kern_subr.c revision 1.158 1 /* $NetBSD: kern_subr.c,v 1.158 2007/06/03 07:47:50 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.158 2007/06/03 07:47:50 dsl Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_ptrace.h"
96 #include "opt_systrace.h"
97 #include "opt_powerhook.h"
98 #include "opt_tftproot.h"
99
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/proc.h>
103 #include <sys/malloc.h>
104 #include <sys/mount.h>
105 #include <sys/device.h>
106 #include <sys/reboot.h>
107 #include <sys/conf.h>
108 #include <sys/disklabel.h>
109 #include <sys/queue.h>
110 #include <sys/systrace.h>
111 #include <sys/ktrace.h>
112 #include <sys/ptrace.h>
113 #include <sys/fcntl.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <dev/cons.h>
118
119 #include <net/if.h>
120
121 /* XXX these should eventually move to subr_autoconf.c */
122 static struct device *finddevice(const char *);
123 static struct device *getdisk(char *, int, int, dev_t *, int);
124 static struct device *parsedisk(char *, int, int, dev_t *);
125
126 /*
127 * A generic linear hook.
128 */
129 struct hook_desc {
130 LIST_ENTRY(hook_desc) hk_list;
131 void (*hk_fn)(void *);
132 void *hk_arg;
133 };
134 typedef LIST_HEAD(, hook_desc) hook_list_t;
135
136 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
137
138 #ifdef TFTPROOT
139 int tftproot_dhcpboot(struct device *);
140 #endif
141
142 void
143 uio_setup_sysspace(struct uio *uio)
144 {
145
146 uio->uio_vmspace = vmspace_kernel();
147 }
148
149 int
150 uiomove(void *buf, size_t n, struct uio *uio)
151 {
152 struct vmspace *vm = uio->uio_vmspace;
153 struct iovec *iov;
154 u_int cnt;
155 int error = 0;
156 char *cp = buf;
157 #ifdef MULTIPROCESSOR
158 int hold_count;
159 #endif
160
161 KERNEL_UNLOCK_ALL(NULL, &hold_count);
162
163 ASSERT_SLEEPABLE(NULL, "uiomove");
164
165 #ifdef DIAGNOSTIC
166 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
167 panic("uiomove: mode");
168 #endif
169 while (n > 0 && uio->uio_resid) {
170 iov = uio->uio_iov;
171 cnt = iov->iov_len;
172 if (cnt == 0) {
173 KASSERT(uio->uio_iovcnt > 0);
174 uio->uio_iov++;
175 uio->uio_iovcnt--;
176 continue;
177 }
178 if (cnt > n)
179 cnt = n;
180 if (!VMSPACE_IS_KERNEL_P(vm)) {
181 if (curcpu()->ci_schedstate.spc_flags &
182 SPCF_SHOULDYIELD)
183 preempt();
184 }
185
186 if (uio->uio_rw == UIO_READ) {
187 error = copyout_vmspace(vm, cp, iov->iov_base,
188 cnt);
189 } else {
190 error = copyin_vmspace(vm, iov->iov_base, cp,
191 cnt);
192 }
193 if (error) {
194 break;
195 }
196 iov->iov_base = (char *)iov->iov_base + cnt;
197 iov->iov_len -= cnt;
198 uio->uio_resid -= cnt;
199 uio->uio_offset += cnt;
200 cp += cnt;
201 KDASSERT(cnt <= n);
202 n -= cnt;
203 }
204 KERNEL_LOCK(hold_count, NULL);
205 return (error);
206 }
207
208 /*
209 * Wrapper for uiomove() that validates the arguments against a known-good
210 * kernel buffer.
211 */
212 int
213 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
214 {
215 size_t offset;
216
217 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
218 (offset = uio->uio_offset) != uio->uio_offset)
219 return (EINVAL);
220 if (offset >= buflen)
221 return (0);
222 return (uiomove((char *)buf + offset, buflen - offset, uio));
223 }
224
225 /*
226 * Give next character to user as result of read.
227 */
228 int
229 ureadc(int c, struct uio *uio)
230 {
231 struct iovec *iov;
232
233 if (uio->uio_resid <= 0)
234 panic("ureadc: non-positive resid");
235 again:
236 if (uio->uio_iovcnt <= 0)
237 panic("ureadc: non-positive iovcnt");
238 iov = uio->uio_iov;
239 if (iov->iov_len <= 0) {
240 uio->uio_iovcnt--;
241 uio->uio_iov++;
242 goto again;
243 }
244 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
245 if (subyte(iov->iov_base, c) < 0)
246 return (EFAULT);
247 } else {
248 *(char *)iov->iov_base = c;
249 }
250 iov->iov_base = (char *)iov->iov_base + 1;
251 iov->iov_len--;
252 uio->uio_resid--;
253 uio->uio_offset++;
254 return (0);
255 }
256
257 /*
258 * Like copyin(), but operates on an arbitrary vmspace.
259 */
260 int
261 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
262 {
263 struct iovec iov;
264 struct uio uio;
265 int error;
266
267 if (len == 0)
268 return (0);
269
270 if (VMSPACE_IS_KERNEL_P(vm)) {
271 return kcopy(uaddr, kaddr, len);
272 }
273 if (__predict_true(vm == curproc->p_vmspace)) {
274 return copyin(uaddr, kaddr, len);
275 }
276
277 iov.iov_base = kaddr;
278 iov.iov_len = len;
279 uio.uio_iov = &iov;
280 uio.uio_iovcnt = 1;
281 uio.uio_offset = (off_t)(intptr_t)uaddr;
282 uio.uio_resid = len;
283 uio.uio_rw = UIO_READ;
284 UIO_SETUP_SYSSPACE(&uio);
285 error = uvm_io(&vm->vm_map, &uio);
286
287 return (error);
288 }
289
290 /*
291 * Like copyout(), but operates on an arbitrary vmspace.
292 */
293 int
294 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
295 {
296 struct iovec iov;
297 struct uio uio;
298 int error;
299
300 if (len == 0)
301 return (0);
302
303 if (VMSPACE_IS_KERNEL_P(vm)) {
304 return kcopy(kaddr, uaddr, len);
305 }
306 if (__predict_true(vm == curproc->p_vmspace)) {
307 return copyout(kaddr, uaddr, len);
308 }
309
310 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
311 iov.iov_len = len;
312 uio.uio_iov = &iov;
313 uio.uio_iovcnt = 1;
314 uio.uio_offset = (off_t)(intptr_t)uaddr;
315 uio.uio_resid = len;
316 uio.uio_rw = UIO_WRITE;
317 UIO_SETUP_SYSSPACE(&uio);
318 error = uvm_io(&vm->vm_map, &uio);
319
320 return (error);
321 }
322
323 /*
324 * Like copyin(), but operates on an arbitrary process.
325 */
326 int
327 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
328 {
329 struct vmspace *vm;
330 int error;
331
332 error = proc_vmspace_getref(p, &vm);
333 if (error) {
334 return error;
335 }
336 error = copyin_vmspace(vm, uaddr, kaddr, len);
337 uvmspace_free(vm);
338
339 return error;
340 }
341
342 /*
343 * Like copyout(), but operates on an arbitrary process.
344 */
345 int
346 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
347 {
348 struct vmspace *vm;
349 int error;
350
351 error = proc_vmspace_getref(p, &vm);
352 if (error) {
353 return error;
354 }
355 error = copyout_vmspace(vm, kaddr, uaddr, len);
356 uvmspace_free(vm);
357
358 return error;
359 }
360
361 /*
362 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
363 * flag is passed in `ioctlflags' from the ioctl call.
364 */
365 int
366 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
367 {
368 if (ioctlflags & FKIOCTL)
369 return kcopy(src, dst, len);
370 return copyin(src, dst, len);
371 }
372
373 /*
374 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
375 * flag is passed in `ioctlflags' from the ioctl call.
376 */
377 int
378 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
379 {
380 if (ioctlflags & FKIOCTL)
381 return kcopy(src, dst, len);
382 return copyout(src, dst, len);
383 }
384
385 /*
386 * General routine to allocate a hash table.
387 * Allocate enough memory to hold at least `elements' list-head pointers.
388 * Return a pointer to the allocated space and set *hashmask to a pattern
389 * suitable for masking a value to use as an index into the returned array.
390 */
391 void *
392 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
393 int mflags, u_long *hashmask)
394 {
395 u_long hashsize, i;
396 LIST_HEAD(, generic) *hashtbl_list;
397 TAILQ_HEAD(, generic) *hashtbl_tailq;
398 size_t esize;
399 void *p;
400
401 if (elements == 0)
402 panic("hashinit: bad cnt");
403 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
404 continue;
405
406 switch (htype) {
407 case HASH_LIST:
408 esize = sizeof(*hashtbl_list);
409 break;
410 case HASH_TAILQ:
411 esize = sizeof(*hashtbl_tailq);
412 break;
413 default:
414 #ifdef DIAGNOSTIC
415 panic("hashinit: invalid table type");
416 #else
417 return NULL;
418 #endif
419 }
420
421 if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
422 return (NULL);
423
424 switch (htype) {
425 case HASH_LIST:
426 hashtbl_list = p;
427 for (i = 0; i < hashsize; i++)
428 LIST_INIT(&hashtbl_list[i]);
429 break;
430 case HASH_TAILQ:
431 hashtbl_tailq = p;
432 for (i = 0; i < hashsize; i++)
433 TAILQ_INIT(&hashtbl_tailq[i]);
434 break;
435 }
436 *hashmask = hashsize - 1;
437 return (p);
438 }
439
440 /*
441 * Free memory from hash table previosly allocated via hashinit().
442 */
443 void
444 hashdone(void *hashtbl, struct malloc_type *mtype)
445 {
446
447 free(hashtbl, mtype);
448 }
449
450
451 static void *
452 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
453 {
454 struct hook_desc *hd;
455
456 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
457 if (hd == NULL)
458 return (NULL);
459
460 hd->hk_fn = fn;
461 hd->hk_arg = arg;
462 LIST_INSERT_HEAD(list, hd, hk_list);
463
464 return (hd);
465 }
466
467 static void
468 hook_disestablish(hook_list_t *list, void *vhook)
469 {
470 #ifdef DIAGNOSTIC
471 struct hook_desc *hd;
472
473 LIST_FOREACH(hd, list, hk_list) {
474 if (hd == vhook)
475 break;
476 }
477
478 if (hd == NULL)
479 panic("hook_disestablish: hook %p not established", vhook);
480 #endif
481 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
482 free(vhook, M_DEVBUF);
483 }
484
485 static void
486 hook_destroy(hook_list_t *list)
487 {
488 struct hook_desc *hd;
489
490 while ((hd = LIST_FIRST(list)) != NULL) {
491 LIST_REMOVE(hd, hk_list);
492 free(hd, M_DEVBUF);
493 }
494 }
495
496 static void
497 hook_proc_run(hook_list_t *list, struct proc *p)
498 {
499 struct hook_desc *hd;
500
501 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
502 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
503 hd->hk_arg);
504 }
505 }
506
507 /*
508 * "Shutdown hook" types, functions, and variables.
509 *
510 * Should be invoked immediately before the
511 * system is halted or rebooted, i.e. after file systems unmounted,
512 * after crash dump done, etc.
513 *
514 * Each shutdown hook is removed from the list before it's run, so that
515 * it won't be run again.
516 */
517
518 static hook_list_t shutdownhook_list;
519
520 void *
521 shutdownhook_establish(void (*fn)(void *), void *arg)
522 {
523 return hook_establish(&shutdownhook_list, fn, arg);
524 }
525
526 void
527 shutdownhook_disestablish(void *vhook)
528 {
529 hook_disestablish(&shutdownhook_list, vhook);
530 }
531
532 /*
533 * Run shutdown hooks. Should be invoked immediately before the
534 * system is halted or rebooted, i.e. after file systems unmounted,
535 * after crash dump done, etc.
536 *
537 * Each shutdown hook is removed from the list before it's run, so that
538 * it won't be run again.
539 */
540 void
541 doshutdownhooks(void)
542 {
543 struct hook_desc *dp;
544
545 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
546 LIST_REMOVE(dp, hk_list);
547 (*dp->hk_fn)(dp->hk_arg);
548 #if 0
549 /*
550 * Don't bother freeing the hook structure,, since we may
551 * be rebooting because of a memory corruption problem,
552 * and this might only make things worse. It doesn't
553 * matter, anyway, since the system is just about to
554 * reboot.
555 */
556 free(dp, M_DEVBUF);
557 #endif
558 }
559 }
560
561 /*
562 * "Mountroot hook" types, functions, and variables.
563 */
564
565 static hook_list_t mountroothook_list;
566
567 void *
568 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
569 {
570 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
571 }
572
573 void
574 mountroothook_disestablish(void *vhook)
575 {
576 hook_disestablish(&mountroothook_list, vhook);
577 }
578
579 void
580 mountroothook_destroy(void)
581 {
582 hook_destroy(&mountroothook_list);
583 }
584
585 void
586 domountroothook(void)
587 {
588 struct hook_desc *hd;
589
590 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
591 if (hd->hk_arg == (void *)root_device) {
592 (*hd->hk_fn)(hd->hk_arg);
593 return;
594 }
595 }
596 }
597
598 static hook_list_t exechook_list;
599
600 void *
601 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
602 {
603 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
604 }
605
606 void
607 exechook_disestablish(void *vhook)
608 {
609 hook_disestablish(&exechook_list, vhook);
610 }
611
612 /*
613 * Run exec hooks.
614 */
615 void
616 doexechooks(struct proc *p)
617 {
618 hook_proc_run(&exechook_list, p);
619 }
620
621 static hook_list_t exithook_list;
622
623 void *
624 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
625 {
626 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
627 }
628
629 void
630 exithook_disestablish(void *vhook)
631 {
632 hook_disestablish(&exithook_list, vhook);
633 }
634
635 /*
636 * Run exit hooks.
637 */
638 void
639 doexithooks(struct proc *p)
640 {
641 hook_proc_run(&exithook_list, p);
642 }
643
644 static hook_list_t forkhook_list;
645
646 void *
647 forkhook_establish(void (*fn)(struct proc *, struct proc *))
648 {
649 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
650 }
651
652 void
653 forkhook_disestablish(void *vhook)
654 {
655 hook_disestablish(&forkhook_list, vhook);
656 }
657
658 /*
659 * Run fork hooks.
660 */
661 void
662 doforkhooks(struct proc *p2, struct proc *p1)
663 {
664 struct hook_desc *hd;
665
666 LIST_FOREACH(hd, &forkhook_list, hk_list) {
667 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
668 (p2, p1);
669 }
670 }
671
672 /*
673 * "Power hook" types, functions, and variables.
674 * The list of power hooks is kept ordered with the last registered hook
675 * first.
676 * When running the hooks on power down the hooks are called in reverse
677 * registration order, when powering up in registration order.
678 */
679 struct powerhook_desc {
680 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
681 void (*sfd_fn)(int, void *);
682 void *sfd_arg;
683 char sfd_name[16];
684 };
685
686 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
687 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
688
689 void *
690 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
691 {
692 struct powerhook_desc *ndp;
693
694 ndp = (struct powerhook_desc *)
695 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
696 if (ndp == NULL)
697 return (NULL);
698
699 ndp->sfd_fn = fn;
700 ndp->sfd_arg = arg;
701 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
702 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
703
704 return (ndp);
705 }
706
707 void
708 powerhook_disestablish(void *vhook)
709 {
710 #ifdef DIAGNOSTIC
711 struct powerhook_desc *dp;
712
713 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
714 if (dp == vhook)
715 goto found;
716 panic("powerhook_disestablish: hook %p not established", vhook);
717 found:
718 #endif
719
720 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
721 sfd_list);
722 free(vhook, M_DEVBUF);
723 }
724
725 /*
726 * Run power hooks.
727 */
728 void
729 dopowerhooks(int why)
730 {
731 struct powerhook_desc *dp;
732
733 #ifdef POWERHOOK_DEBUG
734 printf("dopowerhooks ");
735 switch (why) {
736 case PWR_RESUME:
737 printf("resume");
738 break;
739 case PWR_SOFTRESUME:
740 printf("softresume");
741 break;
742 case PWR_SUSPEND:
743 printf("suspend");
744 break;
745 case PWR_SOFTSUSPEND:
746 printf("softsuspend");
747 break;
748 case PWR_STANDBY:
749 printf("standby");
750 break;
751 }
752 printf(":");
753 #endif
754
755 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
756 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
757 #ifdef POWERHOOK_DEBUG
758 printf(" %s", dp->sfd_name);
759 #endif
760 (*dp->sfd_fn)(why, dp->sfd_arg);
761 }
762 } else {
763 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
764 #ifdef POWERHOOK_DEBUG
765 printf(" %s", dp->sfd_name);
766 #endif
767 (*dp->sfd_fn)(why, dp->sfd_arg);
768 }
769 }
770
771 #ifdef POWERHOOK_DEBUG
772 printf(".\n");
773 #endif
774 }
775
776 /*
777 * Determine the root device and, if instructed to, the root file system.
778 */
779
780 #include "md.h"
781 #if NMD == 0
782 #undef MEMORY_DISK_HOOKS
783 #endif
784
785 #ifdef MEMORY_DISK_HOOKS
786 static struct device fakemdrootdev[NMD];
787 extern struct cfdriver md_cd;
788 #endif
789
790 #ifdef MEMORY_DISK_IS_ROOT
791 #define BOOT_FROM_MEMORY_HOOKS 1
792 #endif
793
794 /*
795 * The device and wedge that we booted from. If booted_wedge is NULL,
796 * the we might consult booted_partition.
797 */
798 struct device *booted_device;
799 struct device *booted_wedge;
800 int booted_partition;
801
802 /*
803 * Use partition letters if it's a disk class but not a wedge.
804 * XXX Check for wedge is kinda gross.
805 */
806 #define DEV_USES_PARTITIONS(dv) \
807 (device_class((dv)) == DV_DISK && \
808 !device_is_a((dv), "dk"))
809
810 void
811 setroot(struct device *bootdv, int bootpartition)
812 {
813 struct device *dv;
814 int len;
815 #ifdef MEMORY_DISK_HOOKS
816 int i;
817 #endif
818 dev_t nrootdev;
819 dev_t ndumpdev = NODEV;
820 char buf[128];
821 const char *rootdevname;
822 const char *dumpdevname;
823 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
824 struct device *dumpdv = NULL;
825 struct ifnet *ifp;
826 const char *deffsname;
827 struct vfsops *vops;
828
829 #ifdef TFTPROOT
830 if (tftproot_dhcpboot(bootdv) != 0)
831 boothowto |= RB_ASKNAME;
832 #endif
833
834 #ifdef MEMORY_DISK_HOOKS
835 for (i = 0; i < NMD; i++) {
836 fakemdrootdev[i].dv_class = DV_DISK;
837 fakemdrootdev[i].dv_cfdata = NULL;
838 fakemdrootdev[i].dv_cfdriver = &md_cd;
839 fakemdrootdev[i].dv_unit = i;
840 fakemdrootdev[i].dv_parent = NULL;
841 snprintf(fakemdrootdev[i].dv_xname,
842 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
843 }
844 #endif /* MEMORY_DISK_HOOKS */
845
846 #ifdef MEMORY_DISK_IS_ROOT
847 bootdv = &fakemdrootdev[0];
848 bootpartition = 0;
849 #endif
850
851 /*
852 * If NFS is specified as the file system, and we found
853 * a DV_DISK boot device (or no boot device at all), then
854 * find a reasonable network interface for "rootspec".
855 */
856 vops = vfs_getopsbyname("nfs");
857 if (vops != NULL && vops->vfs_mountroot == mountroot &&
858 rootspec == NULL &&
859 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
860 IFNET_FOREACH(ifp) {
861 if ((ifp->if_flags &
862 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
863 break;
864 }
865 if (ifp == NULL) {
866 /*
867 * Can't find a suitable interface; ask the
868 * user.
869 */
870 boothowto |= RB_ASKNAME;
871 } else {
872 /*
873 * Have a suitable interface; behave as if
874 * the user specified this interface.
875 */
876 rootspec = (const char *)ifp->if_xname;
877 }
878 }
879
880 /*
881 * If wildcarded root and we the boot device wasn't determined,
882 * ask the user.
883 */
884 if (rootspec == NULL && bootdv == NULL)
885 boothowto |= RB_ASKNAME;
886
887 top:
888 if (boothowto & RB_ASKNAME) {
889 struct device *defdumpdv;
890
891 for (;;) {
892 printf("root device");
893 if (bootdv != NULL) {
894 printf(" (default %s", bootdv->dv_xname);
895 if (DEV_USES_PARTITIONS(bootdv))
896 printf("%c", bootpartition + 'a');
897 printf(")");
898 }
899 printf(": ");
900 len = cngetsn(buf, sizeof(buf));
901 if (len == 0 && bootdv != NULL) {
902 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
903 len = strlen(buf);
904 }
905 if (len > 0 && buf[len - 1] == '*') {
906 buf[--len] = '\0';
907 dv = getdisk(buf, len, 1, &nrootdev, 0);
908 if (dv != NULL) {
909 rootdv = dv;
910 break;
911 }
912 }
913 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
914 if (dv != NULL) {
915 rootdv = dv;
916 break;
917 }
918 }
919
920 /*
921 * Set up the default dump device. If root is on
922 * a network device, there is no default dump
923 * device, since we don't support dumps to the
924 * network.
925 */
926 if (DEV_USES_PARTITIONS(rootdv) == 0)
927 defdumpdv = NULL;
928 else
929 defdumpdv = rootdv;
930
931 for (;;) {
932 printf("dump device");
933 if (defdumpdv != NULL) {
934 /*
935 * Note, we know it's a disk if we get here.
936 */
937 printf(" (default %sb)", defdumpdv->dv_xname);
938 }
939 printf(": ");
940 len = cngetsn(buf, sizeof(buf));
941 if (len == 0) {
942 if (defdumpdv != NULL) {
943 ndumpdev = MAKEDISKDEV(major(nrootdev),
944 DISKUNIT(nrootdev), 1);
945 }
946 dumpdv = defdumpdv;
947 break;
948 }
949 if (len == 4 && strcmp(buf, "none") == 0) {
950 dumpdv = NULL;
951 break;
952 }
953 dv = getdisk(buf, len, 1, &ndumpdev, 1);
954 if (dv != NULL) {
955 dumpdv = dv;
956 break;
957 }
958 }
959
960 rootdev = nrootdev;
961 dumpdev = ndumpdev;
962
963 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
964 vops = LIST_NEXT(vops, vfs_list)) {
965 if (vops->vfs_mountroot != NULL &&
966 vops->vfs_mountroot == mountroot)
967 break;
968 }
969
970 if (vops == NULL) {
971 mountroot = NULL;
972 deffsname = "generic";
973 } else
974 deffsname = vops->vfs_name;
975
976 for (;;) {
977 printf("file system (default %s): ", deffsname);
978 len = cngetsn(buf, sizeof(buf));
979 if (len == 0)
980 break;
981 if (len == 4 && strcmp(buf, "halt") == 0)
982 cpu_reboot(RB_HALT, NULL);
983 else if (len == 6 && strcmp(buf, "reboot") == 0)
984 cpu_reboot(0, NULL);
985 #if defined(DDB)
986 else if (len == 3 && strcmp(buf, "ddb") == 0) {
987 console_debugger();
988 }
989 #endif
990 else if (len == 7 && strcmp(buf, "generic") == 0) {
991 mountroot = NULL;
992 break;
993 }
994 vops = vfs_getopsbyname(buf);
995 if (vops == NULL || vops->vfs_mountroot == NULL) {
996 printf("use one of: generic");
997 for (vops = LIST_FIRST(&vfs_list);
998 vops != NULL;
999 vops = LIST_NEXT(vops, vfs_list)) {
1000 if (vops->vfs_mountroot != NULL)
1001 printf(" %s", vops->vfs_name);
1002 }
1003 #if defined(DDB)
1004 printf(" ddb");
1005 #endif
1006 printf(" halt reboot\n");
1007 } else {
1008 mountroot = vops->vfs_mountroot;
1009 break;
1010 }
1011 }
1012
1013 } else if (rootspec == NULL) {
1014 int majdev;
1015
1016 /*
1017 * Wildcarded root; use the boot device.
1018 */
1019 rootdv = bootdv;
1020
1021 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
1022 if (majdev >= 0) {
1023 /*
1024 * Root is on a disk. `bootpartition' is root,
1025 * unless the device does not use partitions.
1026 */
1027 if (DEV_USES_PARTITIONS(bootdv))
1028 rootdev = MAKEDISKDEV(majdev,
1029 device_unit(bootdv),
1030 bootpartition);
1031 else
1032 rootdev = makedev(majdev, device_unit(bootdv));
1033 }
1034 } else {
1035
1036 /*
1037 * `root on <dev> ...'
1038 */
1039
1040 /*
1041 * If it's a network interface, we can bail out
1042 * early.
1043 */
1044 dv = finddevice(rootspec);
1045 if (dv != NULL && device_class(dv) == DV_IFNET) {
1046 rootdv = dv;
1047 goto haveroot;
1048 }
1049
1050 rootdevname = devsw_blk2name(major(rootdev));
1051 if (rootdevname == NULL) {
1052 printf("unknown device major 0x%x\n", rootdev);
1053 boothowto |= RB_ASKNAME;
1054 goto top;
1055 }
1056 memset(buf, 0, sizeof(buf));
1057 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1058 DISKUNIT(rootdev));
1059
1060 rootdv = finddevice(buf);
1061 if (rootdv == NULL) {
1062 printf("device %s (0x%x) not configured\n",
1063 buf, rootdev);
1064 boothowto |= RB_ASKNAME;
1065 goto top;
1066 }
1067 }
1068
1069 haveroot:
1070
1071 root_device = rootdv;
1072
1073 switch (device_class(rootdv)) {
1074 case DV_IFNET:
1075 case DV_DISK:
1076 aprint_normal("root on %s", rootdv->dv_xname);
1077 if (DEV_USES_PARTITIONS(rootdv))
1078 aprint_normal("%c", DISKPART(rootdev) + 'a');
1079 break;
1080
1081 default:
1082 printf("can't determine root device\n");
1083 boothowto |= RB_ASKNAME;
1084 goto top;
1085 }
1086
1087 /*
1088 * Now configure the dump device.
1089 *
1090 * If we haven't figured out the dump device, do so, with
1091 * the following rules:
1092 *
1093 * (a) We already know dumpdv in the RB_ASKNAME case.
1094 *
1095 * (b) If dumpspec is set, try to use it. If the device
1096 * is not available, punt.
1097 *
1098 * (c) If dumpspec is not set, the dump device is
1099 * wildcarded or unspecified. If the root device
1100 * is DV_IFNET, punt. Otherwise, use partition b
1101 * of the root device.
1102 */
1103
1104 if (boothowto & RB_ASKNAME) { /* (a) */
1105 if (dumpdv == NULL)
1106 goto nodumpdev;
1107 } else if (dumpspec != NULL) { /* (b) */
1108 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1109 /*
1110 * Operator doesn't want a dump device.
1111 * Or looks like they tried to pick a network
1112 * device. Oops.
1113 */
1114 goto nodumpdev;
1115 }
1116
1117 dumpdevname = devsw_blk2name(major(dumpdev));
1118 if (dumpdevname == NULL)
1119 goto nodumpdev;
1120 memset(buf, 0, sizeof(buf));
1121 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1122 DISKUNIT(dumpdev));
1123
1124 dumpdv = finddevice(buf);
1125 if (dumpdv == NULL) {
1126 /*
1127 * Device not configured.
1128 */
1129 goto nodumpdev;
1130 }
1131 } else { /* (c) */
1132 if (DEV_USES_PARTITIONS(rootdv) == 0)
1133 goto nodumpdev;
1134 else {
1135 dumpdv = rootdv;
1136 dumpdev = MAKEDISKDEV(major(rootdev),
1137 device_unit(dumpdv), 1);
1138 }
1139 }
1140
1141 aprint_normal(" dumps on %s", dumpdv->dv_xname);
1142 if (DEV_USES_PARTITIONS(dumpdv))
1143 aprint_normal("%c", DISKPART(dumpdev) + 'a');
1144 aprint_normal("\n");
1145 return;
1146
1147 nodumpdev:
1148 dumpdev = NODEV;
1149 aprint_normal("\n");
1150 }
1151
1152 static struct device *
1153 finddevice(const char *name)
1154 {
1155 struct device *dv;
1156 #if defined(BOOT_FROM_MEMORY_HOOKS)
1157 int j;
1158 #endif /* BOOT_FROM_MEMORY_HOOKS */
1159
1160 #ifdef BOOT_FROM_MEMORY_HOOKS
1161 for (j = 0; j < NMD; j++) {
1162 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
1163 dv = &fakemdrootdev[j];
1164 return (dv);
1165 }
1166 }
1167 #endif /* BOOT_FROM_MEMORY_HOOKS */
1168
1169 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1170 dv = TAILQ_NEXT(dv, dv_list))
1171 if (strcmp(dv->dv_xname, name) == 0)
1172 break;
1173 return (dv);
1174 }
1175
1176 static struct device *
1177 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1178 {
1179 struct device *dv;
1180 #ifdef MEMORY_DISK_HOOKS
1181 int i;
1182 #endif
1183
1184 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1185 printf("use one of:");
1186 #ifdef MEMORY_DISK_HOOKS
1187 if (isdump == 0)
1188 for (i = 0; i < NMD; i++)
1189 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1190 'a' + MAXPARTITIONS - 1);
1191 #endif
1192 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1193 if (DEV_USES_PARTITIONS(dv))
1194 printf(" %s[a-%c]", dv->dv_xname,
1195 'a' + MAXPARTITIONS - 1);
1196 else if (device_class(dv) == DV_DISK)
1197 printf(" %s", dv->dv_xname);
1198 if (isdump == 0 && device_class(dv) == DV_IFNET)
1199 printf(" %s", dv->dv_xname);
1200 }
1201 if (isdump)
1202 printf(" none");
1203 #if defined(DDB)
1204 printf(" ddb");
1205 #endif
1206 printf(" halt reboot\n");
1207 }
1208 return (dv);
1209 }
1210
1211 static struct device *
1212 parsedisk(char *str, int len, int defpart, dev_t *devp)
1213 {
1214 struct device *dv;
1215 char *cp, c;
1216 int majdev, part;
1217 #ifdef MEMORY_DISK_HOOKS
1218 int i;
1219 #endif
1220 if (len == 0)
1221 return (NULL);
1222
1223 if (len == 4 && strcmp(str, "halt") == 0)
1224 cpu_reboot(RB_HALT, NULL);
1225 else if (len == 6 && strcmp(str, "reboot") == 0)
1226 cpu_reboot(0, NULL);
1227 #if defined(DDB)
1228 else if (len == 3 && strcmp(str, "ddb") == 0)
1229 console_debugger();
1230 #endif
1231
1232 cp = str + len - 1;
1233 c = *cp;
1234 if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1235 part = c - 'a';
1236 *cp = '\0';
1237 } else
1238 part = defpart;
1239
1240 #ifdef MEMORY_DISK_HOOKS
1241 for (i = 0; i < NMD; i++)
1242 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1243 dv = &fakemdrootdev[i];
1244 goto gotdisk;
1245 }
1246 #endif
1247
1248 dv = finddevice(str);
1249 if (dv != NULL) {
1250 if (device_class(dv) == DV_DISK) {
1251 #ifdef MEMORY_DISK_HOOKS
1252 gotdisk:
1253 #endif
1254 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1255 if (majdev < 0)
1256 panic("parsedisk");
1257 if (DEV_USES_PARTITIONS(dv))
1258 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1259 part);
1260 else
1261 *devp = makedev(majdev, device_unit(dv));
1262 }
1263
1264 if (device_class(dv) == DV_IFNET)
1265 *devp = NODEV;
1266 }
1267
1268 *cp = c;
1269 return (dv);
1270 }
1271
1272 /*
1273 * snprintf() `bytes' into `buf', reformatting it so that the number,
1274 * plus a possible `x' + suffix extension) fits into len bytes (including
1275 * the terminating NUL).
1276 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1277 * E.g, given a len of 9 and a suffix of `B':
1278 * bytes result
1279 * ----- ------
1280 * 99999 `99999 B'
1281 * 100000 `97 kB'
1282 * 66715648 `65152 kB'
1283 * 252215296 `240 MB'
1284 */
1285 int
1286 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1287 int divisor)
1288 {
1289 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1290 const char *prefixes;
1291 int r;
1292 uint64_t umax;
1293 size_t i, suffixlen;
1294
1295 if (buf == NULL || suffix == NULL)
1296 return (-1);
1297 if (len > 0)
1298 buf[0] = '\0';
1299 suffixlen = strlen(suffix);
1300 /* check if enough room for `x y' + suffix + `\0' */
1301 if (len < 4 + suffixlen)
1302 return (-1);
1303
1304 if (divisor == 1024) {
1305 /*
1306 * binary multiplies
1307 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1308 */
1309 prefixes = " KMGTPE";
1310 } else
1311 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1312
1313 umax = 1;
1314 for (i = 0; i < len - suffixlen - 3; i++)
1315 umax *= 10;
1316 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1317 bytes /= divisor;
1318
1319 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1320 i == 0 ? "" : " ", prefixes[i], suffix);
1321
1322 return (r);
1323 }
1324
1325 int
1326 format_bytes(char *buf, size_t len, uint64_t bytes)
1327 {
1328 int rv;
1329 size_t nlen;
1330
1331 rv = humanize_number(buf, len, bytes, "B", 1024);
1332 if (rv != -1) {
1333 /* nuke the trailing ` B' if it exists */
1334 nlen = strlen(buf) - 2;
1335 if (strcmp(&buf[nlen], " B") == 0)
1336 buf[nlen] = '\0';
1337 }
1338 return (rv);
1339 }
1340
1341 /*
1342 * Return true if system call tracing is enabled for the specified process.
1343 */
1344 bool
1345 trace_is_enabled(struct proc *p)
1346 {
1347 #ifdef SYSCALL_DEBUG
1348 return (true);
1349 #endif
1350 #ifdef KTRACE
1351 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1352 return (true);
1353 #endif
1354 #ifdef SYSTRACE
1355 if (ISSET(p->p_flag, PK_SYSTRACE))
1356 return (true);
1357 #endif
1358 #ifdef PTRACE
1359 if (ISSET(p->p_slflag, PSL_SYSCALL))
1360 return (true);
1361 #endif
1362
1363 return (false);
1364 }
1365
1366 /*
1367 * Start trace of particular system call. If process is being traced,
1368 * this routine is called by MD syscall dispatch code just before
1369 * a system call is actually executed.
1370 * MD caller guarantees the passed 'code' is within the supported
1371 * system call number range for emulation the process runs under.
1372 */
1373 int
1374 trace_enter(struct lwp *l, register_t code,
1375 register_t realcode, const struct sysent *callp, void *args)
1376 {
1377 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1378 struct proc *p = l->l_proc;
1379
1380 #ifdef SYSCALL_DEBUG
1381 scdebug_call(l, code, args);
1382 #endif /* SYSCALL_DEBUG */
1383
1384 #ifdef KTRACE
1385 if (KTRPOINT(p, KTR_SYSCALL))
1386 ktrsyscall(l, code, realcode, callp, args);
1387 #endif /* KTRACE */
1388
1389 #ifdef PTRACE
1390 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1391 (PSL_SYSCALL|PSL_TRACED))
1392 process_stoptrace(l);
1393 #endif
1394
1395 #ifdef SYSTRACE
1396 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1397 int error;
1398 KERNEL_LOCK(1, l);
1399 error = systrace_enter(l, code, args);
1400 KERNEL_UNLOCK_ONE(l);
1401 return error;
1402 }
1403 #endif
1404 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1405 return 0;
1406 }
1407
1408 /*
1409 * End trace of particular system call. If process is being traced,
1410 * this routine is called by MD syscall dispatch code just after
1411 * a system call finishes.
1412 * MD caller guarantees the passed 'code' is within the supported
1413 * system call number range for emulation the process runs under.
1414 */
1415 void
1416 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1417 int error)
1418 {
1419 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1420 struct proc *p = l->l_proc;
1421
1422 #ifdef SYSCALL_DEBUG
1423 scdebug_ret(l, code, error, rval);
1424 #endif /* SYSCALL_DEBUG */
1425
1426 #ifdef KTRACE
1427 if (KTRPOINT(p, KTR_SYSRET))
1428 ktrsysret(l, code, error, rval);
1429 #endif /* KTRACE */
1430
1431 #ifdef PTRACE
1432 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1433 (PSL_SYSCALL|PSL_TRACED))
1434 process_stoptrace(l);
1435 #endif
1436
1437 #ifdef SYSTRACE
1438 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1439 KERNEL_LOCK(1, l);
1440 systrace_exit(l, code, args, rval, error);
1441 KERNEL_UNLOCK_ONE(l);
1442 }
1443 #endif
1444 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1445 }
1446