kern_subr.c revision 1.159 1 /* $NetBSD: kern_subr.c,v 1.159 2007/06/24 01:43:34 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.159 2007/06/24 01:43:34 dyoung Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_ptrace.h"
96 #include "opt_systrace.h"
97 #include "opt_powerhook.h"
98 #include "opt_tftproot.h"
99
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/proc.h>
103 #include <sys/malloc.h>
104 #include <sys/mount.h>
105 #include <sys/device.h>
106 #include <sys/reboot.h>
107 #include <sys/conf.h>
108 #include <sys/disk.h>
109 #include <sys/disklabel.h>
110 #include <sys/queue.h>
111 #include <sys/systrace.h>
112 #include <sys/ktrace.h>
113 #include <sys/ptrace.h>
114 #include <sys/fcntl.h>
115
116 #include <uvm/uvm_extern.h>
117
118 #include <dev/cons.h>
119
120 #include <net/if.h>
121
122 /* XXX these should eventually move to subr_autoconf.c */
123 static struct device *finddevice(const char *);
124 static struct device *getdisk(char *, int, int, dev_t *, int);
125 static struct device *parsedisk(char *, int, int, dev_t *);
126 static const char *getwedgename(const char *, int);
127
128 /*
129 * A generic linear hook.
130 */
131 struct hook_desc {
132 LIST_ENTRY(hook_desc) hk_list;
133 void (*hk_fn)(void *);
134 void *hk_arg;
135 };
136 typedef LIST_HEAD(, hook_desc) hook_list_t;
137
138 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
139
140 #ifdef TFTPROOT
141 int tftproot_dhcpboot(struct device *);
142 #endif
143
144 void
145 uio_setup_sysspace(struct uio *uio)
146 {
147
148 uio->uio_vmspace = vmspace_kernel();
149 }
150
151 int
152 uiomove(void *buf, size_t n, struct uio *uio)
153 {
154 struct vmspace *vm = uio->uio_vmspace;
155 struct iovec *iov;
156 u_int cnt;
157 int error = 0;
158 char *cp = buf;
159 #ifdef MULTIPROCESSOR
160 int hold_count;
161 #endif
162
163 KERNEL_UNLOCK_ALL(NULL, &hold_count);
164
165 ASSERT_SLEEPABLE(NULL, "uiomove");
166
167 #ifdef DIAGNOSTIC
168 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
169 panic("uiomove: mode");
170 #endif
171 while (n > 0 && uio->uio_resid) {
172 iov = uio->uio_iov;
173 cnt = iov->iov_len;
174 if (cnt == 0) {
175 KASSERT(uio->uio_iovcnt > 0);
176 uio->uio_iov++;
177 uio->uio_iovcnt--;
178 continue;
179 }
180 if (cnt > n)
181 cnt = n;
182 if (!VMSPACE_IS_KERNEL_P(vm)) {
183 if (curcpu()->ci_schedstate.spc_flags &
184 SPCF_SHOULDYIELD)
185 preempt();
186 }
187
188 if (uio->uio_rw == UIO_READ) {
189 error = copyout_vmspace(vm, cp, iov->iov_base,
190 cnt);
191 } else {
192 error = copyin_vmspace(vm, iov->iov_base, cp,
193 cnt);
194 }
195 if (error) {
196 break;
197 }
198 iov->iov_base = (char *)iov->iov_base + cnt;
199 iov->iov_len -= cnt;
200 uio->uio_resid -= cnt;
201 uio->uio_offset += cnt;
202 cp += cnt;
203 KDASSERT(cnt <= n);
204 n -= cnt;
205 }
206 KERNEL_LOCK(hold_count, NULL);
207 return (error);
208 }
209
210 /*
211 * Wrapper for uiomove() that validates the arguments against a known-good
212 * kernel buffer.
213 */
214 int
215 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
216 {
217 size_t offset;
218
219 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
220 (offset = uio->uio_offset) != uio->uio_offset)
221 return (EINVAL);
222 if (offset >= buflen)
223 return (0);
224 return (uiomove((char *)buf + offset, buflen - offset, uio));
225 }
226
227 /*
228 * Give next character to user as result of read.
229 */
230 int
231 ureadc(int c, struct uio *uio)
232 {
233 struct iovec *iov;
234
235 if (uio->uio_resid <= 0)
236 panic("ureadc: non-positive resid");
237 again:
238 if (uio->uio_iovcnt <= 0)
239 panic("ureadc: non-positive iovcnt");
240 iov = uio->uio_iov;
241 if (iov->iov_len <= 0) {
242 uio->uio_iovcnt--;
243 uio->uio_iov++;
244 goto again;
245 }
246 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
247 if (subyte(iov->iov_base, c) < 0)
248 return (EFAULT);
249 } else {
250 *(char *)iov->iov_base = c;
251 }
252 iov->iov_base = (char *)iov->iov_base + 1;
253 iov->iov_len--;
254 uio->uio_resid--;
255 uio->uio_offset++;
256 return (0);
257 }
258
259 /*
260 * Like copyin(), but operates on an arbitrary vmspace.
261 */
262 int
263 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
264 {
265 struct iovec iov;
266 struct uio uio;
267 int error;
268
269 if (len == 0)
270 return (0);
271
272 if (VMSPACE_IS_KERNEL_P(vm)) {
273 return kcopy(uaddr, kaddr, len);
274 }
275 if (__predict_true(vm == curproc->p_vmspace)) {
276 return copyin(uaddr, kaddr, len);
277 }
278
279 iov.iov_base = kaddr;
280 iov.iov_len = len;
281 uio.uio_iov = &iov;
282 uio.uio_iovcnt = 1;
283 uio.uio_offset = (off_t)(intptr_t)uaddr;
284 uio.uio_resid = len;
285 uio.uio_rw = UIO_READ;
286 UIO_SETUP_SYSSPACE(&uio);
287 error = uvm_io(&vm->vm_map, &uio);
288
289 return (error);
290 }
291
292 /*
293 * Like copyout(), but operates on an arbitrary vmspace.
294 */
295 int
296 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
297 {
298 struct iovec iov;
299 struct uio uio;
300 int error;
301
302 if (len == 0)
303 return (0);
304
305 if (VMSPACE_IS_KERNEL_P(vm)) {
306 return kcopy(kaddr, uaddr, len);
307 }
308 if (__predict_true(vm == curproc->p_vmspace)) {
309 return copyout(kaddr, uaddr, len);
310 }
311
312 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
313 iov.iov_len = len;
314 uio.uio_iov = &iov;
315 uio.uio_iovcnt = 1;
316 uio.uio_offset = (off_t)(intptr_t)uaddr;
317 uio.uio_resid = len;
318 uio.uio_rw = UIO_WRITE;
319 UIO_SETUP_SYSSPACE(&uio);
320 error = uvm_io(&vm->vm_map, &uio);
321
322 return (error);
323 }
324
325 /*
326 * Like copyin(), but operates on an arbitrary process.
327 */
328 int
329 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
330 {
331 struct vmspace *vm;
332 int error;
333
334 error = proc_vmspace_getref(p, &vm);
335 if (error) {
336 return error;
337 }
338 error = copyin_vmspace(vm, uaddr, kaddr, len);
339 uvmspace_free(vm);
340
341 return error;
342 }
343
344 /*
345 * Like copyout(), but operates on an arbitrary process.
346 */
347 int
348 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
349 {
350 struct vmspace *vm;
351 int error;
352
353 error = proc_vmspace_getref(p, &vm);
354 if (error) {
355 return error;
356 }
357 error = copyout_vmspace(vm, kaddr, uaddr, len);
358 uvmspace_free(vm);
359
360 return error;
361 }
362
363 /*
364 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
365 * flag is passed in `ioctlflags' from the ioctl call.
366 */
367 int
368 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
369 {
370 if (ioctlflags & FKIOCTL)
371 return kcopy(src, dst, len);
372 return copyin(src, dst, len);
373 }
374
375 /*
376 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
377 * flag is passed in `ioctlflags' from the ioctl call.
378 */
379 int
380 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
381 {
382 if (ioctlflags & FKIOCTL)
383 return kcopy(src, dst, len);
384 return copyout(src, dst, len);
385 }
386
387 /*
388 * General routine to allocate a hash table.
389 * Allocate enough memory to hold at least `elements' list-head pointers.
390 * Return a pointer to the allocated space and set *hashmask to a pattern
391 * suitable for masking a value to use as an index into the returned array.
392 */
393 void *
394 hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
395 int mflags, u_long *hashmask)
396 {
397 u_long hashsize, i;
398 LIST_HEAD(, generic) *hashtbl_list;
399 TAILQ_HEAD(, generic) *hashtbl_tailq;
400 size_t esize;
401 void *p;
402
403 if (elements == 0)
404 panic("hashinit: bad cnt");
405 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
406 continue;
407
408 switch (htype) {
409 case HASH_LIST:
410 esize = sizeof(*hashtbl_list);
411 break;
412 case HASH_TAILQ:
413 esize = sizeof(*hashtbl_tailq);
414 break;
415 default:
416 #ifdef DIAGNOSTIC
417 panic("hashinit: invalid table type");
418 #else
419 return NULL;
420 #endif
421 }
422
423 if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
424 return (NULL);
425
426 switch (htype) {
427 case HASH_LIST:
428 hashtbl_list = p;
429 for (i = 0; i < hashsize; i++)
430 LIST_INIT(&hashtbl_list[i]);
431 break;
432 case HASH_TAILQ:
433 hashtbl_tailq = p;
434 for (i = 0; i < hashsize; i++)
435 TAILQ_INIT(&hashtbl_tailq[i]);
436 break;
437 }
438 *hashmask = hashsize - 1;
439 return (p);
440 }
441
442 /*
443 * Free memory from hash table previosly allocated via hashinit().
444 */
445 void
446 hashdone(void *hashtbl, struct malloc_type *mtype)
447 {
448
449 free(hashtbl, mtype);
450 }
451
452
453 static void *
454 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
455 {
456 struct hook_desc *hd;
457
458 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
459 if (hd == NULL)
460 return (NULL);
461
462 hd->hk_fn = fn;
463 hd->hk_arg = arg;
464 LIST_INSERT_HEAD(list, hd, hk_list);
465
466 return (hd);
467 }
468
469 static void
470 hook_disestablish(hook_list_t *list, void *vhook)
471 {
472 #ifdef DIAGNOSTIC
473 struct hook_desc *hd;
474
475 LIST_FOREACH(hd, list, hk_list) {
476 if (hd == vhook)
477 break;
478 }
479
480 if (hd == NULL)
481 panic("hook_disestablish: hook %p not established", vhook);
482 #endif
483 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
484 free(vhook, M_DEVBUF);
485 }
486
487 static void
488 hook_destroy(hook_list_t *list)
489 {
490 struct hook_desc *hd;
491
492 while ((hd = LIST_FIRST(list)) != NULL) {
493 LIST_REMOVE(hd, hk_list);
494 free(hd, M_DEVBUF);
495 }
496 }
497
498 static void
499 hook_proc_run(hook_list_t *list, struct proc *p)
500 {
501 struct hook_desc *hd;
502
503 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
504 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
505 hd->hk_arg);
506 }
507 }
508
509 /*
510 * "Shutdown hook" types, functions, and variables.
511 *
512 * Should be invoked immediately before the
513 * system is halted or rebooted, i.e. after file systems unmounted,
514 * after crash dump done, etc.
515 *
516 * Each shutdown hook is removed from the list before it's run, so that
517 * it won't be run again.
518 */
519
520 static hook_list_t shutdownhook_list;
521
522 void *
523 shutdownhook_establish(void (*fn)(void *), void *arg)
524 {
525 return hook_establish(&shutdownhook_list, fn, arg);
526 }
527
528 void
529 shutdownhook_disestablish(void *vhook)
530 {
531 hook_disestablish(&shutdownhook_list, vhook);
532 }
533
534 /*
535 * Run shutdown hooks. Should be invoked immediately before the
536 * system is halted or rebooted, i.e. after file systems unmounted,
537 * after crash dump done, etc.
538 *
539 * Each shutdown hook is removed from the list before it's run, so that
540 * it won't be run again.
541 */
542 void
543 doshutdownhooks(void)
544 {
545 struct hook_desc *dp;
546
547 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
548 LIST_REMOVE(dp, hk_list);
549 (*dp->hk_fn)(dp->hk_arg);
550 #if 0
551 /*
552 * Don't bother freeing the hook structure,, since we may
553 * be rebooting because of a memory corruption problem,
554 * and this might only make things worse. It doesn't
555 * matter, anyway, since the system is just about to
556 * reboot.
557 */
558 free(dp, M_DEVBUF);
559 #endif
560 }
561 }
562
563 /*
564 * "Mountroot hook" types, functions, and variables.
565 */
566
567 static hook_list_t mountroothook_list;
568
569 void *
570 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
571 {
572 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
573 }
574
575 void
576 mountroothook_disestablish(void *vhook)
577 {
578 hook_disestablish(&mountroothook_list, vhook);
579 }
580
581 void
582 mountroothook_destroy(void)
583 {
584 hook_destroy(&mountroothook_list);
585 }
586
587 void
588 domountroothook(void)
589 {
590 struct hook_desc *hd;
591
592 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
593 if (hd->hk_arg == (void *)root_device) {
594 (*hd->hk_fn)(hd->hk_arg);
595 return;
596 }
597 }
598 }
599
600 static hook_list_t exechook_list;
601
602 void *
603 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
604 {
605 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
606 }
607
608 void
609 exechook_disestablish(void *vhook)
610 {
611 hook_disestablish(&exechook_list, vhook);
612 }
613
614 /*
615 * Run exec hooks.
616 */
617 void
618 doexechooks(struct proc *p)
619 {
620 hook_proc_run(&exechook_list, p);
621 }
622
623 static hook_list_t exithook_list;
624
625 void *
626 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
627 {
628 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
629 }
630
631 void
632 exithook_disestablish(void *vhook)
633 {
634 hook_disestablish(&exithook_list, vhook);
635 }
636
637 /*
638 * Run exit hooks.
639 */
640 void
641 doexithooks(struct proc *p)
642 {
643 hook_proc_run(&exithook_list, p);
644 }
645
646 static hook_list_t forkhook_list;
647
648 void *
649 forkhook_establish(void (*fn)(struct proc *, struct proc *))
650 {
651 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
652 }
653
654 void
655 forkhook_disestablish(void *vhook)
656 {
657 hook_disestablish(&forkhook_list, vhook);
658 }
659
660 /*
661 * Run fork hooks.
662 */
663 void
664 doforkhooks(struct proc *p2, struct proc *p1)
665 {
666 struct hook_desc *hd;
667
668 LIST_FOREACH(hd, &forkhook_list, hk_list) {
669 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
670 (p2, p1);
671 }
672 }
673
674 /*
675 * "Power hook" types, functions, and variables.
676 * The list of power hooks is kept ordered with the last registered hook
677 * first.
678 * When running the hooks on power down the hooks are called in reverse
679 * registration order, when powering up in registration order.
680 */
681 struct powerhook_desc {
682 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
683 void (*sfd_fn)(int, void *);
684 void *sfd_arg;
685 char sfd_name[16];
686 };
687
688 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
689 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
690
691 void *
692 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
693 {
694 struct powerhook_desc *ndp;
695
696 ndp = (struct powerhook_desc *)
697 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
698 if (ndp == NULL)
699 return (NULL);
700
701 ndp->sfd_fn = fn;
702 ndp->sfd_arg = arg;
703 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
704 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
705
706 return (ndp);
707 }
708
709 void
710 powerhook_disestablish(void *vhook)
711 {
712 #ifdef DIAGNOSTIC
713 struct powerhook_desc *dp;
714
715 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
716 if (dp == vhook)
717 goto found;
718 panic("powerhook_disestablish: hook %p not established", vhook);
719 found:
720 #endif
721
722 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
723 sfd_list);
724 free(vhook, M_DEVBUF);
725 }
726
727 /*
728 * Run power hooks.
729 */
730 void
731 dopowerhooks(int why)
732 {
733 struct powerhook_desc *dp;
734
735 #ifdef POWERHOOK_DEBUG
736 printf("dopowerhooks ");
737 switch (why) {
738 case PWR_RESUME:
739 printf("resume");
740 break;
741 case PWR_SOFTRESUME:
742 printf("softresume");
743 break;
744 case PWR_SUSPEND:
745 printf("suspend");
746 break;
747 case PWR_SOFTSUSPEND:
748 printf("softsuspend");
749 break;
750 case PWR_STANDBY:
751 printf("standby");
752 break;
753 }
754 printf(":");
755 #endif
756
757 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
758 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
759 #ifdef POWERHOOK_DEBUG
760 printf(" %s", dp->sfd_name);
761 #endif
762 (*dp->sfd_fn)(why, dp->sfd_arg);
763 }
764 } else {
765 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
766 #ifdef POWERHOOK_DEBUG
767 printf(" %s", dp->sfd_name);
768 #endif
769 (*dp->sfd_fn)(why, dp->sfd_arg);
770 }
771 }
772
773 #ifdef POWERHOOK_DEBUG
774 printf(".\n");
775 #endif
776 }
777
778 /*
779 * Determine the root device and, if instructed to, the root file system.
780 */
781
782 #include "md.h"
783 #if NMD == 0
784 #undef MEMORY_DISK_HOOKS
785 #endif
786
787 #ifdef MEMORY_DISK_HOOKS
788 static struct device fakemdrootdev[NMD];
789 extern struct cfdriver md_cd;
790 #endif
791
792 #ifdef MEMORY_DISK_IS_ROOT
793 #define BOOT_FROM_MEMORY_HOOKS 1
794 #endif
795
796 /*
797 * The device and wedge that we booted from. If booted_wedge is NULL,
798 * the we might consult booted_partition.
799 */
800 struct device *booted_device;
801 struct device *booted_wedge;
802 int booted_partition;
803
804 /*
805 * Use partition letters if it's a disk class but not a wedge.
806 * XXX Check for wedge is kinda gross.
807 */
808 #define DEV_USES_PARTITIONS(dv) \
809 (device_class((dv)) == DV_DISK && \
810 !device_is_a((dv), "dk"))
811
812 void
813 setroot(struct device *bootdv, int bootpartition)
814 {
815 struct device *dv;
816 int len, majdev;
817 #ifdef MEMORY_DISK_HOOKS
818 int i;
819 #endif
820 dev_t nrootdev;
821 dev_t ndumpdev = NODEV;
822 char buf[128];
823 const char *rootdevname;
824 const char *dumpdevname;
825 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
826 struct device *dumpdv = NULL;
827 struct ifnet *ifp;
828 const char *deffsname;
829 struct vfsops *vops;
830
831 #ifdef TFTPROOT
832 if (tftproot_dhcpboot(bootdv) != 0)
833 boothowto |= RB_ASKNAME;
834 #endif
835
836 #ifdef MEMORY_DISK_HOOKS
837 for (i = 0; i < NMD; i++) {
838 fakemdrootdev[i].dv_class = DV_DISK;
839 fakemdrootdev[i].dv_cfdata = NULL;
840 fakemdrootdev[i].dv_cfdriver = &md_cd;
841 fakemdrootdev[i].dv_unit = i;
842 fakemdrootdev[i].dv_parent = NULL;
843 snprintf(fakemdrootdev[i].dv_xname,
844 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
845 }
846 #endif /* MEMORY_DISK_HOOKS */
847
848 #ifdef MEMORY_DISK_IS_ROOT
849 bootdv = &fakemdrootdev[0];
850 bootpartition = 0;
851 #endif
852
853 /*
854 * If NFS is specified as the file system, and we found
855 * a DV_DISK boot device (or no boot device at all), then
856 * find a reasonable network interface for "rootspec".
857 */
858 vops = vfs_getopsbyname("nfs");
859 if (vops != NULL && vops->vfs_mountroot == mountroot &&
860 rootspec == NULL &&
861 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
862 IFNET_FOREACH(ifp) {
863 if ((ifp->if_flags &
864 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
865 break;
866 }
867 if (ifp == NULL) {
868 /*
869 * Can't find a suitable interface; ask the
870 * user.
871 */
872 boothowto |= RB_ASKNAME;
873 } else {
874 /*
875 * Have a suitable interface; behave as if
876 * the user specified this interface.
877 */
878 rootspec = (const char *)ifp->if_xname;
879 }
880 }
881
882 /*
883 * If wildcarded root and we the boot device wasn't determined,
884 * ask the user.
885 */
886 if (rootspec == NULL && bootdv == NULL)
887 boothowto |= RB_ASKNAME;
888
889 top:
890 if (boothowto & RB_ASKNAME) {
891 struct device *defdumpdv;
892
893 for (;;) {
894 printf("root device");
895 if (bootdv != NULL) {
896 printf(" (default %s", bootdv->dv_xname);
897 if (DEV_USES_PARTITIONS(bootdv))
898 printf("%c", bootpartition + 'a');
899 printf(")");
900 }
901 printf(": ");
902 len = cngetsn(buf, sizeof(buf));
903 if (len == 0 && bootdv != NULL) {
904 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
905 len = strlen(buf);
906 }
907 if (len > 0 && buf[len - 1] == '*') {
908 buf[--len] = '\0';
909 dv = getdisk(buf, len, 1, &nrootdev, 0);
910 if (dv != NULL) {
911 rootdv = dv;
912 break;
913 }
914 }
915 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
916 if (dv != NULL) {
917 rootdv = dv;
918 break;
919 }
920 }
921
922 /*
923 * Set up the default dump device. If root is on
924 * a network device, there is no default dump
925 * device, since we don't support dumps to the
926 * network.
927 */
928 if (DEV_USES_PARTITIONS(rootdv) == 0)
929 defdumpdv = NULL;
930 else
931 defdumpdv = rootdv;
932
933 for (;;) {
934 printf("dump device");
935 if (defdumpdv != NULL) {
936 /*
937 * Note, we know it's a disk if we get here.
938 */
939 printf(" (default %sb)", defdumpdv->dv_xname);
940 }
941 printf(": ");
942 len = cngetsn(buf, sizeof(buf));
943 if (len == 0) {
944 if (defdumpdv != NULL) {
945 ndumpdev = MAKEDISKDEV(major(nrootdev),
946 DISKUNIT(nrootdev), 1);
947 }
948 dumpdv = defdumpdv;
949 break;
950 }
951 if (len == 4 && strcmp(buf, "none") == 0) {
952 dumpdv = NULL;
953 break;
954 }
955 dv = getdisk(buf, len, 1, &ndumpdev, 1);
956 if (dv != NULL) {
957 dumpdv = dv;
958 break;
959 }
960 }
961
962 rootdev = nrootdev;
963 dumpdev = ndumpdev;
964
965 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
966 vops = LIST_NEXT(vops, vfs_list)) {
967 if (vops->vfs_mountroot != NULL &&
968 vops->vfs_mountroot == mountroot)
969 break;
970 }
971
972 if (vops == NULL) {
973 mountroot = NULL;
974 deffsname = "generic";
975 } else
976 deffsname = vops->vfs_name;
977
978 for (;;) {
979 printf("file system (default %s): ", deffsname);
980 len = cngetsn(buf, sizeof(buf));
981 if (len == 0)
982 break;
983 if (len == 4 && strcmp(buf, "halt") == 0)
984 cpu_reboot(RB_HALT, NULL);
985 else if (len == 6 && strcmp(buf, "reboot") == 0)
986 cpu_reboot(0, NULL);
987 #if defined(DDB)
988 else if (len == 3 && strcmp(buf, "ddb") == 0) {
989 console_debugger();
990 }
991 #endif
992 else if (len == 7 && strcmp(buf, "generic") == 0) {
993 mountroot = NULL;
994 break;
995 }
996 vops = vfs_getopsbyname(buf);
997 if (vops == NULL || vops->vfs_mountroot == NULL) {
998 printf("use one of: generic");
999 for (vops = LIST_FIRST(&vfs_list);
1000 vops != NULL;
1001 vops = LIST_NEXT(vops, vfs_list)) {
1002 if (vops->vfs_mountroot != NULL)
1003 printf(" %s", vops->vfs_name);
1004 }
1005 #if defined(DDB)
1006 printf(" ddb");
1007 #endif
1008 printf(" halt reboot\n");
1009 } else {
1010 mountroot = vops->vfs_mountroot;
1011 break;
1012 }
1013 }
1014
1015 } else if (rootspec == NULL) {
1016 /*
1017 * Wildcarded root; use the boot device.
1018 */
1019 rootdv = bootdv;
1020
1021 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
1022 if (majdev >= 0) {
1023 /*
1024 * Root is on a disk. `bootpartition' is root,
1025 * unless the device does not use partitions.
1026 */
1027 if (DEV_USES_PARTITIONS(bootdv))
1028 rootdev = MAKEDISKDEV(majdev,
1029 device_unit(bootdv),
1030 bootpartition);
1031 else
1032 rootdev = makedev(majdev, device_unit(bootdv));
1033 }
1034 } else {
1035
1036 /*
1037 * `root on <dev> ...'
1038 */
1039
1040 /*
1041 * If it's a network interface, we can bail out
1042 * early.
1043 */
1044 dv = finddevice(rootspec);
1045 if (dv != NULL && device_class(dv) == DV_IFNET) {
1046 rootdv = dv;
1047 goto haveroot;
1048 }
1049
1050 if (rootdev == NODEV &&
1051 device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
1052 (majdev = devsw_name2blk(dv->dv_xname, NULL, 0)) >= 0)
1053 rootdev = makedev(majdev, device_unit(dv));
1054
1055 rootdevname = devsw_blk2name(major(rootdev));
1056 if (rootdevname == NULL) {
1057 printf("unknown device major 0x%x\n", rootdev);
1058 boothowto |= RB_ASKNAME;
1059 goto top;
1060 }
1061 memset(buf, 0, sizeof(buf));
1062 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1063 DISKUNIT(rootdev));
1064
1065 rootdv = finddevice(buf);
1066 if (rootdv == NULL) {
1067 printf("device %s (0x%x) not configured\n",
1068 buf, rootdev);
1069 boothowto |= RB_ASKNAME;
1070 goto top;
1071 }
1072 }
1073
1074 haveroot:
1075
1076 root_device = rootdv;
1077
1078 switch (device_class(rootdv)) {
1079 case DV_IFNET:
1080 case DV_DISK:
1081 aprint_normal("root on %s", rootdv->dv_xname);
1082 if (DEV_USES_PARTITIONS(rootdv))
1083 aprint_normal("%c", DISKPART(rootdev) + 'a');
1084 break;
1085
1086 default:
1087 printf("can't determine root device\n");
1088 boothowto |= RB_ASKNAME;
1089 goto top;
1090 }
1091
1092 /*
1093 * Now configure the dump device.
1094 *
1095 * If we haven't figured out the dump device, do so, with
1096 * the following rules:
1097 *
1098 * (a) We already know dumpdv in the RB_ASKNAME case.
1099 *
1100 * (b) If dumpspec is set, try to use it. If the device
1101 * is not available, punt.
1102 *
1103 * (c) If dumpspec is not set, the dump device is
1104 * wildcarded or unspecified. If the root device
1105 * is DV_IFNET, punt. Otherwise, use partition b
1106 * of the root device.
1107 */
1108
1109 if (boothowto & RB_ASKNAME) { /* (a) */
1110 if (dumpdv == NULL)
1111 goto nodumpdev;
1112 } else if (dumpspec != NULL) { /* (b) */
1113 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1114 /*
1115 * Operator doesn't want a dump device.
1116 * Or looks like they tried to pick a network
1117 * device. Oops.
1118 */
1119 goto nodumpdev;
1120 }
1121
1122 dumpdevname = devsw_blk2name(major(dumpdev));
1123 if (dumpdevname == NULL)
1124 goto nodumpdev;
1125 memset(buf, 0, sizeof(buf));
1126 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1127 DISKUNIT(dumpdev));
1128
1129 dumpdv = finddevice(buf);
1130 if (dumpdv == NULL) {
1131 /*
1132 * Device not configured.
1133 */
1134 goto nodumpdev;
1135 }
1136 } else { /* (c) */
1137 if (DEV_USES_PARTITIONS(rootdv) == 0)
1138 goto nodumpdev;
1139 else {
1140 dumpdv = rootdv;
1141 dumpdev = MAKEDISKDEV(major(rootdev),
1142 device_unit(dumpdv), 1);
1143 }
1144 }
1145
1146 aprint_normal(" dumps on %s", dumpdv->dv_xname);
1147 if (DEV_USES_PARTITIONS(dumpdv))
1148 aprint_normal("%c", DISKPART(dumpdev) + 'a');
1149 aprint_normal("\n");
1150 return;
1151
1152 nodumpdev:
1153 dumpdev = NODEV;
1154 aprint_normal("\n");
1155 }
1156
1157 static struct device *
1158 finddevice(const char *name)
1159 {
1160 const char *wname;
1161 struct device *dv;
1162 #if defined(BOOT_FROM_MEMORY_HOOKS)
1163 int j;
1164 #endif /* BOOT_FROM_MEMORY_HOOKS */
1165
1166 if ((wname = getwedgename(name, strlen(name))) != NULL)
1167 return dkwedge_find_by_wname(wname);
1168
1169 #ifdef BOOT_FROM_MEMORY_HOOKS
1170 for (j = 0; j < NMD; j++) {
1171 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0)
1172 return &fakemdrootdev[j];
1173 }
1174 #endif /* BOOT_FROM_MEMORY_HOOKS */
1175
1176 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1177 if (strcmp(dv->dv_xname, name) == 0)
1178 break;
1179 }
1180 return dv;
1181 }
1182
1183 static struct device *
1184 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1185 {
1186 struct device *dv;
1187 #ifdef MEMORY_DISK_HOOKS
1188 int i;
1189 #endif
1190
1191 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1192 printf("use one of:");
1193 #ifdef MEMORY_DISK_HOOKS
1194 if (isdump == 0)
1195 for (i = 0; i < NMD; i++)
1196 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1197 'a' + MAXPARTITIONS - 1);
1198 #endif
1199 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1200 if (DEV_USES_PARTITIONS(dv))
1201 printf(" %s[a-%c]", dv->dv_xname,
1202 'a' + MAXPARTITIONS - 1);
1203 else if (device_class(dv) == DV_DISK)
1204 printf(" %s", dv->dv_xname);
1205 if (isdump == 0 && device_class(dv) == DV_IFNET)
1206 printf(" %s", dv->dv_xname);
1207 }
1208 dkwedge_print_wnames();
1209 if (isdump)
1210 printf(" none");
1211 #if defined(DDB)
1212 printf(" ddb");
1213 #endif
1214 printf(" halt reboot\n");
1215 }
1216 return dv;
1217 }
1218
1219 static const char *
1220 getwedgename(const char *name, int namelen)
1221 {
1222 const char *wpfx = "wedge:";
1223 const int wpfxlen = strlen(wpfx);
1224
1225 if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1226 return NULL;
1227
1228 return name + wpfxlen;
1229 }
1230
1231 static struct device *
1232 parsedisk(char *str, int len, int defpart, dev_t *devp)
1233 {
1234 struct device *dv;
1235 const char *wname;
1236 char *cp, c;
1237 int majdev, part;
1238 #ifdef MEMORY_DISK_HOOKS
1239 int i;
1240 #endif
1241 if (len == 0)
1242 return (NULL);
1243
1244 if (len == 4 && strcmp(str, "halt") == 0)
1245 cpu_reboot(RB_HALT, NULL);
1246 else if (len == 6 && strcmp(str, "reboot") == 0)
1247 cpu_reboot(0, NULL);
1248 #if defined(DDB)
1249 else if (len == 3 && strcmp(str, "ddb") == 0)
1250 console_debugger();
1251 #endif
1252
1253 cp = str + len - 1;
1254 c = *cp;
1255
1256 if ((wname = getwedgename(str, len)) != NULL) {
1257 if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1258 return NULL;
1259 part = defpart;
1260 goto gotdisk;
1261 } else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1262 part = c - 'a';
1263 *cp = '\0';
1264 } else
1265 part = defpart;
1266
1267 #ifdef MEMORY_DISK_HOOKS
1268 for (i = 0; i < NMD; i++)
1269 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1270 dv = &fakemdrootdev[i];
1271 goto gotdisk;
1272 }
1273 #endif
1274
1275 dv = finddevice(str);
1276 if (dv != NULL) {
1277 if (device_class(dv) == DV_DISK) {
1278 gotdisk:
1279 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1280 if (majdev < 0)
1281 panic("parsedisk");
1282 if (DEV_USES_PARTITIONS(dv))
1283 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1284 part);
1285 else
1286 *devp = makedev(majdev, device_unit(dv));
1287 }
1288
1289 if (device_class(dv) == DV_IFNET)
1290 *devp = NODEV;
1291 }
1292
1293 *cp = c;
1294 return (dv);
1295 }
1296
1297 /*
1298 * snprintf() `bytes' into `buf', reformatting it so that the number,
1299 * plus a possible `x' + suffix extension) fits into len bytes (including
1300 * the terminating NUL).
1301 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1302 * E.g, given a len of 9 and a suffix of `B':
1303 * bytes result
1304 * ----- ------
1305 * 99999 `99999 B'
1306 * 100000 `97 kB'
1307 * 66715648 `65152 kB'
1308 * 252215296 `240 MB'
1309 */
1310 int
1311 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1312 int divisor)
1313 {
1314 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1315 const char *prefixes;
1316 int r;
1317 uint64_t umax;
1318 size_t i, suffixlen;
1319
1320 if (buf == NULL || suffix == NULL)
1321 return (-1);
1322 if (len > 0)
1323 buf[0] = '\0';
1324 suffixlen = strlen(suffix);
1325 /* check if enough room for `x y' + suffix + `\0' */
1326 if (len < 4 + suffixlen)
1327 return (-1);
1328
1329 if (divisor == 1024) {
1330 /*
1331 * binary multiplies
1332 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1333 */
1334 prefixes = " KMGTPE";
1335 } else
1336 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1337
1338 umax = 1;
1339 for (i = 0; i < len - suffixlen - 3; i++)
1340 umax *= 10;
1341 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1342 bytes /= divisor;
1343
1344 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1345 i == 0 ? "" : " ", prefixes[i], suffix);
1346
1347 return (r);
1348 }
1349
1350 int
1351 format_bytes(char *buf, size_t len, uint64_t bytes)
1352 {
1353 int rv;
1354 size_t nlen;
1355
1356 rv = humanize_number(buf, len, bytes, "B", 1024);
1357 if (rv != -1) {
1358 /* nuke the trailing ` B' if it exists */
1359 nlen = strlen(buf) - 2;
1360 if (strcmp(&buf[nlen], " B") == 0)
1361 buf[nlen] = '\0';
1362 }
1363 return (rv);
1364 }
1365
1366 /*
1367 * Return true if system call tracing is enabled for the specified process.
1368 */
1369 bool
1370 trace_is_enabled(struct proc *p)
1371 {
1372 #ifdef SYSCALL_DEBUG
1373 return (true);
1374 #endif
1375 #ifdef KTRACE
1376 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1377 return (true);
1378 #endif
1379 #ifdef SYSTRACE
1380 if (ISSET(p->p_flag, PK_SYSTRACE))
1381 return (true);
1382 #endif
1383 #ifdef PTRACE
1384 if (ISSET(p->p_slflag, PSL_SYSCALL))
1385 return (true);
1386 #endif
1387
1388 return (false);
1389 }
1390
1391 /*
1392 * Start trace of particular system call. If process is being traced,
1393 * this routine is called by MD syscall dispatch code just before
1394 * a system call is actually executed.
1395 * MD caller guarantees the passed 'code' is within the supported
1396 * system call number range for emulation the process runs under.
1397 */
1398 int
1399 trace_enter(struct lwp *l, register_t code,
1400 register_t realcode, const struct sysent *callp, void *args)
1401 {
1402 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1403 struct proc *p = l->l_proc;
1404
1405 #ifdef SYSCALL_DEBUG
1406 scdebug_call(l, code, args);
1407 #endif /* SYSCALL_DEBUG */
1408
1409 #ifdef KTRACE
1410 if (KTRPOINT(p, KTR_SYSCALL))
1411 ktrsyscall(l, code, realcode, callp, args);
1412 #endif /* KTRACE */
1413
1414 #ifdef PTRACE
1415 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1416 (PSL_SYSCALL|PSL_TRACED))
1417 process_stoptrace(l);
1418 #endif
1419
1420 #ifdef SYSTRACE
1421 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1422 int error;
1423 KERNEL_LOCK(1, l);
1424 error = systrace_enter(l, code, args);
1425 KERNEL_UNLOCK_ONE(l);
1426 return error;
1427 }
1428 #endif
1429 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1430 return 0;
1431 }
1432
1433 /*
1434 * End trace of particular system call. If process is being traced,
1435 * this routine is called by MD syscall dispatch code just after
1436 * a system call finishes.
1437 * MD caller guarantees the passed 'code' is within the supported
1438 * system call number range for emulation the process runs under.
1439 */
1440 void
1441 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1442 int error)
1443 {
1444 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1445 struct proc *p = l->l_proc;
1446
1447 #ifdef SYSCALL_DEBUG
1448 scdebug_ret(l, code, error, rval);
1449 #endif /* SYSCALL_DEBUG */
1450
1451 #ifdef KTRACE
1452 if (KTRPOINT(p, KTR_SYSRET))
1453 ktrsysret(l, code, error, rval);
1454 #endif /* KTRACE */
1455
1456 #ifdef PTRACE
1457 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1458 (PSL_SYSCALL|PSL_TRACED))
1459 process_stoptrace(l);
1460 #endif
1461
1462 #ifdef SYSTRACE
1463 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1464 KERNEL_LOCK(1, l);
1465 systrace_exit(l, code, args, rval, error);
1466 KERNEL_UNLOCK_ONE(l);
1467 }
1468 #endif
1469 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1470 }
1471