Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.154
      1 /*	$NetBSD: kern_subr.c,v 1.154 2007/02/22 06:34:44 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Copyright (c) 1992, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * This software was developed by the Computer Systems Engineering group
     53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     54  * contributed to Berkeley.
     55  *
     56  * All advertising materials mentioning features or use of this software
     57  * must display the following acknowledgement:
     58  *	This product includes software developed by the University of
     59  *	California, Lawrence Berkeley Laboratory.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  * 2. Redistributions in binary form must reproduce the above copyright
     67  *    notice, this list of conditions and the following disclaimer in the
     68  *    documentation and/or other materials provided with the distribution.
     69  * 3. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.154 2007/02/22 06:34:44 thorpej Exp $");
     90 
     91 #include "opt_ddb.h"
     92 #include "opt_md.h"
     93 #include "opt_syscall_debug.h"
     94 #include "opt_ktrace.h"
     95 #include "opt_ptrace.h"
     96 #include "opt_systrace.h"
     97 #include "opt_powerhook.h"
     98 
     99 #include <sys/param.h>
    100 #include <sys/systm.h>
    101 #include <sys/proc.h>
    102 #include <sys/malloc.h>
    103 #include <sys/mount.h>
    104 #include <sys/device.h>
    105 #include <sys/reboot.h>
    106 #include <sys/conf.h>
    107 #include <sys/disklabel.h>
    108 #include <sys/queue.h>
    109 #include <sys/systrace.h>
    110 #include <sys/ktrace.h>
    111 #include <sys/ptrace.h>
    112 #include <sys/fcntl.h>
    113 
    114 #include <uvm/uvm_extern.h>
    115 
    116 #include <dev/cons.h>
    117 
    118 #include <net/if.h>
    119 
    120 /* XXX these should eventually move to subr_autoconf.c */
    121 static struct device *finddevice(const char *);
    122 static struct device *getdisk(char *, int, int, dev_t *, int);
    123 static struct device *parsedisk(char *, int, int, dev_t *);
    124 
    125 /*
    126  * A generic linear hook.
    127  */
    128 struct hook_desc {
    129 	LIST_ENTRY(hook_desc) hk_list;
    130 	void	(*hk_fn)(void *);
    131 	void	*hk_arg;
    132 };
    133 typedef LIST_HEAD(, hook_desc) hook_list_t;
    134 
    135 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
    136 
    137 void
    138 uio_setup_sysspace(struct uio *uio)
    139 {
    140 
    141 	uio->uio_vmspace = vmspace_kernel();
    142 }
    143 
    144 int
    145 uiomove(void *buf, size_t n, struct uio *uio)
    146 {
    147 	struct vmspace *vm = uio->uio_vmspace;
    148 	struct iovec *iov;
    149 	u_int cnt;
    150 	int error = 0;
    151 	char *cp = buf;
    152 #ifdef MULTIPROCESSOR
    153 	int hold_count;
    154 #endif
    155 
    156 	KERNEL_UNLOCK_ALL(NULL, &hold_count);
    157 
    158 	ASSERT_SLEEPABLE(NULL, "uiomove");
    159 
    160 #ifdef DIAGNOSTIC
    161 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    162 		panic("uiomove: mode");
    163 #endif
    164 	while (n > 0 && uio->uio_resid) {
    165 		iov = uio->uio_iov;
    166 		cnt = iov->iov_len;
    167 		if (cnt == 0) {
    168 			KASSERT(uio->uio_iovcnt > 0);
    169 			uio->uio_iov++;
    170 			uio->uio_iovcnt--;
    171 			continue;
    172 		}
    173 		if (cnt > n)
    174 			cnt = n;
    175 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    176 			if (curcpu()->ci_schedstate.spc_flags &
    177 			    SPCF_SHOULDYIELD)
    178 				preempt();
    179 		}
    180 
    181 		if (uio->uio_rw == UIO_READ) {
    182 			error = copyout_vmspace(vm, cp, iov->iov_base,
    183 			    cnt);
    184 		} else {
    185 			error = copyin_vmspace(vm, iov->iov_base, cp,
    186 			    cnt);
    187 		}
    188 		if (error) {
    189 			break;
    190 		}
    191 		iov->iov_base = (caddr_t)iov->iov_base + cnt;
    192 		iov->iov_len -= cnt;
    193 		uio->uio_resid -= cnt;
    194 		uio->uio_offset += cnt;
    195 		cp += cnt;
    196 		KDASSERT(cnt <= n);
    197 		n -= cnt;
    198 	}
    199 	KERNEL_LOCK(hold_count, NULL);
    200 	return (error);
    201 }
    202 
    203 /*
    204  * Wrapper for uiomove() that validates the arguments against a known-good
    205  * kernel buffer.
    206  */
    207 int
    208 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    209 {
    210 	size_t offset;
    211 
    212 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
    213 	    (offset = uio->uio_offset) != uio->uio_offset)
    214 		return (EINVAL);
    215 	if (offset >= buflen)
    216 		return (0);
    217 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    218 }
    219 
    220 /*
    221  * Give next character to user as result of read.
    222  */
    223 int
    224 ureadc(int c, struct uio *uio)
    225 {
    226 	struct iovec *iov;
    227 
    228 	if (uio->uio_resid <= 0)
    229 		panic("ureadc: non-positive resid");
    230 again:
    231 	if (uio->uio_iovcnt <= 0)
    232 		panic("ureadc: non-positive iovcnt");
    233 	iov = uio->uio_iov;
    234 	if (iov->iov_len <= 0) {
    235 		uio->uio_iovcnt--;
    236 		uio->uio_iov++;
    237 		goto again;
    238 	}
    239 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    240 		if (subyte(iov->iov_base, c) < 0)
    241 			return (EFAULT);
    242 	} else {
    243 		*(char *)iov->iov_base = c;
    244 	}
    245 	iov->iov_base = (caddr_t)iov->iov_base + 1;
    246 	iov->iov_len--;
    247 	uio->uio_resid--;
    248 	uio->uio_offset++;
    249 	return (0);
    250 }
    251 
    252 /*
    253  * Like copyin(), but operates on an arbitrary vmspace.
    254  */
    255 int
    256 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    257 {
    258 	struct iovec iov;
    259 	struct uio uio;
    260 	int error;
    261 
    262 	if (len == 0)
    263 		return (0);
    264 
    265 	if (VMSPACE_IS_KERNEL_P(vm)) {
    266 		return kcopy(uaddr, kaddr, len);
    267 	}
    268 	if (__predict_true(vm == curproc->p_vmspace)) {
    269 		return copyin(uaddr, kaddr, len);
    270 	}
    271 
    272 	iov.iov_base = kaddr;
    273 	iov.iov_len = len;
    274 	uio.uio_iov = &iov;
    275 	uio.uio_iovcnt = 1;
    276 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    277 	uio.uio_resid = len;
    278 	uio.uio_rw = UIO_READ;
    279 	UIO_SETUP_SYSSPACE(&uio);
    280 	error = uvm_io(&vm->vm_map, &uio);
    281 
    282 	return (error);
    283 }
    284 
    285 /*
    286  * Like copyout(), but operates on an arbitrary vmspace.
    287  */
    288 int
    289 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    290 {
    291 	struct iovec iov;
    292 	struct uio uio;
    293 	int error;
    294 
    295 	if (len == 0)
    296 		return (0);
    297 
    298 	if (VMSPACE_IS_KERNEL_P(vm)) {
    299 		return kcopy(kaddr, uaddr, len);
    300 	}
    301 	if (__predict_true(vm == curproc->p_vmspace)) {
    302 		return copyout(kaddr, uaddr, len);
    303 	}
    304 
    305 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    306 	iov.iov_len = len;
    307 	uio.uio_iov = &iov;
    308 	uio.uio_iovcnt = 1;
    309 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    310 	uio.uio_resid = len;
    311 	uio.uio_rw = UIO_WRITE;
    312 	UIO_SETUP_SYSSPACE(&uio);
    313 	error = uvm_io(&vm->vm_map, &uio);
    314 
    315 	return (error);
    316 }
    317 
    318 /*
    319  * Like copyin(), but operates on an arbitrary process.
    320  */
    321 int
    322 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    323 {
    324 	struct vmspace *vm;
    325 	int error;
    326 
    327 	error = proc_vmspace_getref(p, &vm);
    328 	if (error) {
    329 		return error;
    330 	}
    331 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    332 	uvmspace_free(vm);
    333 
    334 	return error;
    335 }
    336 
    337 /*
    338  * Like copyout(), but operates on an arbitrary process.
    339  */
    340 int
    341 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    342 {
    343 	struct vmspace *vm;
    344 	int error;
    345 
    346 	error = proc_vmspace_getref(p, &vm);
    347 	if (error) {
    348 		return error;
    349 	}
    350 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    351 	uvmspace_free(vm);
    352 
    353 	return error;
    354 }
    355 
    356 /*
    357  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    358  * flag is passed in `ioctlflags' from the ioctl call.
    359  */
    360 int
    361 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    362 {
    363 	if (ioctlflags & FKIOCTL)
    364 		return kcopy(src, dst, len);
    365 	return copyin(src, dst, len);
    366 }
    367 
    368 /*
    369  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    370  * flag is passed in `ioctlflags' from the ioctl call.
    371  */
    372 int
    373 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    374 {
    375 	if (ioctlflags & FKIOCTL)
    376 		return kcopy(src, dst, len);
    377 	return copyout(src, dst, len);
    378 }
    379 
    380 /*
    381  * General routine to allocate a hash table.
    382  * Allocate enough memory to hold at least `elements' list-head pointers.
    383  * Return a pointer to the allocated space and set *hashmask to a pattern
    384  * suitable for masking a value to use as an index into the returned array.
    385  */
    386 void *
    387 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
    388     int mflags, u_long *hashmask)
    389 {
    390 	u_long hashsize, i;
    391 	LIST_HEAD(, generic) *hashtbl_list;
    392 	TAILQ_HEAD(, generic) *hashtbl_tailq;
    393 	size_t esize;
    394 	void *p;
    395 
    396 	if (elements == 0)
    397 		panic("hashinit: bad cnt");
    398 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
    399 		continue;
    400 
    401 	switch (htype) {
    402 	case HASH_LIST:
    403 		esize = sizeof(*hashtbl_list);
    404 		break;
    405 	case HASH_TAILQ:
    406 		esize = sizeof(*hashtbl_tailq);
    407 		break;
    408 	default:
    409 #ifdef DIAGNOSTIC
    410 		panic("hashinit: invalid table type");
    411 #else
    412 		return NULL;
    413 #endif
    414 	}
    415 
    416 	if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
    417 		return (NULL);
    418 
    419 	switch (htype) {
    420 	case HASH_LIST:
    421 		hashtbl_list = p;
    422 		for (i = 0; i < hashsize; i++)
    423 			LIST_INIT(&hashtbl_list[i]);
    424 		break;
    425 	case HASH_TAILQ:
    426 		hashtbl_tailq = p;
    427 		for (i = 0; i < hashsize; i++)
    428 			TAILQ_INIT(&hashtbl_tailq[i]);
    429 		break;
    430 	}
    431 	*hashmask = hashsize - 1;
    432 	return (p);
    433 }
    434 
    435 /*
    436  * Free memory from hash table previosly allocated via hashinit().
    437  */
    438 void
    439 hashdone(void *hashtbl, struct malloc_type *mtype)
    440 {
    441 
    442 	free(hashtbl, mtype);
    443 }
    444 
    445 
    446 static void *
    447 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    448 {
    449 	struct hook_desc *hd;
    450 
    451 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    452 	if (hd == NULL)
    453 		return (NULL);
    454 
    455 	hd->hk_fn = fn;
    456 	hd->hk_arg = arg;
    457 	LIST_INSERT_HEAD(list, hd, hk_list);
    458 
    459 	return (hd);
    460 }
    461 
    462 static void
    463 hook_disestablish(hook_list_t *list, void *vhook)
    464 {
    465 #ifdef DIAGNOSTIC
    466 	struct hook_desc *hd;
    467 
    468 	LIST_FOREACH(hd, list, hk_list) {
    469                 if (hd == vhook)
    470 			break;
    471 	}
    472 
    473 	if (hd == NULL)
    474 		panic("hook_disestablish: hook %p not established", vhook);
    475 #endif
    476 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    477 	free(vhook, M_DEVBUF);
    478 }
    479 
    480 static void
    481 hook_destroy(hook_list_t *list)
    482 {
    483 	struct hook_desc *hd;
    484 
    485 	while ((hd = LIST_FIRST(list)) != NULL) {
    486 		LIST_REMOVE(hd, hk_list);
    487 		free(hd, M_DEVBUF);
    488 	}
    489 }
    490 
    491 static void
    492 hook_proc_run(hook_list_t *list, struct proc *p)
    493 {
    494 	struct hook_desc *hd;
    495 
    496 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
    497 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
    498 		    hd->hk_arg);
    499 	}
    500 }
    501 
    502 /*
    503  * "Shutdown hook" types, functions, and variables.
    504  *
    505  * Should be invoked immediately before the
    506  * system is halted or rebooted, i.e. after file systems unmounted,
    507  * after crash dump done, etc.
    508  *
    509  * Each shutdown hook is removed from the list before it's run, so that
    510  * it won't be run again.
    511  */
    512 
    513 static hook_list_t shutdownhook_list;
    514 
    515 void *
    516 shutdownhook_establish(void (*fn)(void *), void *arg)
    517 {
    518 	return hook_establish(&shutdownhook_list, fn, arg);
    519 }
    520 
    521 void
    522 shutdownhook_disestablish(void *vhook)
    523 {
    524 	hook_disestablish(&shutdownhook_list, vhook);
    525 }
    526 
    527 /*
    528  * Run shutdown hooks.  Should be invoked immediately before the
    529  * system is halted or rebooted, i.e. after file systems unmounted,
    530  * after crash dump done, etc.
    531  *
    532  * Each shutdown hook is removed from the list before it's run, so that
    533  * it won't be run again.
    534  */
    535 void
    536 doshutdownhooks(void)
    537 {
    538 	struct hook_desc *dp;
    539 
    540 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    541 		LIST_REMOVE(dp, hk_list);
    542 		(*dp->hk_fn)(dp->hk_arg);
    543 #if 0
    544 		/*
    545 		 * Don't bother freeing the hook structure,, since we may
    546 		 * be rebooting because of a memory corruption problem,
    547 		 * and this might only make things worse.  It doesn't
    548 		 * matter, anyway, since the system is just about to
    549 		 * reboot.
    550 		 */
    551 		free(dp, M_DEVBUF);
    552 #endif
    553 	}
    554 }
    555 
    556 /*
    557  * "Mountroot hook" types, functions, and variables.
    558  */
    559 
    560 static hook_list_t mountroothook_list;
    561 
    562 void *
    563 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
    564 {
    565 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    566 }
    567 
    568 void
    569 mountroothook_disestablish(void *vhook)
    570 {
    571 	hook_disestablish(&mountroothook_list, vhook);
    572 }
    573 
    574 void
    575 mountroothook_destroy(void)
    576 {
    577 	hook_destroy(&mountroothook_list);
    578 }
    579 
    580 void
    581 domountroothook(void)
    582 {
    583 	struct hook_desc *hd;
    584 
    585 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    586 		if (hd->hk_arg == (void *)root_device) {
    587 			(*hd->hk_fn)(hd->hk_arg);
    588 			return;
    589 		}
    590 	}
    591 }
    592 
    593 static hook_list_t exechook_list;
    594 
    595 void *
    596 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    597 {
    598 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    599 }
    600 
    601 void
    602 exechook_disestablish(void *vhook)
    603 {
    604 	hook_disestablish(&exechook_list, vhook);
    605 }
    606 
    607 /*
    608  * Run exec hooks.
    609  */
    610 void
    611 doexechooks(struct proc *p)
    612 {
    613 	hook_proc_run(&exechook_list, p);
    614 }
    615 
    616 static hook_list_t exithook_list;
    617 
    618 void *
    619 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    620 {
    621 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    622 }
    623 
    624 void
    625 exithook_disestablish(void *vhook)
    626 {
    627 	hook_disestablish(&exithook_list, vhook);
    628 }
    629 
    630 /*
    631  * Run exit hooks.
    632  */
    633 void
    634 doexithooks(struct proc *p)
    635 {
    636 	hook_proc_run(&exithook_list, p);
    637 }
    638 
    639 static hook_list_t forkhook_list;
    640 
    641 void *
    642 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    643 {
    644 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    645 }
    646 
    647 void
    648 forkhook_disestablish(void *vhook)
    649 {
    650 	hook_disestablish(&forkhook_list, vhook);
    651 }
    652 
    653 /*
    654  * Run fork hooks.
    655  */
    656 void
    657 doforkhooks(struct proc *p2, struct proc *p1)
    658 {
    659 	struct hook_desc *hd;
    660 
    661 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    662 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    663 		    (p2, p1);
    664 	}
    665 }
    666 
    667 /*
    668  * "Power hook" types, functions, and variables.
    669  * The list of power hooks is kept ordered with the last registered hook
    670  * first.
    671  * When running the hooks on power down the hooks are called in reverse
    672  * registration order, when powering up in registration order.
    673  */
    674 struct powerhook_desc {
    675 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    676 	void	(*sfd_fn)(int, void *);
    677 	void	*sfd_arg;
    678 	char	sfd_name[16];
    679 };
    680 
    681 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    682     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    683 
    684 void *
    685 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
    686 {
    687 	struct powerhook_desc *ndp;
    688 
    689 	ndp = (struct powerhook_desc *)
    690 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    691 	if (ndp == NULL)
    692 		return (NULL);
    693 
    694 	ndp->sfd_fn = fn;
    695 	ndp->sfd_arg = arg;
    696 	strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
    697 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    698 
    699 	return (ndp);
    700 }
    701 
    702 void
    703 powerhook_disestablish(void *vhook)
    704 {
    705 #ifdef DIAGNOSTIC
    706 	struct powerhook_desc *dp;
    707 
    708 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    709                 if (dp == vhook)
    710 			goto found;
    711 	panic("powerhook_disestablish: hook %p not established", vhook);
    712  found:
    713 #endif
    714 
    715 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    716 	    sfd_list);
    717 	free(vhook, M_DEVBUF);
    718 }
    719 
    720 /*
    721  * Run power hooks.
    722  */
    723 void
    724 dopowerhooks(int why)
    725 {
    726 	struct powerhook_desc *dp;
    727 
    728 #ifdef POWERHOOK_DEBUG
    729 	printf("dopowerhooks ");
    730 	switch (why) {
    731 	case PWR_RESUME:
    732 		printf("resume");
    733 		break;
    734 	case PWR_SOFTRESUME:
    735 		printf("softresume");
    736 		break;
    737 	case PWR_SUSPEND:
    738 		printf("suspend");
    739 		break;
    740 	case PWR_SOFTSUSPEND:
    741 		printf("softsuspend");
    742 		break;
    743 	case PWR_STANDBY:
    744 		printf("standby");
    745 		break;
    746 	}
    747 	printf(":");
    748 #endif
    749 
    750 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    751 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    752 #ifdef POWERHOOK_DEBUG
    753 			printf(" %s", dp->sfd_name);
    754 #endif
    755 			(*dp->sfd_fn)(why, dp->sfd_arg);
    756 		}
    757 	} else {
    758 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    759 #ifdef POWERHOOK_DEBUG
    760 			printf(" %s", dp->sfd_name);
    761 #endif
    762 			(*dp->sfd_fn)(why, dp->sfd_arg);
    763 		}
    764 	}
    765 
    766 #ifdef POWERHOOK_DEBUG
    767 	printf(".\n");
    768 #endif
    769 }
    770 
    771 /*
    772  * Determine the root device and, if instructed to, the root file system.
    773  */
    774 
    775 #include "md.h"
    776 #if NMD == 0
    777 #undef MEMORY_DISK_HOOKS
    778 #endif
    779 
    780 #ifdef MEMORY_DISK_HOOKS
    781 static struct device fakemdrootdev[NMD];
    782 extern struct cfdriver md_cd;
    783 #endif
    784 
    785 #ifdef MEMORY_DISK_IS_ROOT
    786 #define BOOT_FROM_MEMORY_HOOKS 1
    787 #endif
    788 
    789 /*
    790  * The device and wedge that we booted from.  If booted_wedge is NULL,
    791  * the we might consult booted_partition.
    792  */
    793 struct device *booted_device;
    794 struct device *booted_wedge;
    795 int booted_partition;
    796 
    797 /*
    798  * Use partition letters if it's a disk class but not a wedge.
    799  * XXX Check for wedge is kinda gross.
    800  */
    801 #define	DEV_USES_PARTITIONS(dv)						\
    802 	(device_class((dv)) == DV_DISK &&				\
    803 	 !device_is_a((dv), "dk"))
    804 
    805 void
    806 setroot(struct device *bootdv, int bootpartition)
    807 {
    808 	struct device *dv;
    809 	int len;
    810 #ifdef MEMORY_DISK_HOOKS
    811 	int i;
    812 #endif
    813 	dev_t nrootdev;
    814 	dev_t ndumpdev = NODEV;
    815 	char buf[128];
    816 	const char *rootdevname;
    817 	const char *dumpdevname;
    818 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
    819 	struct device *dumpdv = NULL;
    820 	struct ifnet *ifp;
    821 	const char *deffsname;
    822 	struct vfsops *vops;
    823 
    824 #ifdef MEMORY_DISK_HOOKS
    825 	for (i = 0; i < NMD; i++) {
    826 		fakemdrootdev[i].dv_class  = DV_DISK;
    827 		fakemdrootdev[i].dv_cfdata = NULL;
    828 		fakemdrootdev[i].dv_cfdriver = &md_cd;
    829 		fakemdrootdev[i].dv_unit   = i;
    830 		fakemdrootdev[i].dv_parent = NULL;
    831 		snprintf(fakemdrootdev[i].dv_xname,
    832 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
    833 	}
    834 #endif /* MEMORY_DISK_HOOKS */
    835 
    836 #ifdef MEMORY_DISK_IS_ROOT
    837 	bootdv = &fakemdrootdev[0];
    838 	bootpartition = 0;
    839 #endif
    840 
    841 	/*
    842 	 * If NFS is specified as the file system, and we found
    843 	 * a DV_DISK boot device (or no boot device at all), then
    844 	 * find a reasonable network interface for "rootspec".
    845 	 */
    846 	vops = vfs_getopsbyname("nfs");
    847 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
    848 	    rootspec == NULL &&
    849 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
    850 		IFNET_FOREACH(ifp) {
    851 			if ((ifp->if_flags &
    852 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    853 				break;
    854 		}
    855 		if (ifp == NULL) {
    856 			/*
    857 			 * Can't find a suitable interface; ask the
    858 			 * user.
    859 			 */
    860 			boothowto |= RB_ASKNAME;
    861 		} else {
    862 			/*
    863 			 * Have a suitable interface; behave as if
    864 			 * the user specified this interface.
    865 			 */
    866 			rootspec = (const char *)ifp->if_xname;
    867 		}
    868 	}
    869 
    870 	/*
    871 	 * If wildcarded root and we the boot device wasn't determined,
    872 	 * ask the user.
    873 	 */
    874 	if (rootspec == NULL && bootdv == NULL)
    875 		boothowto |= RB_ASKNAME;
    876 
    877  top:
    878 	if (boothowto & RB_ASKNAME) {
    879 		struct device *defdumpdv;
    880 
    881 		for (;;) {
    882 			printf("root device");
    883 			if (bootdv != NULL) {
    884 				printf(" (default %s", bootdv->dv_xname);
    885 				if (DEV_USES_PARTITIONS(bootdv))
    886 					printf("%c", bootpartition + 'a');
    887 				printf(")");
    888 			}
    889 			printf(": ");
    890 			len = cngetsn(buf, sizeof(buf));
    891 			if (len == 0 && bootdv != NULL) {
    892 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
    893 				len = strlen(buf);
    894 			}
    895 			if (len > 0 && buf[len - 1] == '*') {
    896 				buf[--len] = '\0';
    897 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    898 				if (dv != NULL) {
    899 					rootdv = dv;
    900 					break;
    901 				}
    902 			}
    903 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    904 			if (dv != NULL) {
    905 				rootdv = dv;
    906 				break;
    907 			}
    908 		}
    909 
    910 		/*
    911 		 * Set up the default dump device.  If root is on
    912 		 * a network device, there is no default dump
    913 		 * device, since we don't support dumps to the
    914 		 * network.
    915 		 */
    916 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    917 			defdumpdv = NULL;
    918 		else
    919 			defdumpdv = rootdv;
    920 
    921 		for (;;) {
    922 			printf("dump device");
    923 			if (defdumpdv != NULL) {
    924 				/*
    925 				 * Note, we know it's a disk if we get here.
    926 				 */
    927 				printf(" (default %sb)", defdumpdv->dv_xname);
    928 			}
    929 			printf(": ");
    930 			len = cngetsn(buf, sizeof(buf));
    931 			if (len == 0) {
    932 				if (defdumpdv != NULL) {
    933 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    934 					    DISKUNIT(nrootdev), 1);
    935 				}
    936 				dumpdv = defdumpdv;
    937 				break;
    938 			}
    939 			if (len == 4 && strcmp(buf, "none") == 0) {
    940 				dumpdv = NULL;
    941 				break;
    942 			}
    943 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    944 			if (dv != NULL) {
    945 				dumpdv = dv;
    946 				break;
    947 			}
    948 		}
    949 
    950 		rootdev = nrootdev;
    951 		dumpdev = ndumpdev;
    952 
    953 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    954 		     vops = LIST_NEXT(vops, vfs_list)) {
    955 			if (vops->vfs_mountroot != NULL &&
    956 			    vops->vfs_mountroot == mountroot)
    957 			break;
    958 		}
    959 
    960 		if (vops == NULL) {
    961 			mountroot = NULL;
    962 			deffsname = "generic";
    963 		} else
    964 			deffsname = vops->vfs_name;
    965 
    966 		for (;;) {
    967 			printf("file system (default %s): ", deffsname);
    968 			len = cngetsn(buf, sizeof(buf));
    969 			if (len == 0)
    970 				break;
    971 			if (len == 4 && strcmp(buf, "halt") == 0)
    972 				cpu_reboot(RB_HALT, NULL);
    973 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    974 				cpu_reboot(0, NULL);
    975 #if defined(DDB)
    976 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    977 				console_debugger();
    978 			}
    979 #endif
    980 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    981 				mountroot = NULL;
    982 				break;
    983 			}
    984 			vops = vfs_getopsbyname(buf);
    985 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    986 				printf("use one of: generic");
    987 				for (vops = LIST_FIRST(&vfs_list);
    988 				     vops != NULL;
    989 				     vops = LIST_NEXT(vops, vfs_list)) {
    990 					if (vops->vfs_mountroot != NULL)
    991 						printf(" %s", vops->vfs_name);
    992 				}
    993 #if defined(DDB)
    994 				printf(" ddb");
    995 #endif
    996 				printf(" halt reboot\n");
    997 			} else {
    998 				mountroot = vops->vfs_mountroot;
    999 				break;
   1000 			}
   1001 		}
   1002 
   1003 	} else if (rootspec == NULL) {
   1004 		int majdev;
   1005 
   1006 		/*
   1007 		 * Wildcarded root; use the boot device.
   1008 		 */
   1009 		rootdv = bootdv;
   1010 
   1011 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
   1012 		if (majdev >= 0) {
   1013 			/*
   1014 			 * Root is on a disk.  `bootpartition' is root,
   1015 			 * unless the device does not use partitions.
   1016 			 */
   1017 			if (DEV_USES_PARTITIONS(bootdv))
   1018 				rootdev = MAKEDISKDEV(majdev,
   1019 						      device_unit(bootdv),
   1020 						      bootpartition);
   1021 			else
   1022 				rootdev = makedev(majdev, device_unit(bootdv));
   1023 		}
   1024 	} else {
   1025 
   1026 		/*
   1027 		 * `root on <dev> ...'
   1028 		 */
   1029 
   1030 		/*
   1031 		 * If it's a network interface, we can bail out
   1032 		 * early.
   1033 		 */
   1034 		dv = finddevice(rootspec);
   1035 		if (dv != NULL && device_class(dv) == DV_IFNET) {
   1036 			rootdv = dv;
   1037 			goto haveroot;
   1038 		}
   1039 
   1040 		rootdevname = devsw_blk2name(major(rootdev));
   1041 		if (rootdevname == NULL) {
   1042 			printf("unknown device major 0x%x\n", rootdev);
   1043 			boothowto |= RB_ASKNAME;
   1044 			goto top;
   1045 		}
   1046 		memset(buf, 0, sizeof(buf));
   1047 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
   1048 		    DISKUNIT(rootdev));
   1049 
   1050 		rootdv = finddevice(buf);
   1051 		if (rootdv == NULL) {
   1052 			printf("device %s (0x%x) not configured\n",
   1053 			    buf, rootdev);
   1054 			boothowto |= RB_ASKNAME;
   1055 			goto top;
   1056 		}
   1057 	}
   1058 
   1059  haveroot:
   1060 
   1061 	root_device = rootdv;
   1062 
   1063 	switch (device_class(rootdv)) {
   1064 	case DV_IFNET:
   1065 	case DV_DISK:
   1066 		aprint_normal("root on %s", rootdv->dv_xname);
   1067 		if (DEV_USES_PARTITIONS(rootdv))
   1068 			aprint_normal("%c", DISKPART(rootdev) + 'a');
   1069 		break;
   1070 
   1071 	default:
   1072 		printf("can't determine root device\n");
   1073 		boothowto |= RB_ASKNAME;
   1074 		goto top;
   1075 	}
   1076 
   1077 	/*
   1078 	 * Now configure the dump device.
   1079 	 *
   1080 	 * If we haven't figured out the dump device, do so, with
   1081 	 * the following rules:
   1082 	 *
   1083 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1084 	 *
   1085 	 *	(b) If dumpspec is set, try to use it.  If the device
   1086 	 *	    is not available, punt.
   1087 	 *
   1088 	 *	(c) If dumpspec is not set, the dump device is
   1089 	 *	    wildcarded or unspecified.  If the root device
   1090 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1091 	 *	    of the root device.
   1092 	 */
   1093 
   1094 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1095 		if (dumpdv == NULL)
   1096 			goto nodumpdev;
   1097 	} else if (dumpspec != NULL) {		/* (b) */
   1098 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1099 			/*
   1100 			 * Operator doesn't want a dump device.
   1101 			 * Or looks like they tried to pick a network
   1102 			 * device.  Oops.
   1103 			 */
   1104 			goto nodumpdev;
   1105 		}
   1106 
   1107 		dumpdevname = devsw_blk2name(major(dumpdev));
   1108 		if (dumpdevname == NULL)
   1109 			goto nodumpdev;
   1110 		memset(buf, 0, sizeof(buf));
   1111 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
   1112 		    DISKUNIT(dumpdev));
   1113 
   1114 		dumpdv = finddevice(buf);
   1115 		if (dumpdv == NULL) {
   1116 			/*
   1117 			 * Device not configured.
   1118 			 */
   1119 			goto nodumpdev;
   1120 		}
   1121 	} else {				/* (c) */
   1122 		if (DEV_USES_PARTITIONS(rootdv) == 0)
   1123 			goto nodumpdev;
   1124 		else {
   1125 			dumpdv = rootdv;
   1126 			dumpdev = MAKEDISKDEV(major(rootdev),
   1127 			    device_unit(dumpdv), 1);
   1128 		}
   1129 	}
   1130 
   1131 	aprint_normal(" dumps on %s", dumpdv->dv_xname);
   1132 	if (DEV_USES_PARTITIONS(dumpdv))
   1133 		aprint_normal("%c", DISKPART(dumpdev) + 'a');
   1134 	aprint_normal("\n");
   1135 	return;
   1136 
   1137  nodumpdev:
   1138 	dumpdev = NODEV;
   1139 	aprint_normal("\n");
   1140 }
   1141 
   1142 static struct device *
   1143 finddevice(const char *name)
   1144 {
   1145 	struct device *dv;
   1146 #if defined(BOOT_FROM_MEMORY_HOOKS)
   1147 	int j;
   1148 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1149 
   1150 #ifdef BOOT_FROM_MEMORY_HOOKS
   1151 	for (j = 0; j < NMD; j++) {
   1152 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
   1153 			dv = &fakemdrootdev[j];
   1154 			return (dv);
   1155 		}
   1156 	}
   1157 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1158 
   1159 	for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1160 	    dv = TAILQ_NEXT(dv, dv_list))
   1161 		if (strcmp(dv->dv_xname, name) == 0)
   1162 			break;
   1163 	return (dv);
   1164 }
   1165 
   1166 static struct device *
   1167 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1168 {
   1169 	struct device	*dv;
   1170 #ifdef MEMORY_DISK_HOOKS
   1171 	int		i;
   1172 #endif
   1173 
   1174 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1175 		printf("use one of:");
   1176 #ifdef MEMORY_DISK_HOOKS
   1177 		if (isdump == 0)
   1178 			for (i = 0; i < NMD; i++)
   1179 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
   1180 				    'a' + MAXPARTITIONS - 1);
   1181 #endif
   1182 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1183 			if (DEV_USES_PARTITIONS(dv))
   1184 				printf(" %s[a-%c]", dv->dv_xname,
   1185 				    'a' + MAXPARTITIONS - 1);
   1186 			else if (device_class(dv) == DV_DISK)
   1187 				printf(" %s", dv->dv_xname);
   1188 			if (isdump == 0 && device_class(dv) == DV_IFNET)
   1189 				printf(" %s", dv->dv_xname);
   1190 		}
   1191 		if (isdump)
   1192 			printf(" none");
   1193 #if defined(DDB)
   1194 		printf(" ddb");
   1195 #endif
   1196 		printf(" halt reboot\n");
   1197 	}
   1198 	return (dv);
   1199 }
   1200 
   1201 static struct device *
   1202 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1203 {
   1204 	struct device *dv;
   1205 	char *cp, c;
   1206 	int majdev, part;
   1207 #ifdef MEMORY_DISK_HOOKS
   1208 	int i;
   1209 #endif
   1210 	if (len == 0)
   1211 		return (NULL);
   1212 
   1213 	if (len == 4 && strcmp(str, "halt") == 0)
   1214 		cpu_reboot(RB_HALT, NULL);
   1215 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1216 		cpu_reboot(0, NULL);
   1217 #if defined(DDB)
   1218 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1219 		console_debugger();
   1220 #endif
   1221 
   1222 	cp = str + len - 1;
   1223 	c = *cp;
   1224 	if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1225 		part = c - 'a';
   1226 		*cp = '\0';
   1227 	} else
   1228 		part = defpart;
   1229 
   1230 #ifdef MEMORY_DISK_HOOKS
   1231 	for (i = 0; i < NMD; i++)
   1232 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
   1233 			dv = &fakemdrootdev[i];
   1234 			goto gotdisk;
   1235 		}
   1236 #endif
   1237 
   1238 	dv = finddevice(str);
   1239 	if (dv != NULL) {
   1240 		if (device_class(dv) == DV_DISK) {
   1241 #ifdef MEMORY_DISK_HOOKS
   1242  gotdisk:
   1243 #endif
   1244 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1245 			if (majdev < 0)
   1246 				panic("parsedisk");
   1247 			if (DEV_USES_PARTITIONS(dv))
   1248 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
   1249 						    part);
   1250 			else
   1251 				*devp = makedev(majdev, device_unit(dv));
   1252 		}
   1253 
   1254 		if (device_class(dv) == DV_IFNET)
   1255 			*devp = NODEV;
   1256 	}
   1257 
   1258 	*cp = c;
   1259 	return (dv);
   1260 }
   1261 
   1262 /*
   1263  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1264  * plus a possible `x' + suffix extension) fits into len bytes (including
   1265  * the terminating NUL).
   1266  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1267  * E.g, given a len of 9 and a suffix of `B':
   1268  *	bytes		result
   1269  *	-----		------
   1270  *	99999		`99999 B'
   1271  *	100000		`97 kB'
   1272  *	66715648	`65152 kB'
   1273  *	252215296	`240 MB'
   1274  */
   1275 int
   1276 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1277     int divisor)
   1278 {
   1279        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1280 	const char *prefixes;
   1281 	int		r;
   1282 	uint64_t	umax;
   1283 	size_t		i, suffixlen;
   1284 
   1285 	if (buf == NULL || suffix == NULL)
   1286 		return (-1);
   1287 	if (len > 0)
   1288 		buf[0] = '\0';
   1289 	suffixlen = strlen(suffix);
   1290 	/* check if enough room for `x y' + suffix + `\0' */
   1291 	if (len < 4 + suffixlen)
   1292 		return (-1);
   1293 
   1294 	if (divisor == 1024) {
   1295 		/*
   1296 		 * binary multiplies
   1297 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1298 		 */
   1299 		prefixes = " KMGTPE";
   1300 	} else
   1301 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1302 
   1303 	umax = 1;
   1304 	for (i = 0; i < len - suffixlen - 3; i++)
   1305 		umax *= 10;
   1306 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1307 		bytes /= divisor;
   1308 
   1309 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1310 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1311 
   1312 	return (r);
   1313 }
   1314 
   1315 int
   1316 format_bytes(char *buf, size_t len, uint64_t bytes)
   1317 {
   1318 	int	rv;
   1319 	size_t	nlen;
   1320 
   1321 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1322 	if (rv != -1) {
   1323 			/* nuke the trailing ` B' if it exists */
   1324 		nlen = strlen(buf) - 2;
   1325 		if (strcmp(&buf[nlen], " B") == 0)
   1326 			buf[nlen] = '\0';
   1327 	}
   1328 	return (rv);
   1329 }
   1330 
   1331 /*
   1332  * Return true if system call tracing is enabled for the specified process.
   1333  */
   1334 bool
   1335 trace_is_enabled(struct proc *p)
   1336 {
   1337 #ifdef SYSCALL_DEBUG
   1338 	return (true);
   1339 #endif
   1340 #ifdef KTRACE
   1341 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
   1342 		return (true);
   1343 #endif
   1344 #ifdef SYSTRACE
   1345 	if (ISSET(p->p_flag, PK_SYSTRACE))
   1346 		return (true);
   1347 #endif
   1348 #ifdef PTRACE
   1349 	if (ISSET(p->p_slflag, PSL_SYSCALL))
   1350 		return (true);
   1351 #endif
   1352 
   1353 	return (false);
   1354 }
   1355 
   1356 /*
   1357  * Start trace of particular system call. If process is being traced,
   1358  * this routine is called by MD syscall dispatch code just before
   1359  * a system call is actually executed.
   1360  * MD caller guarantees the passed 'code' is within the supported
   1361  * system call number range for emulation the process runs under.
   1362  */
   1363 int
   1364 trace_enter(struct lwp *l, register_t code,
   1365     register_t realcode, const struct sysent *callp, void *args)
   1366 {
   1367 	struct proc *p = l->l_proc;
   1368 
   1369 
   1370 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
   1371 #ifdef SYSCALL_DEBUG
   1372 	scdebug_call(l, code, args);
   1373 #endif /* SYSCALL_DEBUG */
   1374 
   1375 #ifdef KTRACE
   1376 	if (KTRPOINT(p, KTR_SYSCALL))
   1377 		ktrsyscall(l, code, realcode, callp, args);
   1378 #endif /* KTRACE */
   1379 
   1380 #ifdef PTRACE
   1381 	if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1382 	    (PSL_SYSCALL|PSL_TRACED))
   1383 		process_stoptrace(l);
   1384 #endif
   1385 
   1386 #ifdef SYSTRACE
   1387 	if (ISSET(p->p_flag, PK_SYSTRACE))
   1388 		return systrace_enter(l, code, args);
   1389 #endif
   1390 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
   1391 	return 0;
   1392 }
   1393 
   1394 /*
   1395  * End trace of particular system call. If process is being traced,
   1396  * this routine is called by MD syscall dispatch code just after
   1397  * a system call finishes.
   1398  * MD caller guarantees the passed 'code' is within the supported
   1399  * system call number range for emulation the process runs under.
   1400  */
   1401 void
   1402 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
   1403     int error)
   1404 {
   1405 	struct proc *p = l->l_proc;
   1406 
   1407 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
   1408 #ifdef SYSCALL_DEBUG
   1409 	scdebug_ret(l, code, error, rval);
   1410 #endif /* SYSCALL_DEBUG */
   1411 
   1412 #ifdef KTRACE
   1413 	if (KTRPOINT(p, KTR_SYSRET))
   1414 		ktrsysret(l, code, error, rval);
   1415 #endif /* KTRACE */
   1416 
   1417 #ifdef PTRACE
   1418 	if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1419 	    (PSL_SYSCALL|PSL_TRACED))
   1420 		process_stoptrace(l);
   1421 #endif
   1422 
   1423 #ifdef SYSTRACE
   1424 	if (ISSET(p->p_flag, PK_SYSTRACE)) {
   1425 		KERNEL_LOCK(1, l);
   1426 		systrace_exit(l, code, args, rval, error);
   1427 		KERNEL_UNLOCK_LAST(l);
   1428 	}
   1429 #endif
   1430 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
   1431 }
   1432