) {
957 mountroot = NULL;
958 break;
959 }
960 vops = vfs_getopsbyname(buf);
961 if (vops == NULL || vops->vfs_mountroot == NULL) {
962 printf("use one of: generic");
963 for (vops = LIST_FIRST(&vfs_list);
964 vops != NULL;
965 vops = LIST_NEXT(vops, vfs_list)) {
966 if (vops->vfs_mountroot != NULL)
967 printf(" %s", vops->vfs_name);
968 }
969 #if defined(DDB)
970 printf(" ddb");
971 #endif
972 printf(" halt reboot\n");
973 } else {
974 mountroot = vops->vfs_mountroot;
975 break;
976 }
977 }
978
979 } else if (rootspec == NULL) {
980 int majdev;
981
982 /*
983 * Wildcarded root; use the boot device.
984 */
985 rootdv = bootdv;
986
987 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
988 if (majdev >= 0) {
989 /*
990 * Root is on a disk. `bootpartition' is root,
991 * unless the device does not use partitions.
992 */
993 if (DEV_USES_PARTITIONS(bootdv))
994 rootdev = MAKEDISKDEV(majdev,
995 device_unit(bootdv),
996 bootpartition);
997 else
998 rootdev = makedev(majdev, device_unit(bootdv));
999 }
1000 } else {
1001
1002 /*
1003 * `root on <dev> ...'
1004 */
1005
1006 /*
1007 * If it's a network interface, we can bail out
1008 * early.
1009 */
1010 dv = finddevice(rootspec);
1011 if (dv != NULL && device_class(dv) == DV_IFNET) {
1012 rootdv = dv;
1013 goto haveroot;
1014 }
1015
1016 rootdevname = devsw_blk2name(major(rootdev));
1017 if (rootdevname == NULL) {
1018 printf("unknown device major 0x%x\n", rootdev);
1019 boothowto |= RB_ASKNAME;
1020 goto top;
1021 }
1022 memset(buf, 0, sizeof(buf));
1023 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1024 DISKUNIT(rootdev));
1025
1026 rootdv = finddevice(buf);
1027 if (rootdv == NULL) {
1028 printf("device %s (0x%x) not configured\n",
1029 buf, rootdev);
1030 boothowto |= RB_ASKNAME;
1031 goto top;
1032 }
1033 }
1034
1035 haveroot:
1036
1037 root_device = rootdv;
1038
1039 switch (device_class(rootdv)) {
1040 case DV_IFNET:
1041 aprint_normal("root on %s", rootdv->dv_xname);
1042 break;
1043
1044 case DV_DISK:
1045 aprint_normal("root on %s%c", rootdv->dv_xname,
1046 DISKPART(rootdev) + 'a');
1047 break;
1048
1049 default:
1050 printf("can't determine root device\n");
1051 boothowto |= RB_ASKNAME;
1052 goto top;
1053 }
1054
1055 /*
1056 * Now configure the dump device.
1057 *
1058 * If we haven't figured out the dump device, do so, with
1059 * the following rules:
1060 *
1061 * (a) We already know dumpdv in the RB_ASKNAME case.
1062 *
1063 * (b) If dumpspec is set, try to use it. If the device
1064 * is not available, punt.
1065 *
1066 * (c) If dumpspec is not set, the dump device is
1067 * wildcarded or unspecified. If the root device
1068 * is DV_IFNET, punt. Otherwise, use partition b
1069 * of the root device.
1070 */
1071
1072 if (boothowto & RB_ASKNAME) { /* (a) */
1073 if (dumpdv == NULL)
1074 goto nodumpdev;
1075 } else if (dumpspec != NULL) { /* (b) */
1076 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1077 /*
1078 * Operator doesn't want a dump device.
1079 * Or looks like they tried to pick a network
1080 * device. Oops.
1081 */
1082 goto nodumpdev;
1083 }
1084
1085 dumpdevname = devsw_blk2name(major(dumpdev));
1086 if (dumpdevname == NULL)
1087 goto nodumpdev;
1088 memset(buf, 0, sizeof(buf));
1089 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1090 DISKUNIT(dumpdev));
1091
1092 dumpdv = finddevice(buf);
1093 if (dumpdv == NULL) {
1094 /*
1095 * Device not configured.
1096 */
1097 goto nodumpdev;
1098 }
1099 } else { /* (c) */
1100 if (DEV_USES_PARTITIONS(rootdv) == 0)
1101 goto nodumpdev;
1102 else {
1103 dumpdv = rootdv;
1104 dumpdev = MAKEDISKDEV(major(rootdev),
1105 device_unit(dumpdv), 1);
1106 }
1107 }
1108
1109 aprint_normal(" dumps on %s%c\n", dumpdv->dv_xname,
1110 DISKPART(dumpdev) + 'a');
1111 return;
1112
1113 nodumpdev:
1114 dumpdev = NODEV;
1115 aprint_normal("\n");
1116 }
1117
1118 static struct device *
1119 finddevice(const char *name)
1120 {
1121 struct device *dv;
1122 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
1123 int j;
1124 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
1125
1126 #ifdef BOOT_FROM_RAID_HOOKS
1127 for (j = 0; j < numraid; j++) {
1128 if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
1129 dv = &raidrootdev[j];
1130 return (dv);
1131 }
1132 }
1133 #endif /* BOOT_FROM_RAID_HOOKS */
1134
1135 #ifdef BOOT_FROM_MEMORY_HOOKS
1136 for (j = 0; j < NMD; j++) {
1137 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
1138 dv = &fakemdrootdev[j];
1139 return (dv);
1140 }
1141 }
1142 #endif /* BOOT_FROM_MEMORY_HOOKS */
1143
1144 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1145 dv = TAILQ_NEXT(dv, dv_list))
1146 if (strcmp(dv->dv_xname, name) == 0)
1147 break;
1148 return (dv);
1149 }
1150
1151 static struct device *
1152 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1153 {
1154 struct device *dv;
1155 #ifdef MEMORY_DISK_HOOKS
1156 int i;
1157 #endif
1158 #ifdef BOOT_FROM_RAID_HOOKS
1159 int j;
1160 #endif
1161
1162 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1163 printf("use one of:");
1164 #ifdef MEMORY_DISK_HOOKS
1165 if (isdump == 0)
1166 for (i = 0; i < NMD; i++)
1167 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1168 'a' + MAXPARTITIONS - 1);
1169 #endif
1170 #ifdef BOOT_FROM_RAID_HOOKS
1171 if (isdump == 0)
1172 for (j = 0; j < numraid; j++)
1173 printf(" %s[a-%c]", raidrootdev[j].dv_xname,
1174 'a' + MAXPARTITIONS - 1);
1175 #endif
1176 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1177 if (DEV_USES_PARTITIONS(dv))
1178 printf(" %s[a-%c]", dv->dv_xname,
1179 'a' + MAXPARTITIONS - 1);
1180 else if (device_class(dv) == DV_DISK)
1181 printf(" %s", dv->dv_xname);
1182 if (isdump == 0 && device_class(dv) == DV_IFNET)
1183 printf(" %s", dv->dv_xname);
1184 }
1185 if (isdump)
1186 printf(" none");
1187 #if defined(DDB)
1188 printf(" ddb");
1189 #endif
1190 printf(" halt reboot\n");
1191 }
1192 return (dv);
1193 }
1194
1195 static struct device *
1196 parsedisk(char *str, int len, int defpart, dev_t *devp)
1197 {
1198 struct device *dv;
1199 char *cp, c;
1200 int majdev, part;
1201 #ifdef MEMORY_DISK_HOOKS
1202 int i;
1203 #endif
1204 if (len == 0)
1205 return (NULL);
1206
1207 if (len == 4 && strcmp(str, "halt") == 0)
1208 cpu_reboot(RB_HALT, NULL);
1209 else if (len == 6 && strcmp(str, "reboot") == 0)
1210 cpu_reboot(0, NULL);
1211 #if defined(DDB)
1212 else if (len == 3 && strcmp(str, "ddb") == 0)
1213 console_debugger();
1214 #endif
1215
1216 cp = str + len - 1;
1217 c = *cp;
1218 if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1219 part = c - 'a';
1220 *cp = '\0';
1221 } else
1222 part = defpart;
1223
1224 #ifdef MEMORY_DISK_HOOKS
1225 for (i = 0; i < NMD; i++)
1226 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1227 dv = &fakemdrootdev[i];
1228 goto gotdisk;
1229 }
1230 #endif
1231
1232 dv = finddevice(str);
1233 if (dv != NULL) {
1234 if (device_class(dv) == DV_DISK) {
1235 #ifdef MEMORY_DISK_HOOKS
1236 gotdisk:
1237 #endif
1238 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1239 if (majdev < 0)
1240 panic("parsedisk");
1241 if (DEV_USES_PARTITIONS(dv))
1242 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1243 part);
1244 else
1245 *devp = makedev(majdev, device_unit(dv));
1246 }
1247
1248 if (device_class(dv) == DV_IFNET)
1249 *devp = NODEV;
1250 }
1251
1252 *cp = c;
1253 return (dv);
1254 }
1255
1256 /*
1257 * snprintf() `bytes' into `buf', reformatting it so that the number,
1258 * plus a possible `x' + suffix extension) fits into len bytes (including
1259 * the terminating NUL).
1260 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1261 * E.g, given a len of 9 and a suffix of `B':
1262 * bytes result
1263 * ----- ------
1264 * 99999 `99999 B'
1265 * 100000 `97 kB'
1266 * 66715648 `65152 kB'
1267 * 252215296 `240 MB'
1268 */
1269 int
1270 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1271 int divisor)
1272 {
1273 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1274 const char *prefixes;
1275 int r;
1276 uint64_t umax;
1277 size_t i, suffixlen;
1278
1279 if (buf == NULL || suffix == NULL)
1280 return (-1);
1281 if (len > 0)
1282 buf[0] = '\0';
1283 suffixlen = strlen(suffix);
1284 /* check if enough room for `x y' + suffix + `\0' */
1285 if (len < 4 + suffixlen)
1286 return (-1);
1287
1288 if (divisor == 1024) {
1289 /*
1290 * binary multiplies
1291 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1292 */
1293 prefixes = " KMGTPE";
1294 } else
1295 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1296
1297 umax = 1;
1298 for (i = 0; i < len - suffixlen - 3; i++)
1299 umax *= 10;
1300 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1301 bytes /= divisor;
1302
1303 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1304 i == 0 ? "" : " ", prefixes[i], suffix);
1305
1306 return (r);
1307 }
1308
1309 int
1310 format_bytes(char *buf, size_t len, uint64_t bytes)
1311 {
1312 int rv;
1313 size_t nlen;
1314
1315 rv = humanize_number(buf, len, bytes, "B", 1024);
1316 if (rv != -1) {
1317 /* nuke the trailing ` B' if it exists */
1318 nlen = strlen(buf) - 2;
1319 if (strcmp(&buf[nlen], " B") == 0)
1320 buf[nlen] = '\0';
1321 }
1322 return (rv);
1323 }
1324
1325 /*
1326 * Return TRUE if system call tracing is enabled for the specified process.
1327 */
1328 boolean_t
1329 trace_is_enabled(struct proc *p)
1330 {
1331 #ifdef SYSCALL_DEBUG
1332 return (TRUE);
1333 #endif
1334 #ifdef KTRACE
1335 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1336 return (TRUE);
1337 #endif
1338 #ifdef SYSTRACE
1339 if (ISSET(p->p_flag, P_SYSTRACE))
1340 return (TRUE);
1341 #endif
1342 if (ISSET(p->p_flag, P_SYSCALL))
1343 return (TRUE);
1344
1345 return (FALSE);
1346 }
1347
1348 /*
1349 * Start trace of particular system call. If process is being traced,
1350 * this routine is called by MD syscall dispatch code just before
1351 * a system call is actually executed.
1352 * MD caller guarantees the passed 'code' is within the supported
1353 * system call number range for emulation the process runs under.
1354 */
1355 int
1356 trace_enter(struct lwp *l, register_t code,
1357 register_t realcode, const struct sysent *callp, void *args)
1358 {
1359 struct proc *p = l->l_proc;
1360
1361 #ifdef SYSCALL_DEBUG
1362 scdebug_call(l, code, args);
1363 #endif /* SYSCALL_DEBUG */
1364
1365 #ifdef KTRACE
1366 if (KTRPOINT(p, KTR_SYSCALL))
1367 ktrsyscall(l, code, realcode, callp, args);
1368 #endif /* KTRACE */
1369
1370 if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1371 process_stoptrace(l);
1372
1373 #ifdef SYSTRACE
1374 if (ISSET(p->p_flag, P_SYSTRACE))
1375 return systrace_enter(p, code, args);
1376 #endif
1377 return 0;
1378 }
1379
1380 /*
1381 * End trace of particular system call. If process is being traced,
1382 * this routine is called by MD syscall dispatch code just after
1383 * a system call finishes.
1384 * MD caller guarantees the passed 'code' is within the supported
1385 * system call number range for emulation the process runs under.
1386 */
1387 void
1388 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1389 int error)
1390 {
1391 struct proc *p = l->l_proc;
1392
1393 #ifdef SYSCALL_DEBUG
1394 scdebug_ret(l, code, error, rval);
1395 #endif /* SYSCALL_DEBUG */
1396
1397 #ifdef KTRACE
1398 if (KTRPOINT(p, KTR_SYSRET)) {
1399 KERNEL_PROC_LOCK(l);
1400 ktrsysret(l, code, error, rval);
1401 KERNEL_PROC_UNLOCK(l);
1402 }
1403 #endif /* KTRACE */
1404
1405 if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1406 process_stoptrace(l);
1407
1408 #ifdef SYSTRACE
1409 if (ISSET(p->p_flag, P_SYSTRACE)) {
1410 KERNEL_PROC_LOCK(l);
1411 systrace_exit(p, code, args, rval, error);
1412 KERNEL_PROC_UNLOCK(l);
1413 }
1414 #endif
1415 }
1416