Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.142
      1 /*	$NetBSD: kern_subr.c,v 1.142 2006/09/01 21:24:50 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Copyright (c) 1992, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * This software was developed by the Computer Systems Engineering group
     53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     54  * contributed to Berkeley.
     55  *
     56  * All advertising materials mentioning features or use of this software
     57  * must display the following acknowledgement:
     58  *	This product includes software developed by the University of
     59  *	California, Lawrence Berkeley Laboratory.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  * 2. Redistributions in binary form must reproduce the above copyright
     67  *    notice, this list of conditions and the following disclaimer in the
     68  *    documentation and/or other materials provided with the distribution.
     69  * 3. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.142 2006/09/01 21:24:50 matt Exp $");
     90 
     91 #include "opt_ddb.h"
     92 #include "opt_md.h"
     93 #include "opt_syscall_debug.h"
     94 #include "opt_ktrace.h"
     95 #include "opt_ptrace.h"
     96 #include "opt_systrace.h"
     97 
     98 #include <sys/param.h>
     99 #include <sys/systm.h>
    100 #include <sys/proc.h>
    101 #include <sys/malloc.h>
    102 #include <sys/mount.h>
    103 #include <sys/device.h>
    104 #include <sys/reboot.h>
    105 #include <sys/conf.h>
    106 #include <sys/disklabel.h>
    107 #include <sys/queue.h>
    108 #include <sys/systrace.h>
    109 #include <sys/ktrace.h>
    110 #include <sys/ptrace.h>
    111 #include <sys/fcntl.h>
    112 
    113 #include <uvm/uvm_extern.h>
    114 
    115 #include <dev/cons.h>
    116 
    117 #include <net/if.h>
    118 
    119 /* XXX these should eventually move to subr_autoconf.c */
    120 static struct device *finddevice(const char *);
    121 static struct device *getdisk(char *, int, int, dev_t *, int);
    122 static struct device *parsedisk(char *, int, int, dev_t *);
    123 
    124 /*
    125  * A generic linear hook.
    126  */
    127 struct hook_desc {
    128 	LIST_ENTRY(hook_desc) hk_list;
    129 	void	(*hk_fn)(void *);
    130 	void	*hk_arg;
    131 };
    132 typedef LIST_HEAD(, hook_desc) hook_list_t;
    133 
    134 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
    135 
    136 void
    137 uio_setup_sysspace(struct uio *uio)
    138 {
    139 
    140 	uio->uio_vmspace = vmspace_kernel();
    141 }
    142 
    143 int
    144 uiomove(void *buf, size_t n, struct uio *uio)
    145 {
    146 	struct vmspace *vm = uio->uio_vmspace;
    147 	struct iovec *iov;
    148 	u_int cnt;
    149 	int error = 0;
    150 	char *cp = buf;
    151 	int hold_count;
    152 
    153 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    154 
    155 	ASSERT_SLEEPABLE(NULL, "uiomove");
    156 
    157 #ifdef DIAGNOSTIC
    158 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    159 		panic("uiomove: mode");
    160 #endif
    161 	while (n > 0 && uio->uio_resid) {
    162 		iov = uio->uio_iov;
    163 		cnt = iov->iov_len;
    164 		if (cnt == 0) {
    165 			KASSERT(uio->uio_iovcnt > 0);
    166 			uio->uio_iov++;
    167 			uio->uio_iovcnt--;
    168 			continue;
    169 		}
    170 		if (cnt > n)
    171 			cnt = n;
    172 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    173 			if (curcpu()->ci_schedstate.spc_flags &
    174 			    SPCF_SHOULDYIELD)
    175 				preempt(1);
    176 		}
    177 
    178 		if (uio->uio_rw == UIO_READ) {
    179 			error = copyout_vmspace(vm, cp, iov->iov_base,
    180 			    cnt);
    181 		} else {
    182 			error = copyin_vmspace(vm, iov->iov_base, cp,
    183 			    cnt);
    184 		}
    185 		if (error) {
    186 			break;
    187 		}
    188 		iov->iov_base = (caddr_t)iov->iov_base + cnt;
    189 		iov->iov_len -= cnt;
    190 		uio->uio_resid -= cnt;
    191 		uio->uio_offset += cnt;
    192 		cp += cnt;
    193 		KDASSERT(cnt <= n);
    194 		n -= cnt;
    195 	}
    196 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
    197 	return (error);
    198 }
    199 
    200 /*
    201  * Wrapper for uiomove() that validates the arguments against a known-good
    202  * kernel buffer.
    203  */
    204 int
    205 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    206 {
    207 	size_t offset;
    208 
    209 	if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
    210 	    (offset = uio->uio_offset) != uio->uio_offset)
    211 		return (EINVAL);
    212 	if (offset >= buflen)
    213 		return (0);
    214 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    215 }
    216 
    217 /*
    218  * Give next character to user as result of read.
    219  */
    220 int
    221 ureadc(int c, struct uio *uio)
    222 {
    223 	struct iovec *iov;
    224 
    225 	if (uio->uio_resid <= 0)
    226 		panic("ureadc: non-positive resid");
    227 again:
    228 	if (uio->uio_iovcnt <= 0)
    229 		panic("ureadc: non-positive iovcnt");
    230 	iov = uio->uio_iov;
    231 	if (iov->iov_len <= 0) {
    232 		uio->uio_iovcnt--;
    233 		uio->uio_iov++;
    234 		goto again;
    235 	}
    236 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    237 		if (subyte(iov->iov_base, c) < 0)
    238 			return (EFAULT);
    239 	} else {
    240 		*(char *)iov->iov_base = c;
    241 	}
    242 	iov->iov_base = (caddr_t)iov->iov_base + 1;
    243 	iov->iov_len--;
    244 	uio->uio_resid--;
    245 	uio->uio_offset++;
    246 	return (0);
    247 }
    248 
    249 /*
    250  * Like copyin(), but operates on an arbitrary vmspace.
    251  */
    252 int
    253 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    254 {
    255 	struct iovec iov;
    256 	struct uio uio;
    257 	int error;
    258 
    259 	if (len == 0)
    260 		return (0);
    261 
    262 	if (VMSPACE_IS_KERNEL_P(vm)) {
    263 		return kcopy(uaddr, kaddr, len);
    264 	}
    265 	if (__predict_true(vm == curproc->p_vmspace)) {
    266 		return copyin(uaddr, kaddr, len);
    267 	}
    268 
    269 	iov.iov_base = kaddr;
    270 	iov.iov_len = len;
    271 	uio.uio_iov = &iov;
    272 	uio.uio_iovcnt = 1;
    273 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    274 	uio.uio_resid = len;
    275 	uio.uio_rw = UIO_READ;
    276 	UIO_SETUP_SYSSPACE(&uio);
    277 	error = uvm_io(&vm->vm_map, &uio);
    278 
    279 	return (error);
    280 }
    281 
    282 /*
    283  * Like copyout(), but operates on an arbitrary vmspace.
    284  */
    285 int
    286 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    287 {
    288 	struct iovec iov;
    289 	struct uio uio;
    290 	int error;
    291 
    292 	if (len == 0)
    293 		return (0);
    294 
    295 	if (VMSPACE_IS_KERNEL_P(vm)) {
    296 		return kcopy(kaddr, uaddr, len);
    297 	}
    298 	if (__predict_true(vm == curproc->p_vmspace)) {
    299 		return copyout(kaddr, uaddr, len);
    300 	}
    301 
    302 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    303 	iov.iov_len = len;
    304 	uio.uio_iov = &iov;
    305 	uio.uio_iovcnt = 1;
    306 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    307 	uio.uio_resid = len;
    308 	uio.uio_rw = UIO_WRITE;
    309 	UIO_SETUP_SYSSPACE(&uio);
    310 	error = uvm_io(&vm->vm_map, &uio);
    311 
    312 	return (error);
    313 }
    314 
    315 /*
    316  * Like copyin(), but operates on an arbitrary process.
    317  */
    318 int
    319 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    320 {
    321 	struct vmspace *vm;
    322 	int error;
    323 
    324 	error = proc_vmspace_getref(p, &vm);
    325 	if (error) {
    326 		return error;
    327 	}
    328 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    329 	uvmspace_free(vm);
    330 
    331 	return error;
    332 }
    333 
    334 /*
    335  * Like copyout(), but operates on an arbitrary process.
    336  */
    337 int
    338 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    339 {
    340 	struct vmspace *vm;
    341 	int error;
    342 
    343 	error = proc_vmspace_getref(p, &vm);
    344 	if (error) {
    345 		return error;
    346 	}
    347 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    348 	uvmspace_free(vm);
    349 
    350 	return error;
    351 }
    352 
    353 /*
    354  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    355  * flag is passed in `ioctlflags' from the ioctl call.
    356  */
    357 int
    358 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    359 {
    360 	if (ioctlflags & FKIOCTL)
    361 		return kcopy(src, dst, len);
    362 	return copyin(src, dst, len);
    363 }
    364 
    365 /*
    366  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    367  * flag is passed in `ioctlflags' from the ioctl call.
    368  */
    369 int
    370 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    371 {
    372 	if (ioctlflags & FKIOCTL)
    373 		return kcopy(src, dst, len);
    374 	return copyout(src, dst, len);
    375 }
    376 
    377 /*
    378  * General routine to allocate a hash table.
    379  * Allocate enough memory to hold at least `elements' list-head pointers.
    380  * Return a pointer to the allocated space and set *hashmask to a pattern
    381  * suitable for masking a value to use as an index into the returned array.
    382  */
    383 void *
    384 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
    385     int mflags, u_long *hashmask)
    386 {
    387 	u_long hashsize, i;
    388 	LIST_HEAD(, generic) *hashtbl_list;
    389 	TAILQ_HEAD(, generic) *hashtbl_tailq;
    390 	size_t esize;
    391 	void *p;
    392 
    393 	if (elements == 0)
    394 		panic("hashinit: bad cnt");
    395 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
    396 		continue;
    397 
    398 	switch (htype) {
    399 	case HASH_LIST:
    400 		esize = sizeof(*hashtbl_list);
    401 		break;
    402 	case HASH_TAILQ:
    403 		esize = sizeof(*hashtbl_tailq);
    404 		break;
    405 	default:
    406 #ifdef DIAGNOSTIC
    407 		panic("hashinit: invalid table type");
    408 #else
    409 		return NULL;
    410 #endif
    411 	}
    412 
    413 	if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
    414 		return (NULL);
    415 
    416 	switch (htype) {
    417 	case HASH_LIST:
    418 		hashtbl_list = p;
    419 		for (i = 0; i < hashsize; i++)
    420 			LIST_INIT(&hashtbl_list[i]);
    421 		break;
    422 	case HASH_TAILQ:
    423 		hashtbl_tailq = p;
    424 		for (i = 0; i < hashsize; i++)
    425 			TAILQ_INIT(&hashtbl_tailq[i]);
    426 		break;
    427 	}
    428 	*hashmask = hashsize - 1;
    429 	return (p);
    430 }
    431 
    432 /*
    433  * Free memory from hash table previosly allocated via hashinit().
    434  */
    435 void
    436 hashdone(void *hashtbl, struct malloc_type *mtype)
    437 {
    438 
    439 	free(hashtbl, mtype);
    440 }
    441 
    442 
    443 static void *
    444 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    445 {
    446 	struct hook_desc *hd;
    447 
    448 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    449 	if (hd == NULL)
    450 		return (NULL);
    451 
    452 	hd->hk_fn = fn;
    453 	hd->hk_arg = arg;
    454 	LIST_INSERT_HEAD(list, hd, hk_list);
    455 
    456 	return (hd);
    457 }
    458 
    459 static void
    460 hook_disestablish(hook_list_t *list, void *vhook)
    461 {
    462 #ifdef DIAGNOSTIC
    463 	struct hook_desc *hd;
    464 
    465 	LIST_FOREACH(hd, list, hk_list) {
    466                 if (hd == vhook)
    467 			break;
    468 	}
    469 
    470 	if (hd == NULL)
    471 		panic("hook_disestablish: hook %p not established", vhook);
    472 #endif
    473 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    474 	free(vhook, M_DEVBUF);
    475 }
    476 
    477 static void
    478 hook_destroy(hook_list_t *list)
    479 {
    480 	struct hook_desc *hd;
    481 
    482 	while ((hd = LIST_FIRST(list)) != NULL) {
    483 		LIST_REMOVE(hd, hk_list);
    484 		free(hd, M_DEVBUF);
    485 	}
    486 }
    487 
    488 static void
    489 hook_proc_run(hook_list_t *list, struct proc *p)
    490 {
    491 	struct hook_desc *hd;
    492 
    493 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
    494 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
    495 		    hd->hk_arg);
    496 	}
    497 }
    498 
    499 /*
    500  * "Shutdown hook" types, functions, and variables.
    501  *
    502  * Should be invoked immediately before the
    503  * system is halted or rebooted, i.e. after file systems unmounted,
    504  * after crash dump done, etc.
    505  *
    506  * Each shutdown hook is removed from the list before it's run, so that
    507  * it won't be run again.
    508  */
    509 
    510 static hook_list_t shutdownhook_list;
    511 
    512 void *
    513 shutdownhook_establish(void (*fn)(void *), void *arg)
    514 {
    515 	return hook_establish(&shutdownhook_list, fn, arg);
    516 }
    517 
    518 void
    519 shutdownhook_disestablish(void *vhook)
    520 {
    521 	hook_disestablish(&shutdownhook_list, vhook);
    522 }
    523 
    524 /*
    525  * Run shutdown hooks.  Should be invoked immediately before the
    526  * system is halted or rebooted, i.e. after file systems unmounted,
    527  * after crash dump done, etc.
    528  *
    529  * Each shutdown hook is removed from the list before it's run, so that
    530  * it won't be run again.
    531  */
    532 void
    533 doshutdownhooks(void)
    534 {
    535 	struct hook_desc *dp;
    536 
    537 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    538 		LIST_REMOVE(dp, hk_list);
    539 		(*dp->hk_fn)(dp->hk_arg);
    540 #if 0
    541 		/*
    542 		 * Don't bother freeing the hook structure,, since we may
    543 		 * be rebooting because of a memory corruption problem,
    544 		 * and this might only make things worse.  It doesn't
    545 		 * matter, anyway, since the system is just about to
    546 		 * reboot.
    547 		 */
    548 		free(dp, M_DEVBUF);
    549 #endif
    550 	}
    551 }
    552 
    553 /*
    554  * "Mountroot hook" types, functions, and variables.
    555  */
    556 
    557 static hook_list_t mountroothook_list;
    558 
    559 void *
    560 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
    561 {
    562 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    563 }
    564 
    565 void
    566 mountroothook_disestablish(void *vhook)
    567 {
    568 	hook_disestablish(&mountroothook_list, vhook);
    569 }
    570 
    571 void
    572 mountroothook_destroy(void)
    573 {
    574 	hook_destroy(&mountroothook_list);
    575 }
    576 
    577 void
    578 domountroothook(void)
    579 {
    580 	struct hook_desc *hd;
    581 
    582 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    583 		if (hd->hk_arg == (void *)root_device) {
    584 			(*hd->hk_fn)(hd->hk_arg);
    585 			return;
    586 		}
    587 	}
    588 }
    589 
    590 static hook_list_t exechook_list;
    591 
    592 void *
    593 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    594 {
    595 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    596 }
    597 
    598 void
    599 exechook_disestablish(void *vhook)
    600 {
    601 	hook_disestablish(&exechook_list, vhook);
    602 }
    603 
    604 /*
    605  * Run exec hooks.
    606  */
    607 void
    608 doexechooks(struct proc *p)
    609 {
    610 	hook_proc_run(&exechook_list, p);
    611 }
    612 
    613 static hook_list_t exithook_list;
    614 
    615 void *
    616 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    617 {
    618 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    619 }
    620 
    621 void
    622 exithook_disestablish(void *vhook)
    623 {
    624 	hook_disestablish(&exithook_list, vhook);
    625 }
    626 
    627 /*
    628  * Run exit hooks.
    629  */
    630 void
    631 doexithooks(struct proc *p)
    632 {
    633 	hook_proc_run(&exithook_list, p);
    634 }
    635 
    636 static hook_list_t forkhook_list;
    637 
    638 void *
    639 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    640 {
    641 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    642 }
    643 
    644 void
    645 forkhook_disestablish(void *vhook)
    646 {
    647 	hook_disestablish(&forkhook_list, vhook);
    648 }
    649 
    650 /*
    651  * Run fork hooks.
    652  */
    653 void
    654 doforkhooks(struct proc *p2, struct proc *p1)
    655 {
    656 	struct hook_desc *hd;
    657 
    658 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    659 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    660 		    (p2, p1);
    661 	}
    662 }
    663 
    664 /*
    665  * "Power hook" types, functions, and variables.
    666  * The list of power hooks is kept ordered with the last registered hook
    667  * first.
    668  * When running the hooks on power down the hooks are called in reverse
    669  * registration order, when powering up in registration order.
    670  */
    671 struct powerhook_desc {
    672 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    673 	void	(*sfd_fn)(int, void *);
    674 	void	*sfd_arg;
    675 };
    676 
    677 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    678     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    679 
    680 void *
    681 powerhook_establish(void (*fn)(int, void *), void *arg)
    682 {
    683 	struct powerhook_desc *ndp;
    684 
    685 	ndp = (struct powerhook_desc *)
    686 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    687 	if (ndp == NULL)
    688 		return (NULL);
    689 
    690 	ndp->sfd_fn = fn;
    691 	ndp->sfd_arg = arg;
    692 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    693 
    694 	return (ndp);
    695 }
    696 
    697 void
    698 powerhook_disestablish(void *vhook)
    699 {
    700 #ifdef DIAGNOSTIC
    701 	struct powerhook_desc *dp;
    702 
    703 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    704                 if (dp == vhook)
    705 			goto found;
    706 	panic("powerhook_disestablish: hook %p not established", vhook);
    707  found:
    708 #endif
    709 
    710 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    711 	    sfd_list);
    712 	free(vhook, M_DEVBUF);
    713 }
    714 
    715 /*
    716  * Run power hooks.
    717  */
    718 void
    719 dopowerhooks(int why)
    720 {
    721 	struct powerhook_desc *dp;
    722 
    723 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    724 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    725 			(*dp->sfd_fn)(why, dp->sfd_arg);
    726 		}
    727 	} else {
    728 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    729 			(*dp->sfd_fn)(why, dp->sfd_arg);
    730 		}
    731 	}
    732 }
    733 
    734 /*
    735  * Determine the root device and, if instructed to, the root file system.
    736  */
    737 
    738 #include "md.h"
    739 #if NMD == 0
    740 #undef MEMORY_DISK_HOOKS
    741 #endif
    742 
    743 #ifdef MEMORY_DISK_HOOKS
    744 static struct device fakemdrootdev[NMD];
    745 extern struct cfdriver md_cd;
    746 #endif
    747 
    748 #ifdef MEMORY_DISK_IS_ROOT
    749 #define BOOT_FROM_MEMORY_HOOKS 1
    750 #endif
    751 
    752 #include "raid.h"
    753 #if NRAID == 1
    754 #define BOOT_FROM_RAID_HOOKS 1
    755 #endif
    756 
    757 #ifdef BOOT_FROM_RAID_HOOKS
    758 extern int numraid;
    759 extern struct device *raidrootdev;
    760 #endif
    761 
    762 /*
    763  * The device and wedge that we booted from.  If booted_wedge is NULL,
    764  * the we might consult booted_partition.
    765  */
    766 struct device *booted_device;
    767 struct device *booted_wedge;
    768 int booted_partition;
    769 
    770 /*
    771  * Use partition letters if it's a disk class but not a wedge.
    772  * XXX Check for wedge is kinda gross.
    773  */
    774 #define	DEV_USES_PARTITIONS(dv)						\
    775 	(device_class((dv)) == DV_DISK &&				\
    776 	 !device_is_a((dv), "dk"))
    777 
    778 void
    779 setroot(struct device *bootdv, int bootpartition)
    780 {
    781 	struct device *dv;
    782 	int len;
    783 #ifdef MEMORY_DISK_HOOKS
    784 	int i;
    785 #endif
    786 	dev_t nrootdev;
    787 	dev_t ndumpdev = NODEV;
    788 	char buf[128];
    789 	const char *rootdevname;
    790 	const char *dumpdevname;
    791 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
    792 	struct device *dumpdv = NULL;
    793 	struct ifnet *ifp;
    794 	const char *deffsname;
    795 	struct vfsops *vops;
    796 
    797 #ifdef MEMORY_DISK_HOOKS
    798 	for (i = 0; i < NMD; i++) {
    799 		fakemdrootdev[i].dv_class  = DV_DISK;
    800 		fakemdrootdev[i].dv_cfdata = NULL;
    801 		fakemdrootdev[i].dv_cfdriver = &md_cd;
    802 		fakemdrootdev[i].dv_unit   = i;
    803 		fakemdrootdev[i].dv_parent = NULL;
    804 		snprintf(fakemdrootdev[i].dv_xname,
    805 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
    806 	}
    807 #endif /* MEMORY_DISK_HOOKS */
    808 
    809 #ifdef MEMORY_DISK_IS_ROOT
    810 	bootdv = &fakemdrootdev[0];
    811 	bootpartition = 0;
    812 #endif
    813 
    814 	/*
    815 	 * If NFS is specified as the file system, and we found
    816 	 * a DV_DISK boot device (or no boot device at all), then
    817 	 * find a reasonable network interface for "rootspec".
    818 	 */
    819 	vops = vfs_getopsbyname("nfs");
    820 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
    821 	    rootspec == NULL &&
    822 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
    823 		IFNET_FOREACH(ifp) {
    824 			if ((ifp->if_flags &
    825 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    826 				break;
    827 		}
    828 		if (ifp == NULL) {
    829 			/*
    830 			 * Can't find a suitable interface; ask the
    831 			 * user.
    832 			 */
    833 			boothowto |= RB_ASKNAME;
    834 		} else {
    835 			/*
    836 			 * Have a suitable interface; behave as if
    837 			 * the user specified this interface.
    838 			 */
    839 			rootspec = (const char *)ifp->if_xname;
    840 		}
    841 	}
    842 
    843 	/*
    844 	 * If wildcarded root and we the boot device wasn't determined,
    845 	 * ask the user.
    846 	 */
    847 	if (rootspec == NULL && bootdv == NULL)
    848 		boothowto |= RB_ASKNAME;
    849 
    850  top:
    851 	if (boothowto & RB_ASKNAME) {
    852 		struct device *defdumpdv;
    853 
    854 		for (;;) {
    855 			printf("root device");
    856 			if (bootdv != NULL) {
    857 				printf(" (default %s", bootdv->dv_xname);
    858 				if (DEV_USES_PARTITIONS(bootdv))
    859 					printf("%c", bootpartition + 'a');
    860 				printf(")");
    861 			}
    862 			printf(": ");
    863 			len = cngetsn(buf, sizeof(buf));
    864 			if (len == 0 && bootdv != NULL) {
    865 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
    866 				len = strlen(buf);
    867 			}
    868 			if (len > 0 && buf[len - 1] == '*') {
    869 				buf[--len] = '\0';
    870 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    871 				if (dv != NULL) {
    872 					rootdv = dv;
    873 					break;
    874 				}
    875 			}
    876 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    877 			if (dv != NULL) {
    878 				rootdv = dv;
    879 				break;
    880 			}
    881 		}
    882 
    883 		/*
    884 		 * Set up the default dump device.  If root is on
    885 		 * a network device, there is no default dump
    886 		 * device, since we don't support dumps to the
    887 		 * network.
    888 		 */
    889 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    890 			defdumpdv = NULL;
    891 		else
    892 			defdumpdv = rootdv;
    893 
    894 		for (;;) {
    895 			printf("dump device");
    896 			if (defdumpdv != NULL) {
    897 				/*
    898 				 * Note, we know it's a disk if we get here.
    899 				 */
    900 				printf(" (default %sb)", defdumpdv->dv_xname);
    901 			}
    902 			printf(": ");
    903 			len = cngetsn(buf, sizeof(buf));
    904 			if (len == 0) {
    905 				if (defdumpdv != NULL) {
    906 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    907 					    DISKUNIT(nrootdev), 1);
    908 				}
    909 				dumpdv = defdumpdv;
    910 				break;
    911 			}
    912 			if (len == 4 && strcmp(buf, "none") == 0) {
    913 				dumpdv = NULL;
    914 				break;
    915 			}
    916 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    917 			if (dv != NULL) {
    918 				dumpdv = dv;
    919 				break;
    920 			}
    921 		}
    922 
    923 		rootdev = nrootdev;
    924 		dumpdev = ndumpdev;
    925 
    926 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    927 		     vops = LIST_NEXT(vops, vfs_list)) {
    928 			if (vops->vfs_mountroot != NULL &&
    929 			    vops->vfs_mountroot == mountroot)
    930 			break;
    931 		}
    932 
    933 		if (vops == NULL) {
    934 			mountroot = NULL;
    935 			deffsname = "generic";
    936 		} else
    937 			deffsname = vops->vfs_name;
    938 
    939 		for (;;) {
    940 			printf("file system (default %s): ", deffsname);
    941 			len = cngetsn(buf, sizeof(buf));
    942 			if (len == 0)
    943 				break;
    944 			if (len == 4 && strcmp(buf, "halt") == 0)
    945 				cpu_reboot(RB_HALT, NULL);
    946 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    947 				cpu_reboot(0, NULL);
    948 #if defined(DDB)
    949 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    950 				console_debugger();
    951 			}
    952 #endif
    953 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    954 				mountroot = NULL;
    955 				break;
    956 			}
    957 			vops = vfs_getopsbyname(buf);
    958 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    959 				printf("use one of: generic");
    960 				for (vops = LIST_FIRST(&vfs_list);
    961 				     vops != NULL;
    962 				     vops = LIST_NEXT(vops, vfs_list)) {
    963 					if (vops->vfs_mountroot != NULL)
    964 						printf(" %s", vops->vfs_name);
    965 				}
    966 #if defined(DDB)
    967 				printf(" ddb");
    968 #endif
    969 				printf(" halt reboot\n");
    970 			} else {
    971 				mountroot = vops->vfs_mountroot;
    972 				break;
    973 			}
    974 		}
    975 
    976 	} else if (rootspec == NULL) {
    977 		int majdev;
    978 
    979 		/*
    980 		 * Wildcarded root; use the boot device.
    981 		 */
    982 		rootdv = bootdv;
    983 
    984 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
    985 		if (majdev >= 0) {
    986 			/*
    987 			 * Root is on a disk.  `bootpartition' is root,
    988 			 * unless the device does not use partitions.
    989 			 */
    990 			if (DEV_USES_PARTITIONS(bootdv))
    991 				rootdev = MAKEDISKDEV(majdev,
    992 						      device_unit(bootdv),
    993 						      bootpartition);
    994 			else
    995 				rootdev = makedev(majdev, device_unit(bootdv));
    996 		}
    997 	} else {
    998 
    999 		/*
   1000 		 * `root on <dev> ...'
   1001 		 */
   1002 
   1003 		/*
   1004 		 * If it's a network interface, we can bail out
   1005 		 * early.
   1006 		 */
   1007 		dv = finddevice(rootspec);
   1008 		if (dv != NULL && device_class(dv) == DV_IFNET) {
   1009 			rootdv = dv;
   1010 			goto haveroot;
   1011 		}
   1012 
   1013 		rootdevname = devsw_blk2name(major(rootdev));
   1014 		if (rootdevname == NULL) {
   1015 			printf("unknown device major 0x%x\n", rootdev);
   1016 			boothowto |= RB_ASKNAME;
   1017 			goto top;
   1018 		}
   1019 		memset(buf, 0, sizeof(buf));
   1020 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
   1021 		    DISKUNIT(rootdev));
   1022 
   1023 		rootdv = finddevice(buf);
   1024 		if (rootdv == NULL) {
   1025 			printf("device %s (0x%x) not configured\n",
   1026 			    buf, rootdev);
   1027 			boothowto |= RB_ASKNAME;
   1028 			goto top;
   1029 		}
   1030 	}
   1031 
   1032  haveroot:
   1033 
   1034 	root_device = rootdv;
   1035 
   1036 	switch (device_class(rootdv)) {
   1037 	case DV_IFNET:
   1038 	case DV_DISK:
   1039 		aprint_normal("root on %s", rootdv->dv_xname);
   1040 		if (DEV_USES_PARTITIONS(rootdv))
   1041 			aprint_normal("%c", DISKPART(rootdev) + 'a');
   1042 		break;
   1043 
   1044 	default:
   1045 		printf("can't determine root device\n");
   1046 		boothowto |= RB_ASKNAME;
   1047 		goto top;
   1048 	}
   1049 
   1050 	/*
   1051 	 * Now configure the dump device.
   1052 	 *
   1053 	 * If we haven't figured out the dump device, do so, with
   1054 	 * the following rules:
   1055 	 *
   1056 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1057 	 *
   1058 	 *	(b) If dumpspec is set, try to use it.  If the device
   1059 	 *	    is not available, punt.
   1060 	 *
   1061 	 *	(c) If dumpspec is not set, the dump device is
   1062 	 *	    wildcarded or unspecified.  If the root device
   1063 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1064 	 *	    of the root device.
   1065 	 */
   1066 
   1067 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1068 		if (dumpdv == NULL)
   1069 			goto nodumpdev;
   1070 	} else if (dumpspec != NULL) {		/* (b) */
   1071 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1072 			/*
   1073 			 * Operator doesn't want a dump device.
   1074 			 * Or looks like they tried to pick a network
   1075 			 * device.  Oops.
   1076 			 */
   1077 			goto nodumpdev;
   1078 		}
   1079 
   1080 		dumpdevname = devsw_blk2name(major(dumpdev));
   1081 		if (dumpdevname == NULL)
   1082 			goto nodumpdev;
   1083 		memset(buf, 0, sizeof(buf));
   1084 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
   1085 		    DISKUNIT(dumpdev));
   1086 
   1087 		dumpdv = finddevice(buf);
   1088 		if (dumpdv == NULL) {
   1089 			/*
   1090 			 * Device not configured.
   1091 			 */
   1092 			goto nodumpdev;
   1093 		}
   1094 	} else {				/* (c) */
   1095 		if (DEV_USES_PARTITIONS(rootdv) == 0)
   1096 			goto nodumpdev;
   1097 		else {
   1098 			dumpdv = rootdv;
   1099 			dumpdev = MAKEDISKDEV(major(rootdev),
   1100 			    device_unit(dumpdv), 1);
   1101 		}
   1102 	}
   1103 
   1104 	aprint_normal(" dumps on %s", dumpdv->dv_xname);
   1105 	if (DEV_USES_PARTITIONS(dumpdv))
   1106 		aprint_normal("%c", DISKPART(dumpdev) + 'a');
   1107 	aprint_normal("\n");
   1108 	return;
   1109 
   1110  nodumpdev:
   1111 	dumpdev = NODEV;
   1112 	aprint_normal("\n");
   1113 }
   1114 
   1115 static struct device *
   1116 finddevice(const char *name)
   1117 {
   1118 	struct device *dv;
   1119 #if defined(BOOT_FROM_RAID_HOOKS) || defined(BOOT_FROM_MEMORY_HOOKS)
   1120 	int j;
   1121 #endif /* BOOT_FROM_RAID_HOOKS || BOOT_FROM_MEMORY_HOOKS */
   1122 
   1123 #ifdef BOOT_FROM_RAID_HOOKS
   1124 	for (j = 0; j < numraid; j++) {
   1125 		if (strcmp(name, raidrootdev[j].dv_xname) == 0) {
   1126 			dv = &raidrootdev[j];
   1127 			return (dv);
   1128 		}
   1129 	}
   1130 #endif /* BOOT_FROM_RAID_HOOKS */
   1131 
   1132 #ifdef BOOT_FROM_MEMORY_HOOKS
   1133 	for (j = 0; j < NMD; j++) {
   1134 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
   1135 			dv = &fakemdrootdev[j];
   1136 			return (dv);
   1137 		}
   1138 	}
   1139 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1140 
   1141 	for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1142 	    dv = TAILQ_NEXT(dv, dv_list))
   1143 		if (strcmp(dv->dv_xname, name) == 0)
   1144 			break;
   1145 	return (dv);
   1146 }
   1147 
   1148 static struct device *
   1149 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1150 {
   1151 	struct device	*dv;
   1152 #ifdef MEMORY_DISK_HOOKS
   1153 	int		i;
   1154 #endif
   1155 #ifdef BOOT_FROM_RAID_HOOKS
   1156 	int 		j;
   1157 #endif
   1158 
   1159 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1160 		printf("use one of:");
   1161 #ifdef MEMORY_DISK_HOOKS
   1162 		if (isdump == 0)
   1163 			for (i = 0; i < NMD; i++)
   1164 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
   1165 				    'a' + MAXPARTITIONS - 1);
   1166 #endif
   1167 #ifdef BOOT_FROM_RAID_HOOKS
   1168 		if (isdump == 0)
   1169 			for (j = 0; j < numraid; j++)
   1170 				printf(" %s[a-%c]", raidrootdev[j].dv_xname,
   1171 				    'a' + MAXPARTITIONS - 1);
   1172 #endif
   1173 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1174 			if (DEV_USES_PARTITIONS(dv))
   1175 				printf(" %s[a-%c]", dv->dv_xname,
   1176 				    'a' + MAXPARTITIONS - 1);
   1177 			else if (device_class(dv) == DV_DISK)
   1178 				printf(" %s", dv->dv_xname);
   1179 			if (isdump == 0 && device_class(dv) == DV_IFNET)
   1180 				printf(" %s", dv->dv_xname);
   1181 		}
   1182 		if (isdump)
   1183 			printf(" none");
   1184 #if defined(DDB)
   1185 		printf(" ddb");
   1186 #endif
   1187 		printf(" halt reboot\n");
   1188 	}
   1189 	return (dv);
   1190 }
   1191 
   1192 static struct device *
   1193 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1194 {
   1195 	struct device *dv;
   1196 	char *cp, c;
   1197 	int majdev, part;
   1198 #ifdef MEMORY_DISK_HOOKS
   1199 	int i;
   1200 #endif
   1201 	if (len == 0)
   1202 		return (NULL);
   1203 
   1204 	if (len == 4 && strcmp(str, "halt") == 0)
   1205 		cpu_reboot(RB_HALT, NULL);
   1206 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1207 		cpu_reboot(0, NULL);
   1208 #if defined(DDB)
   1209 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1210 		console_debugger();
   1211 #endif
   1212 
   1213 	cp = str + len - 1;
   1214 	c = *cp;
   1215 	if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1216 		part = c - 'a';
   1217 		*cp = '\0';
   1218 	} else
   1219 		part = defpart;
   1220 
   1221 #ifdef MEMORY_DISK_HOOKS
   1222 	for (i = 0; i < NMD; i++)
   1223 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
   1224 			dv = &fakemdrootdev[i];
   1225 			goto gotdisk;
   1226 		}
   1227 #endif
   1228 
   1229 	dv = finddevice(str);
   1230 	if (dv != NULL) {
   1231 		if (device_class(dv) == DV_DISK) {
   1232 #ifdef MEMORY_DISK_HOOKS
   1233  gotdisk:
   1234 #endif
   1235 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1236 			if (majdev < 0)
   1237 				panic("parsedisk");
   1238 			if (DEV_USES_PARTITIONS(dv))
   1239 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
   1240 						    part);
   1241 			else
   1242 				*devp = makedev(majdev, device_unit(dv));
   1243 		}
   1244 
   1245 		if (device_class(dv) == DV_IFNET)
   1246 			*devp = NODEV;
   1247 	}
   1248 
   1249 	*cp = c;
   1250 	return (dv);
   1251 }
   1252 
   1253 /*
   1254  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1255  * plus a possible `x' + suffix extension) fits into len bytes (including
   1256  * the terminating NUL).
   1257  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1258  * E.g, given a len of 9 and a suffix of `B':
   1259  *	bytes		result
   1260  *	-----		------
   1261  *	99999		`99999 B'
   1262  *	100000		`97 kB'
   1263  *	66715648	`65152 kB'
   1264  *	252215296	`240 MB'
   1265  */
   1266 int
   1267 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1268     int divisor)
   1269 {
   1270        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1271 	const char *prefixes;
   1272 	int		r;
   1273 	uint64_t	umax;
   1274 	size_t		i, suffixlen;
   1275 
   1276 	if (buf == NULL || suffix == NULL)
   1277 		return (-1);
   1278 	if (len > 0)
   1279 		buf[0] = '\0';
   1280 	suffixlen = strlen(suffix);
   1281 	/* check if enough room for `x y' + suffix + `\0' */
   1282 	if (len < 4 + suffixlen)
   1283 		return (-1);
   1284 
   1285 	if (divisor == 1024) {
   1286 		/*
   1287 		 * binary multiplies
   1288 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1289 		 */
   1290 		prefixes = " KMGTPE";
   1291 	} else
   1292 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1293 
   1294 	umax = 1;
   1295 	for (i = 0; i < len - suffixlen - 3; i++)
   1296 		umax *= 10;
   1297 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1298 		bytes /= divisor;
   1299 
   1300 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1301 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1302 
   1303 	return (r);
   1304 }
   1305 
   1306 int
   1307 format_bytes(char *buf, size_t len, uint64_t bytes)
   1308 {
   1309 	int	rv;
   1310 	size_t	nlen;
   1311 
   1312 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1313 	if (rv != -1) {
   1314 			/* nuke the trailing ` B' if it exists */
   1315 		nlen = strlen(buf) - 2;
   1316 		if (strcmp(&buf[nlen], " B") == 0)
   1317 			buf[nlen] = '\0';
   1318 	}
   1319 	return (rv);
   1320 }
   1321 
   1322 /*
   1323  * Return TRUE if system call tracing is enabled for the specified process.
   1324  */
   1325 boolean_t
   1326 trace_is_enabled(struct proc *p)
   1327 {
   1328 #ifdef SYSCALL_DEBUG
   1329 	return (TRUE);
   1330 #endif
   1331 #ifdef KTRACE
   1332 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
   1333 		return (TRUE);
   1334 #endif
   1335 #ifdef SYSTRACE
   1336 	if (ISSET(p->p_flag, P_SYSTRACE))
   1337 		return (TRUE);
   1338 #endif
   1339 #ifdef PTRACE
   1340 	if (ISSET(p->p_flag, P_SYSCALL))
   1341 		return (TRUE);
   1342 #endif
   1343 
   1344 	return (FALSE);
   1345 }
   1346 
   1347 /*
   1348  * Start trace of particular system call. If process is being traced,
   1349  * this routine is called by MD syscall dispatch code just before
   1350  * a system call is actually executed.
   1351  * MD caller guarantees the passed 'code' is within the supported
   1352  * system call number range for emulation the process runs under.
   1353  */
   1354 int
   1355 trace_enter(struct lwp *l, register_t code,
   1356     register_t realcode, const struct sysent *callp, void *args)
   1357 {
   1358 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
   1359 	struct proc *p = l->l_proc;
   1360 
   1361 #ifdef SYSCALL_DEBUG
   1362 	scdebug_call(l, code, args);
   1363 #endif /* SYSCALL_DEBUG */
   1364 
   1365 #ifdef KTRACE
   1366 	if (KTRPOINT(p, KTR_SYSCALL))
   1367 		ktrsyscall(l, code, realcode, callp, args);
   1368 #endif /* KTRACE */
   1369 
   1370 #ifdef PTRACE
   1371 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
   1372 		process_stoptrace(l);
   1373 #endif
   1374 
   1375 #ifdef SYSTRACE
   1376 	if (ISSET(p->p_flag, P_SYSTRACE))
   1377 		return systrace_enter(l, code, args);
   1378 #endif
   1379 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
   1380 	return 0;
   1381 }
   1382 
   1383 /*
   1384  * End trace of particular system call. If process is being traced,
   1385  * this routine is called by MD syscall dispatch code just after
   1386  * a system call finishes.
   1387  * MD caller guarantees the passed 'code' is within the supported
   1388  * system call number range for emulation the process runs under.
   1389  */
   1390 void
   1391 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
   1392     int error)
   1393 {
   1394 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
   1395 	struct proc *p = l->l_proc;
   1396 
   1397 #ifdef SYSCALL_DEBUG
   1398 	scdebug_ret(l, code, error, rval);
   1399 #endif /* SYSCALL_DEBUG */
   1400 
   1401 #ifdef KTRACE
   1402 	if (KTRPOINT(p, KTR_SYSRET)) {
   1403 		KERNEL_PROC_LOCK(l);
   1404 		ktrsysret(l, code, error, rval);
   1405 		KERNEL_PROC_UNLOCK(l);
   1406 	}
   1407 #endif /* KTRACE */
   1408 
   1409 #ifdef PTRACE
   1410 	if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
   1411 		process_stoptrace(l);
   1412 #endif
   1413 
   1414 #ifdef SYSTRACE
   1415 	if (ISSET(p->p_flag, P_SYSTRACE)) {
   1416 		KERNEL_PROC_LOCK(l);
   1417 		systrace_exit(l, code, args, rval, error);
   1418 		KERNEL_PROC_UNLOCK(l);
   1419 	}
   1420 #endif
   1421 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
   1422 }
   1423