kern_subr.c revision 1.146 1 /* $NetBSD: kern_subr.c,v 1.146 2006/10/08 02:39:01 oster Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.146 2006/10/08 02:39:01 oster Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_ptrace.h"
96 #include "opt_systrace.h"
97 #include "opt_powerhook.h"
98
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/proc.h>
102 #include <sys/malloc.h>
103 #include <sys/mount.h>
104 #include <sys/device.h>
105 #include <sys/reboot.h>
106 #include <sys/conf.h>
107 #include <sys/disklabel.h>
108 #include <sys/queue.h>
109 #include <sys/systrace.h>
110 #include <sys/ktrace.h>
111 #include <sys/ptrace.h>
112 #include <sys/fcntl.h>
113
114 #include <uvm/uvm_extern.h>
115
116 #include <dev/cons.h>
117
118 #include <net/if.h>
119
120 /* XXX these should eventually move to subr_autoconf.c */
121 static struct device *finddevice(const char *);
122 static struct device *getdisk(char *, int, int, dev_t *, int);
123 static struct device *parsedisk(char *, int, int, dev_t *);
124
125 /*
126 * A generic linear hook.
127 */
128 struct hook_desc {
129 LIST_ENTRY(hook_desc) hk_list;
130 void (*hk_fn)(void *);
131 void *hk_arg;
132 };
133 typedef LIST_HEAD(, hook_desc) hook_list_t;
134
135 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
136
137 void
138 uio_setup_sysspace(struct uio *uio)
139 {
140
141 uio->uio_vmspace = vmspace_kernel();
142 }
143
144 int
145 uiomove(void *buf, size_t n, struct uio *uio)
146 {
147 struct vmspace *vm = uio->uio_vmspace;
148 struct iovec *iov;
149 u_int cnt;
150 int error = 0;
151 char *cp = buf;
152 int hold_count;
153
154 hold_count = KERNEL_LOCK_RELEASE_ALL();
155
156 ASSERT_SLEEPABLE(NULL, "uiomove");
157
158 #ifdef DIAGNOSTIC
159 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
160 panic("uiomove: mode");
161 #endif
162 while (n > 0 && uio->uio_resid) {
163 iov = uio->uio_iov;
164 cnt = iov->iov_len;
165 if (cnt == 0) {
166 KASSERT(uio->uio_iovcnt > 0);
167 uio->uio_iov++;
168 uio->uio_iovcnt--;
169 continue;
170 }
171 if (cnt > n)
172 cnt = n;
173 if (!VMSPACE_IS_KERNEL_P(vm)) {
174 if (curcpu()->ci_schedstate.spc_flags &
175 SPCF_SHOULDYIELD)
176 preempt(1);
177 }
178
179 if (uio->uio_rw == UIO_READ) {
180 error = copyout_vmspace(vm, cp, iov->iov_base,
181 cnt);
182 } else {
183 error = copyin_vmspace(vm, iov->iov_base, cp,
184 cnt);
185 }
186 if (error) {
187 break;
188 }
189 iov->iov_base = (caddr_t)iov->iov_base + cnt;
190 iov->iov_len -= cnt;
191 uio->uio_resid -= cnt;
192 uio->uio_offset += cnt;
193 cp += cnt;
194 KDASSERT(cnt <= n);
195 n -= cnt;
196 }
197 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
198 return (error);
199 }
200
201 /*
202 * Wrapper for uiomove() that validates the arguments against a known-good
203 * kernel buffer.
204 */
205 int
206 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
207 {
208 size_t offset;
209
210 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
211 (offset = uio->uio_offset) != uio->uio_offset)
212 return (EINVAL);
213 if (offset >= buflen)
214 return (0);
215 return (uiomove((char *)buf + offset, buflen - offset, uio));
216 }
217
218 /*
219 * Give next character to user as result of read.
220 */
221 int
222 ureadc(int c, struct uio *uio)
223 {
224 struct iovec *iov;
225
226 if (uio->uio_resid <= 0)
227 panic("ureadc: non-positive resid");
228 again:
229 if (uio->uio_iovcnt <= 0)
230 panic("ureadc: non-positive iovcnt");
231 iov = uio->uio_iov;
232 if (iov->iov_len <= 0) {
233 uio->uio_iovcnt--;
234 uio->uio_iov++;
235 goto again;
236 }
237 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
238 if (subyte(iov->iov_base, c) < 0)
239 return (EFAULT);
240 } else {
241 *(char *)iov->iov_base = c;
242 }
243 iov->iov_base = (caddr_t)iov->iov_base + 1;
244 iov->iov_len--;
245 uio->uio_resid--;
246 uio->uio_offset++;
247 return (0);
248 }
249
250 /*
251 * Like copyin(), but operates on an arbitrary vmspace.
252 */
253 int
254 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
255 {
256 struct iovec iov;
257 struct uio uio;
258 int error;
259
260 if (len == 0)
261 return (0);
262
263 if (VMSPACE_IS_KERNEL_P(vm)) {
264 return kcopy(uaddr, kaddr, len);
265 }
266 if (__predict_true(vm == curproc->p_vmspace)) {
267 return copyin(uaddr, kaddr, len);
268 }
269
270 iov.iov_base = kaddr;
271 iov.iov_len = len;
272 uio.uio_iov = &iov;
273 uio.uio_iovcnt = 1;
274 uio.uio_offset = (off_t)(intptr_t)uaddr;
275 uio.uio_resid = len;
276 uio.uio_rw = UIO_READ;
277 UIO_SETUP_SYSSPACE(&uio);
278 error = uvm_io(&vm->vm_map, &uio);
279
280 return (error);
281 }
282
283 /*
284 * Like copyout(), but operates on an arbitrary vmspace.
285 */
286 int
287 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
288 {
289 struct iovec iov;
290 struct uio uio;
291 int error;
292
293 if (len == 0)
294 return (0);
295
296 if (VMSPACE_IS_KERNEL_P(vm)) {
297 return kcopy(kaddr, uaddr, len);
298 }
299 if (__predict_true(vm == curproc->p_vmspace)) {
300 return copyout(kaddr, uaddr, len);
301 }
302
303 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
304 iov.iov_len = len;
305 uio.uio_iov = &iov;
306 uio.uio_iovcnt = 1;
307 uio.uio_offset = (off_t)(intptr_t)uaddr;
308 uio.uio_resid = len;
309 uio.uio_rw = UIO_WRITE;
310 UIO_SETUP_SYSSPACE(&uio);
311 error = uvm_io(&vm->vm_map, &uio);
312
313 return (error);
314 }
315
316 /*
317 * Like copyin(), but operates on an arbitrary process.
318 */
319 int
320 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
321 {
322 struct vmspace *vm;
323 int error;
324
325 error = proc_vmspace_getref(p, &vm);
326 if (error) {
327 return error;
328 }
329 error = copyin_vmspace(vm, uaddr, kaddr, len);
330 uvmspace_free(vm);
331
332 return error;
333 }
334
335 /*
336 * Like copyout(), but operates on an arbitrary process.
337 */
338 int
339 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
340 {
341 struct vmspace *vm;
342 int error;
343
344 error = proc_vmspace_getref(p, &vm);
345 if (error) {
346 return error;
347 }
348 error = copyout_vmspace(vm, kaddr, uaddr, len);
349 uvmspace_free(vm);
350
351 return error;
352 }
353
354 /*
355 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
356 * flag is passed in `ioctlflags' from the ioctl call.
357 */
358 int
359 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
360 {
361 if (ioctlflags & FKIOCTL)
362 return kcopy(src, dst, len);
363 return copyin(src, dst, len);
364 }
365
366 /*
367 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
368 * flag is passed in `ioctlflags' from the ioctl call.
369 */
370 int
371 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
372 {
373 if (ioctlflags & FKIOCTL)
374 return kcopy(src, dst, len);
375 return copyout(src, dst, len);
376 }
377
378 /*
379 * General routine to allocate a hash table.
380 * Allocate enough memory to hold at least `elements' list-head pointers.
381 * Return a pointer to the allocated space and set *hashmask to a pattern
382 * suitable for masking a value to use as an index into the returned array.
383 */
384 void *
385 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
386 int mflags, u_long *hashmask)
387 {
388 u_long hashsize, i;
389 LIST_HEAD(, generic) *hashtbl_list;
390 TAILQ_HEAD(, generic) *hashtbl_tailq;
391 size_t esize;
392 void *p;
393
394 if (elements == 0)
395 panic("hashinit: bad cnt");
396 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
397 continue;
398
399 switch (htype) {
400 case HASH_LIST:
401 esize = sizeof(*hashtbl_list);
402 break;
403 case HASH_TAILQ:
404 esize = sizeof(*hashtbl_tailq);
405 break;
406 default:
407 #ifdef DIAGNOSTIC
408 panic("hashinit: invalid table type");
409 #else
410 return NULL;
411 #endif
412 }
413
414 if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
415 return (NULL);
416
417 switch (htype) {
418 case HASH_LIST:
419 hashtbl_list = p;
420 for (i = 0; i < hashsize; i++)
421 LIST_INIT(&hashtbl_list[i]);
422 break;
423 case HASH_TAILQ:
424 hashtbl_tailq = p;
425 for (i = 0; i < hashsize; i++)
426 TAILQ_INIT(&hashtbl_tailq[i]);
427 break;
428 }
429 *hashmask = hashsize - 1;
430 return (p);
431 }
432
433 /*
434 * Free memory from hash table previosly allocated via hashinit().
435 */
436 void
437 hashdone(void *hashtbl, struct malloc_type *mtype)
438 {
439
440 free(hashtbl, mtype);
441 }
442
443
444 static void *
445 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
446 {
447 struct hook_desc *hd;
448
449 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
450 if (hd == NULL)
451 return (NULL);
452
453 hd->hk_fn = fn;
454 hd->hk_arg = arg;
455 LIST_INSERT_HEAD(list, hd, hk_list);
456
457 return (hd);
458 }
459
460 static void
461 hook_disestablish(hook_list_t *list, void *vhook)
462 {
463 #ifdef DIAGNOSTIC
464 struct hook_desc *hd;
465
466 LIST_FOREACH(hd, list, hk_list) {
467 if (hd == vhook)
468 break;
469 }
470
471 if (hd == NULL)
472 panic("hook_disestablish: hook %p not established", vhook);
473 #endif
474 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
475 free(vhook, M_DEVBUF);
476 }
477
478 static void
479 hook_destroy(hook_list_t *list)
480 {
481 struct hook_desc *hd;
482
483 while ((hd = LIST_FIRST(list)) != NULL) {
484 LIST_REMOVE(hd, hk_list);
485 free(hd, M_DEVBUF);
486 }
487 }
488
489 static void
490 hook_proc_run(hook_list_t *list, struct proc *p)
491 {
492 struct hook_desc *hd;
493
494 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
495 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
496 hd->hk_arg);
497 }
498 }
499
500 /*
501 * "Shutdown hook" types, functions, and variables.
502 *
503 * Should be invoked immediately before the
504 * system is halted or rebooted, i.e. after file systems unmounted,
505 * after crash dump done, etc.
506 *
507 * Each shutdown hook is removed from the list before it's run, so that
508 * it won't be run again.
509 */
510
511 static hook_list_t shutdownhook_list;
512
513 void *
514 shutdownhook_establish(void (*fn)(void *), void *arg)
515 {
516 return hook_establish(&shutdownhook_list, fn, arg);
517 }
518
519 void
520 shutdownhook_disestablish(void *vhook)
521 {
522 hook_disestablish(&shutdownhook_list, vhook);
523 }
524
525 /*
526 * Run shutdown hooks. Should be invoked immediately before the
527 * system is halted or rebooted, i.e. after file systems unmounted,
528 * after crash dump done, etc.
529 *
530 * Each shutdown hook is removed from the list before it's run, so that
531 * it won't be run again.
532 */
533 void
534 doshutdownhooks(void)
535 {
536 struct hook_desc *dp;
537
538 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
539 LIST_REMOVE(dp, hk_list);
540 (*dp->hk_fn)(dp->hk_arg);
541 #if 0
542 /*
543 * Don't bother freeing the hook structure,, since we may
544 * be rebooting because of a memory corruption problem,
545 * and this might only make things worse. It doesn't
546 * matter, anyway, since the system is just about to
547 * reboot.
548 */
549 free(dp, M_DEVBUF);
550 #endif
551 }
552 }
553
554 /*
555 * "Mountroot hook" types, functions, and variables.
556 */
557
558 static hook_list_t mountroothook_list;
559
560 void *
561 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
562 {
563 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
564 }
565
566 void
567 mountroothook_disestablish(void *vhook)
568 {
569 hook_disestablish(&mountroothook_list, vhook);
570 }
571
572 void
573 mountroothook_destroy(void)
574 {
575 hook_destroy(&mountroothook_list);
576 }
577
578 void
579 domountroothook(void)
580 {
581 struct hook_desc *hd;
582
583 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
584 if (hd->hk_arg == (void *)root_device) {
585 (*hd->hk_fn)(hd->hk_arg);
586 return;
587 }
588 }
589 }
590
591 static hook_list_t exechook_list;
592
593 void *
594 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
595 {
596 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
597 }
598
599 void
600 exechook_disestablish(void *vhook)
601 {
602 hook_disestablish(&exechook_list, vhook);
603 }
604
605 /*
606 * Run exec hooks.
607 */
608 void
609 doexechooks(struct proc *p)
610 {
611 hook_proc_run(&exechook_list, p);
612 }
613
614 static hook_list_t exithook_list;
615
616 void *
617 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
618 {
619 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
620 }
621
622 void
623 exithook_disestablish(void *vhook)
624 {
625 hook_disestablish(&exithook_list, vhook);
626 }
627
628 /*
629 * Run exit hooks.
630 */
631 void
632 doexithooks(struct proc *p)
633 {
634 hook_proc_run(&exithook_list, p);
635 }
636
637 static hook_list_t forkhook_list;
638
639 void *
640 forkhook_establish(void (*fn)(struct proc *, struct proc *))
641 {
642 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
643 }
644
645 void
646 forkhook_disestablish(void *vhook)
647 {
648 hook_disestablish(&forkhook_list, vhook);
649 }
650
651 /*
652 * Run fork hooks.
653 */
654 void
655 doforkhooks(struct proc *p2, struct proc *p1)
656 {
657 struct hook_desc *hd;
658
659 LIST_FOREACH(hd, &forkhook_list, hk_list) {
660 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
661 (p2, p1);
662 }
663 }
664
665 /*
666 * "Power hook" types, functions, and variables.
667 * The list of power hooks is kept ordered with the last registered hook
668 * first.
669 * When running the hooks on power down the hooks are called in reverse
670 * registration order, when powering up in registration order.
671 */
672 struct powerhook_desc {
673 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
674 void (*sfd_fn)(int, void *);
675 void *sfd_arg;
676 char sfd_name[16];
677 };
678
679 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
680 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
681
682 void *
683 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
684 {
685 struct powerhook_desc *ndp;
686
687 ndp = (struct powerhook_desc *)
688 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
689 if (ndp == NULL)
690 return (NULL);
691
692 ndp->sfd_fn = fn;
693 ndp->sfd_arg = arg;
694 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
695 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
696
697 return (ndp);
698 }
699
700 void
701 powerhook_disestablish(void *vhook)
702 {
703 #ifdef DIAGNOSTIC
704 struct powerhook_desc *dp;
705
706 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
707 if (dp == vhook)
708 goto found;
709 panic("powerhook_disestablish: hook %p not established", vhook);
710 found:
711 #endif
712
713 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
714 sfd_list);
715 free(vhook, M_DEVBUF);
716 }
717
718 /*
719 * Run power hooks.
720 */
721 void
722 dopowerhooks(int why)
723 {
724 struct powerhook_desc *dp;
725
726 #ifdef POWERHOOK_DEBUG
727 printf("dopowerhooks ");
728 switch (why) {
729 case PWR_RESUME:
730 printf("resume");
731 break;
732 case PWR_SOFTRESUME:
733 printf("softresume");
734 break;
735 case PWR_SUSPEND:
736 printf("suspend");
737 break;
738 case PWR_SOFTSUSPEND:
739 printf("softsuspend");
740 break;
741 case PWR_STANDBY:
742 printf("standby");
743 break;
744 }
745 printf(":");
746 #endif
747
748 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
749 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
750 #ifdef POWERHOOK_DEBUG
751 printf(" %s", dp->sfd_name);
752 #endif
753 (*dp->sfd_fn)(why, dp->sfd_arg);
754 }
755 } else {
756 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
757 #ifdef POWERHOOK_DEBUG
758 printf(" %s", dp->sfd_name);
759 #endif
760 (*dp->sfd_fn)(why, dp->sfd_arg);
761 }
762 }
763
764 #ifdef POWERHOOK_DEBUG
765 printf(".\n");
766 #endif
767 }
768
769 /*
770 * Determine the root device and, if instructed to, the root file system.
771 */
772
773 #include "md.h"
774 #if NMD == 0
775 #undef MEMORY_DISK_HOOKS
776 #endif
777
778 #ifdef MEMORY_DISK_HOOKS
779 static struct device fakemdrootdev[NMD];
780 extern struct cfdriver md_cd;
781 #endif
782
783 #ifdef MEMORY_DISK_IS_ROOT
784 #define BOOT_FROM_MEMORY_HOOKS 1
785 #endif
786
787 /*
788 * The device and wedge that we booted from. If booted_wedge is NULL,
789 * the we might consult booted_partition.
790 */
791 struct device *booted_device;
792 struct device *booted_wedge;
793 int booted_partition;
794
795 /*
796 * Use partition letters if it's a disk class but not a wedge.
797 * XXX Check for wedge is kinda gross.
798 */
799 #define DEV_USES_PARTITIONS(dv) \
800 (device_class((dv)) == DV_DISK && \
801 !device_is_a((dv), "dk"))
802
803 void
804 setroot(struct device *bootdv, int bootpartition)
805 {
806 struct device *dv;
807 int len;
808 #ifdef MEMORY_DISK_HOOKS
809 int i;
810 #endif
811 dev_t nrootdev;
812 dev_t ndumpdev = NODEV;
813 char buf[128];
814 const char *rootdevname;
815 const char *dumpdevname;
816 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
817 struct device *dumpdv = NULL;
818 struct ifnet *ifp;
819 const char *deffsname;
820 struct vfsops *vops;
821
822 #ifdef MEMORY_DISK_HOOKS
823 for (i = 0; i < NMD; i++) {
824 fakemdrootdev[i].dv_class = DV_DISK;
825 fakemdrootdev[i].dv_cfdata = NULL;
826 fakemdrootdev[i].dv_cfdriver = &md_cd;
827 fakemdrootdev[i].dv_unit = i;
828 fakemdrootdev[i].dv_parent = NULL;
829 snprintf(fakemdrootdev[i].dv_xname,
830 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
831 }
832 #endif /* MEMORY_DISK_HOOKS */
833
834 #ifdef MEMORY_DISK_IS_ROOT
835 bootdv = &fakemdrootdev[0];
836 bootpartition = 0;
837 #endif
838
839 /*
840 * If NFS is specified as the file system, and we found
841 * a DV_DISK boot device (or no boot device at all), then
842 * find a reasonable network interface for "rootspec".
843 */
844 vops = vfs_getopsbyname("nfs");
845 if (vops != NULL && vops->vfs_mountroot == mountroot &&
846 rootspec == NULL &&
847 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
848 IFNET_FOREACH(ifp) {
849 if ((ifp->if_flags &
850 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
851 break;
852 }
853 if (ifp == NULL) {
854 /*
855 * Can't find a suitable interface; ask the
856 * user.
857 */
858 boothowto |= RB_ASKNAME;
859 } else {
860 /*
861 * Have a suitable interface; behave as if
862 * the user specified this interface.
863 */
864 rootspec = (const char *)ifp->if_xname;
865 }
866 }
867
868 /*
869 * If wildcarded root and we the boot device wasn't determined,
870 * ask the user.
871 */
872 if (rootspec == NULL && bootdv == NULL)
873 boothowto |= RB_ASKNAME;
874
875 top:
876 if (boothowto & RB_ASKNAME) {
877 struct device *defdumpdv;
878
879 for (;;) {
880 printf("root device");
881 if (bootdv != NULL) {
882 printf(" (default %s", bootdv->dv_xname);
883 if (DEV_USES_PARTITIONS(bootdv))
884 printf("%c", bootpartition + 'a');
885 printf(")");
886 }
887 printf(": ");
888 len = cngetsn(buf, sizeof(buf));
889 if (len == 0 && bootdv != NULL) {
890 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
891 len = strlen(buf);
892 }
893 if (len > 0 && buf[len - 1] == '*') {
894 buf[--len] = '\0';
895 dv = getdisk(buf, len, 1, &nrootdev, 0);
896 if (dv != NULL) {
897 rootdv = dv;
898 break;
899 }
900 }
901 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
902 if (dv != NULL) {
903 rootdv = dv;
904 break;
905 }
906 }
907
908 /*
909 * Set up the default dump device. If root is on
910 * a network device, there is no default dump
911 * device, since we don't support dumps to the
912 * network.
913 */
914 if (DEV_USES_PARTITIONS(rootdv) == 0)
915 defdumpdv = NULL;
916 else
917 defdumpdv = rootdv;
918
919 for (;;) {
920 printf("dump device");
921 if (defdumpdv != NULL) {
922 /*
923 * Note, we know it's a disk if we get here.
924 */
925 printf(" (default %sb)", defdumpdv->dv_xname);
926 }
927 printf(": ");
928 len = cngetsn(buf, sizeof(buf));
929 if (len == 0) {
930 if (defdumpdv != NULL) {
931 ndumpdev = MAKEDISKDEV(major(nrootdev),
932 DISKUNIT(nrootdev), 1);
933 }
934 dumpdv = defdumpdv;
935 break;
936 }
937 if (len == 4 && strcmp(buf, "none") == 0) {
938 dumpdv = NULL;
939 break;
940 }
941 dv = getdisk(buf, len, 1, &ndumpdev, 1);
942 if (dv != NULL) {
943 dumpdv = dv;
944 break;
945 }
946 }
947
948 rootdev = nrootdev;
949 dumpdev = ndumpdev;
950
951 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
952 vops = LIST_NEXT(vops, vfs_list)) {
953 if (vops->vfs_mountroot != NULL &&
954 vops->vfs_mountroot == mountroot)
955 break;
956 }
957
958 if (vops == NULL) {
959 mountroot = NULL;
960 deffsname = "generic";
961 } else
962 deffsname = vops->vfs_name;
963
964 for (;;) {
965 printf("file system (default %s): ", deffsname);
966 len = cngetsn(buf, sizeof(buf));
967 if (len == 0)
968 break;
969 if (len == 4 && strcmp(buf, "halt") == 0)
970 cpu_reboot(RB_HALT, NULL);
971 else if (len == 6 && strcmp(buf, "reboot") == 0)
972 cpu_reboot(0, NULL);
973 #if defined(DDB)
974 else if (len == 3 && strcmp(buf, "ddb") == 0) {
975 console_debugger();
976 }
977 #endif
978 else if (len == 7 && strcmp(buf, "generic") == 0) {
979 mountroot = NULL;
980 break;
981 }
982 vops = vfs_getopsbyname(buf);
983 if (vops == NULL || vops->vfs_mountroot == NULL) {
984 printf("use one of: generic");
985 for (vops = LIST_FIRST(&vfs_list);
986 vops != NULL;
987 vops = LIST_NEXT(vops, vfs_list)) {
988 if (vops->vfs_mountroot != NULL)
989 printf(" %s", vops->vfs_name);
990 }
991 #if defined(DDB)
992 printf(" ddb");
993 #endif
994 printf(" halt reboot\n");
995 } else {
996 mountroot = vops->vfs_mountroot;
997 break;
998 }
999 }
1000
1001 } else if (rootspec == NULL) {
1002 int majdev;
1003
1004 /*
1005 * Wildcarded root; use the boot device.
1006 */
1007 rootdv = bootdv;
1008
1009 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
1010 if (majdev >= 0) {
1011 /*
1012 * Root is on a disk. `bootpartition' is root,
1013 * unless the device does not use partitions.
1014 */
1015 if (DEV_USES_PARTITIONS(bootdv))
1016 rootdev = MAKEDISKDEV(majdev,
1017 device_unit(bootdv),
1018 bootpartition);
1019 else
1020 rootdev = makedev(majdev, device_unit(bootdv));
1021 }
1022 } else {
1023
1024 /*
1025 * `root on <dev> ...'
1026 */
1027
1028 /*
1029 * If it's a network interface, we can bail out
1030 * early.
1031 */
1032 dv = finddevice(rootspec);
1033 if (dv != NULL && device_class(dv) == DV_IFNET) {
1034 rootdv = dv;
1035 goto haveroot;
1036 }
1037
1038 rootdevname = devsw_blk2name(major(rootdev));
1039 if (rootdevname == NULL) {
1040 printf("unknown device major 0x%x\n", rootdev);
1041 boothowto |= RB_ASKNAME;
1042 goto top;
1043 }
1044 memset(buf, 0, sizeof(buf));
1045 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1046 DISKUNIT(rootdev));
1047
1048 rootdv = finddevice(buf);
1049 if (rootdv == NULL) {
1050 printf("device %s (0x%x) not configured\n",
1051 buf, rootdev);
1052 boothowto |= RB_ASKNAME;
1053 goto top;
1054 }
1055 }
1056
1057 haveroot:
1058
1059 root_device = rootdv;
1060
1061 switch (device_class(rootdv)) {
1062 case DV_IFNET:
1063 case DV_DISK:
1064 aprint_normal("root on %s", rootdv->dv_xname);
1065 if (DEV_USES_PARTITIONS(rootdv))
1066 aprint_normal("%c", DISKPART(rootdev) + 'a');
1067 break;
1068
1069 default:
1070 printf("can't determine root device\n");
1071 boothowto |= RB_ASKNAME;
1072 goto top;
1073 }
1074
1075 /*
1076 * Now configure the dump device.
1077 *
1078 * If we haven't figured out the dump device, do so, with
1079 * the following rules:
1080 *
1081 * (a) We already know dumpdv in the RB_ASKNAME case.
1082 *
1083 * (b) If dumpspec is set, try to use it. If the device
1084 * is not available, punt.
1085 *
1086 * (c) If dumpspec is not set, the dump device is
1087 * wildcarded or unspecified. If the root device
1088 * is DV_IFNET, punt. Otherwise, use partition b
1089 * of the root device.
1090 */
1091
1092 if (boothowto & RB_ASKNAME) { /* (a) */
1093 if (dumpdv == NULL)
1094 goto nodumpdev;
1095 } else if (dumpspec != NULL) { /* (b) */
1096 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1097 /*
1098 * Operator doesn't want a dump device.
1099 * Or looks like they tried to pick a network
1100 * device. Oops.
1101 */
1102 goto nodumpdev;
1103 }
1104
1105 dumpdevname = devsw_blk2name(major(dumpdev));
1106 if (dumpdevname == NULL)
1107 goto nodumpdev;
1108 memset(buf, 0, sizeof(buf));
1109 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1110 DISKUNIT(dumpdev));
1111
1112 dumpdv = finddevice(buf);
1113 if (dumpdv == NULL) {
1114 /*
1115 * Device not configured.
1116 */
1117 goto nodumpdev;
1118 }
1119 } else { /* (c) */
1120 if (DEV_USES_PARTITIONS(rootdv) == 0)
1121 goto nodumpdev;
1122 else {
1123 dumpdv = rootdv;
1124 dumpdev = MAKEDISKDEV(major(rootdev),
1125 device_unit(dumpdv), 1);
1126 }
1127 }
1128
1129 aprint_normal(" dumps on %s", dumpdv->dv_xname);
1130 if (DEV_USES_PARTITIONS(dumpdv))
1131 aprint_normal("%c", DISKPART(dumpdev) + 'a');
1132 aprint_normal("\n");
1133 return;
1134
1135 nodumpdev:
1136 dumpdev = NODEV;
1137 aprint_normal("\n");
1138 }
1139
1140 static struct device *
1141 finddevice(const char *name)
1142 {
1143 struct device *dv;
1144 #if defined(BOOT_FROM_MEMORY_HOOKS)
1145 int j;
1146 #endif /* BOOT_FROM_MEMORY_HOOKS */
1147
1148 #ifdef BOOT_FROM_MEMORY_HOOKS
1149 for (j = 0; j < NMD; j++) {
1150 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
1151 dv = &fakemdrootdev[j];
1152 return (dv);
1153 }
1154 }
1155 #endif /* BOOT_FROM_MEMORY_HOOKS */
1156
1157 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1158 dv = TAILQ_NEXT(dv, dv_list))
1159 if (strcmp(dv->dv_xname, name) == 0)
1160 break;
1161 return (dv);
1162 }
1163
1164 static struct device *
1165 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1166 {
1167 struct device *dv;
1168 #ifdef MEMORY_DISK_HOOKS
1169 int i;
1170 #endif
1171
1172 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1173 printf("use one of:");
1174 #ifdef MEMORY_DISK_HOOKS
1175 if (isdump == 0)
1176 for (i = 0; i < NMD; i++)
1177 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1178 'a' + MAXPARTITIONS - 1);
1179 #endif
1180 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1181 if (DEV_USES_PARTITIONS(dv))
1182 printf(" %s[a-%c]", dv->dv_xname,
1183 'a' + MAXPARTITIONS - 1);
1184 else if (device_class(dv) == DV_DISK)
1185 printf(" %s", dv->dv_xname);
1186 if (isdump == 0 && device_class(dv) == DV_IFNET)
1187 printf(" %s", dv->dv_xname);
1188 }
1189 if (isdump)
1190 printf(" none");
1191 #if defined(DDB)
1192 printf(" ddb");
1193 #endif
1194 printf(" halt reboot\n");
1195 }
1196 return (dv);
1197 }
1198
1199 static struct device *
1200 parsedisk(char *str, int len, int defpart, dev_t *devp)
1201 {
1202 struct device *dv;
1203 char *cp, c;
1204 int majdev, part;
1205 #ifdef MEMORY_DISK_HOOKS
1206 int i;
1207 #endif
1208 if (len == 0)
1209 return (NULL);
1210
1211 if (len == 4 && strcmp(str, "halt") == 0)
1212 cpu_reboot(RB_HALT, NULL);
1213 else if (len == 6 && strcmp(str, "reboot") == 0)
1214 cpu_reboot(0, NULL);
1215 #if defined(DDB)
1216 else if (len == 3 && strcmp(str, "ddb") == 0)
1217 console_debugger();
1218 #endif
1219
1220 cp = str + len - 1;
1221 c = *cp;
1222 if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1223 part = c - 'a';
1224 *cp = '\0';
1225 } else
1226 part = defpart;
1227
1228 #ifdef MEMORY_DISK_HOOKS
1229 for (i = 0; i < NMD; i++)
1230 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1231 dv = &fakemdrootdev[i];
1232 goto gotdisk;
1233 }
1234 #endif
1235
1236 dv = finddevice(str);
1237 if (dv != NULL) {
1238 if (device_class(dv) == DV_DISK) {
1239 #ifdef MEMORY_DISK_HOOKS
1240 gotdisk:
1241 #endif
1242 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1243 if (majdev < 0)
1244 panic("parsedisk");
1245 if (DEV_USES_PARTITIONS(dv))
1246 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1247 part);
1248 else
1249 *devp = makedev(majdev, device_unit(dv));
1250 }
1251
1252 if (device_class(dv) == DV_IFNET)
1253 *devp = NODEV;
1254 }
1255
1256 *cp = c;
1257 return (dv);
1258 }
1259
1260 /*
1261 * snprintf() `bytes' into `buf', reformatting it so that the number,
1262 * plus a possible `x' + suffix extension) fits into len bytes (including
1263 * the terminating NUL).
1264 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1265 * E.g, given a len of 9 and a suffix of `B':
1266 * bytes result
1267 * ----- ------
1268 * 99999 `99999 B'
1269 * 100000 `97 kB'
1270 * 66715648 `65152 kB'
1271 * 252215296 `240 MB'
1272 */
1273 int
1274 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1275 int divisor)
1276 {
1277 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1278 const char *prefixes;
1279 int r;
1280 uint64_t umax;
1281 size_t i, suffixlen;
1282
1283 if (buf == NULL || suffix == NULL)
1284 return (-1);
1285 if (len > 0)
1286 buf[0] = '\0';
1287 suffixlen = strlen(suffix);
1288 /* check if enough room for `x y' + suffix + `\0' */
1289 if (len < 4 + suffixlen)
1290 return (-1);
1291
1292 if (divisor == 1024) {
1293 /*
1294 * binary multiplies
1295 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1296 */
1297 prefixes = " KMGTPE";
1298 } else
1299 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1300
1301 umax = 1;
1302 for (i = 0; i < len - suffixlen - 3; i++)
1303 umax *= 10;
1304 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1305 bytes /= divisor;
1306
1307 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1308 i == 0 ? "" : " ", prefixes[i], suffix);
1309
1310 return (r);
1311 }
1312
1313 int
1314 format_bytes(char *buf, size_t len, uint64_t bytes)
1315 {
1316 int rv;
1317 size_t nlen;
1318
1319 rv = humanize_number(buf, len, bytes, "B", 1024);
1320 if (rv != -1) {
1321 /* nuke the trailing ` B' if it exists */
1322 nlen = strlen(buf) - 2;
1323 if (strcmp(&buf[nlen], " B") == 0)
1324 buf[nlen] = '\0';
1325 }
1326 return (rv);
1327 }
1328
1329 /*
1330 * Return TRUE if system call tracing is enabled for the specified process.
1331 */
1332 boolean_t
1333 trace_is_enabled(struct proc *p)
1334 {
1335 #ifdef SYSCALL_DEBUG
1336 return (TRUE);
1337 #endif
1338 #ifdef KTRACE
1339 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1340 return (TRUE);
1341 #endif
1342 #ifdef SYSTRACE
1343 if (ISSET(p->p_flag, P_SYSTRACE))
1344 return (TRUE);
1345 #endif
1346 #ifdef PTRACE
1347 if (ISSET(p->p_flag, P_SYSCALL))
1348 return (TRUE);
1349 #endif
1350
1351 return (FALSE);
1352 }
1353
1354 /*
1355 * Start trace of particular system call. If process is being traced,
1356 * this routine is called by MD syscall dispatch code just before
1357 * a system call is actually executed.
1358 * MD caller guarantees the passed 'code' is within the supported
1359 * system call number range for emulation the process runs under.
1360 */
1361 int
1362 trace_enter(struct lwp *l, register_t code,
1363 register_t realcode, const struct sysent *callp, void *args)
1364 {
1365 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1366 struct proc *p = l->l_proc;
1367
1368 #ifdef SYSCALL_DEBUG
1369 scdebug_call(l, code, args);
1370 #endif /* SYSCALL_DEBUG */
1371
1372 #ifdef KTRACE
1373 if (KTRPOINT(p, KTR_SYSCALL))
1374 ktrsyscall(l, code, realcode, callp, args);
1375 #endif /* KTRACE */
1376
1377 #ifdef PTRACE
1378 if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1379 process_stoptrace(l);
1380 #endif
1381
1382 #ifdef SYSTRACE
1383 if (ISSET(p->p_flag, P_SYSTRACE))
1384 return systrace_enter(l, code, args);
1385 #endif
1386 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1387 return 0;
1388 }
1389
1390 /*
1391 * End trace of particular system call. If process is being traced,
1392 * this routine is called by MD syscall dispatch code just after
1393 * a system call finishes.
1394 * MD caller guarantees the passed 'code' is within the supported
1395 * system call number range for emulation the process runs under.
1396 */
1397 void
1398 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1399 int error)
1400 {
1401 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1402 struct proc *p = l->l_proc;
1403
1404 #ifdef SYSCALL_DEBUG
1405 scdebug_ret(l, code, error, rval);
1406 #endif /* SYSCALL_DEBUG */
1407
1408 #ifdef KTRACE
1409 if (KTRPOINT(p, KTR_SYSRET)) {
1410 KERNEL_PROC_LOCK(l);
1411 ktrsysret(l, code, error, rval);
1412 KERNEL_PROC_UNLOCK(l);
1413 }
1414 #endif /* KTRACE */
1415
1416 #ifdef PTRACE
1417 if ((p->p_flag & (P_SYSCALL|P_TRACED)) == (P_SYSCALL|P_TRACED))
1418 process_stoptrace(l);
1419 #endif
1420
1421 #ifdef SYSTRACE
1422 if (ISSET(p->p_flag, P_SYSTRACE)) {
1423 KERNEL_PROC_LOCK(l);
1424 systrace_exit(l, code, args, rval, error);
1425 KERNEL_PROC_UNLOCK(l);
1426 }
1427 #endif
1428 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1429 }
1430