kern_subr.c revision 1.163 1 /* $NetBSD: kern_subr.c,v 1.163 2007/08/01 19:50:24 degroote Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.163 2007/08/01 19:50:24 degroote Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_ptrace.h"
96 #include "opt_systrace.h"
97 #include "opt_powerhook.h"
98 #include "opt_tftproot.h"
99
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/proc.h>
103 #include <sys/malloc.h>
104 #include <sys/mount.h>
105 #include <sys/device.h>
106 #include <sys/reboot.h>
107 #include <sys/conf.h>
108 #include <sys/disk.h>
109 #include <sys/disklabel.h>
110 #include <sys/queue.h>
111 #include <sys/systrace.h>
112 #include <sys/ktrace.h>
113 #include <sys/ptrace.h>
114 #include <sys/fcntl.h>
115 #include <sys/kauth.h>
116 #include <sys/vnode.h>
117
118 #include <uvm/uvm_extern.h>
119
120 #include <dev/cons.h>
121
122 #include <net/if.h>
123
124 /* XXX these should eventually move to subr_autoconf.c */
125 static struct device *finddevice(const char *);
126 static struct device *getdisk(char *, int, int, dev_t *, int);
127 static struct device *parsedisk(char *, int, int, dev_t *);
128 static const char *getwedgename(const char *, int);
129
130 /*
131 * A generic linear hook.
132 */
133 struct hook_desc {
134 LIST_ENTRY(hook_desc) hk_list;
135 void (*hk_fn)(void *);
136 void *hk_arg;
137 };
138 typedef LIST_HEAD(, hook_desc) hook_list_t;
139
140 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
141
142 #ifdef TFTPROOT
143 int tftproot_dhcpboot(struct device *);
144 #endif
145
146 void
147 uio_setup_sysspace(struct uio *uio)
148 {
149
150 uio->uio_vmspace = vmspace_kernel();
151 }
152
153 int
154 uiomove(void *buf, size_t n, struct uio *uio)
155 {
156 struct vmspace *vm = uio->uio_vmspace;
157 struct iovec *iov;
158 u_int cnt;
159 int error = 0;
160 char *cp = buf;
161 #ifdef MULTIPROCESSOR
162 int hold_count;
163 #endif
164
165 KERNEL_UNLOCK_ALL(NULL, &hold_count);
166
167 ASSERT_SLEEPABLE(NULL, "uiomove");
168
169 #ifdef DIAGNOSTIC
170 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
171 panic("uiomove: mode");
172 #endif
173 while (n > 0 && uio->uio_resid) {
174 iov = uio->uio_iov;
175 cnt = iov->iov_len;
176 if (cnt == 0) {
177 KASSERT(uio->uio_iovcnt > 0);
178 uio->uio_iov++;
179 uio->uio_iovcnt--;
180 continue;
181 }
182 if (cnt > n)
183 cnt = n;
184 if (!VMSPACE_IS_KERNEL_P(vm)) {
185 if (curcpu()->ci_schedstate.spc_flags &
186 SPCF_SHOULDYIELD)
187 preempt();
188 }
189
190 if (uio->uio_rw == UIO_READ) {
191 error = copyout_vmspace(vm, cp, iov->iov_base,
192 cnt);
193 } else {
194 error = copyin_vmspace(vm, iov->iov_base, cp,
195 cnt);
196 }
197 if (error) {
198 break;
199 }
200 iov->iov_base = (char *)iov->iov_base + cnt;
201 iov->iov_len -= cnt;
202 uio->uio_resid -= cnt;
203 uio->uio_offset += cnt;
204 cp += cnt;
205 KDASSERT(cnt <= n);
206 n -= cnt;
207 }
208 KERNEL_LOCK(hold_count, NULL);
209 return (error);
210 }
211
212 /*
213 * Wrapper for uiomove() that validates the arguments against a known-good
214 * kernel buffer.
215 */
216 int
217 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
218 {
219 size_t offset;
220
221 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
222 (offset = uio->uio_offset) != uio->uio_offset)
223 return (EINVAL);
224 if (offset >= buflen)
225 return (0);
226 return (uiomove((char *)buf + offset, buflen - offset, uio));
227 }
228
229 /*
230 * Give next character to user as result of read.
231 */
232 int
233 ureadc(int c, struct uio *uio)
234 {
235 struct iovec *iov;
236
237 if (uio->uio_resid <= 0)
238 panic("ureadc: non-positive resid");
239 again:
240 if (uio->uio_iovcnt <= 0)
241 panic("ureadc: non-positive iovcnt");
242 iov = uio->uio_iov;
243 if (iov->iov_len <= 0) {
244 uio->uio_iovcnt--;
245 uio->uio_iov++;
246 goto again;
247 }
248 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
249 if (subyte(iov->iov_base, c) < 0)
250 return (EFAULT);
251 } else {
252 *(char *)iov->iov_base = c;
253 }
254 iov->iov_base = (char *)iov->iov_base + 1;
255 iov->iov_len--;
256 uio->uio_resid--;
257 uio->uio_offset++;
258 return (0);
259 }
260
261 /*
262 * Like copyin(), but operates on an arbitrary vmspace.
263 */
264 int
265 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
266 {
267 struct iovec iov;
268 struct uio uio;
269 int error;
270
271 if (len == 0)
272 return (0);
273
274 if (VMSPACE_IS_KERNEL_P(vm)) {
275 return kcopy(uaddr, kaddr, len);
276 }
277 if (__predict_true(vm == curproc->p_vmspace)) {
278 return copyin(uaddr, kaddr, len);
279 }
280
281 iov.iov_base = kaddr;
282 iov.iov_len = len;
283 uio.uio_iov = &iov;
284 uio.uio_iovcnt = 1;
285 uio.uio_offset = (off_t)(intptr_t)uaddr;
286 uio.uio_resid = len;
287 uio.uio_rw = UIO_READ;
288 UIO_SETUP_SYSSPACE(&uio);
289 error = uvm_io(&vm->vm_map, &uio);
290
291 return (error);
292 }
293
294 /*
295 * Like copyout(), but operates on an arbitrary vmspace.
296 */
297 int
298 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
299 {
300 struct iovec iov;
301 struct uio uio;
302 int error;
303
304 if (len == 0)
305 return (0);
306
307 if (VMSPACE_IS_KERNEL_P(vm)) {
308 return kcopy(kaddr, uaddr, len);
309 }
310 if (__predict_true(vm == curproc->p_vmspace)) {
311 return copyout(kaddr, uaddr, len);
312 }
313
314 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
315 iov.iov_len = len;
316 uio.uio_iov = &iov;
317 uio.uio_iovcnt = 1;
318 uio.uio_offset = (off_t)(intptr_t)uaddr;
319 uio.uio_resid = len;
320 uio.uio_rw = UIO_WRITE;
321 UIO_SETUP_SYSSPACE(&uio);
322 error = uvm_io(&vm->vm_map, &uio);
323
324 return (error);
325 }
326
327 /*
328 * Like copyin(), but operates on an arbitrary process.
329 */
330 int
331 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
332 {
333 struct vmspace *vm;
334 int error;
335
336 error = proc_vmspace_getref(p, &vm);
337 if (error) {
338 return error;
339 }
340 error = copyin_vmspace(vm, uaddr, kaddr, len);
341 uvmspace_free(vm);
342
343 return error;
344 }
345
346 /*
347 * Like copyout(), but operates on an arbitrary process.
348 */
349 int
350 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
351 {
352 struct vmspace *vm;
353 int error;
354
355 error = proc_vmspace_getref(p, &vm);
356 if (error) {
357 return error;
358 }
359 error = copyout_vmspace(vm, kaddr, uaddr, len);
360 uvmspace_free(vm);
361
362 return error;
363 }
364
365 /*
366 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
367 * flag is passed in `ioctlflags' from the ioctl call.
368 */
369 int
370 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
371 {
372 if (ioctlflags & FKIOCTL)
373 return kcopy(src, dst, len);
374 return copyin(src, dst, len);
375 }
376
377 /*
378 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
379 * flag is passed in `ioctlflags' from the ioctl call.
380 */
381 int
382 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
383 {
384 if (ioctlflags & FKIOCTL)
385 return kcopy(src, dst, len);
386 return copyout(src, dst, len);
387 }
388
389 static void *
390 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
391 {
392 struct hook_desc *hd;
393
394 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
395 if (hd == NULL)
396 return (NULL);
397
398 hd->hk_fn = fn;
399 hd->hk_arg = arg;
400 LIST_INSERT_HEAD(list, hd, hk_list);
401
402 return (hd);
403 }
404
405 static void
406 hook_disestablish(hook_list_t *list, void *vhook)
407 {
408 #ifdef DIAGNOSTIC
409 struct hook_desc *hd;
410
411 LIST_FOREACH(hd, list, hk_list) {
412 if (hd == vhook)
413 break;
414 }
415
416 if (hd == NULL)
417 panic("hook_disestablish: hook %p not established", vhook);
418 #endif
419 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
420 free(vhook, M_DEVBUF);
421 }
422
423 static void
424 hook_destroy(hook_list_t *list)
425 {
426 struct hook_desc *hd;
427
428 while ((hd = LIST_FIRST(list)) != NULL) {
429 LIST_REMOVE(hd, hk_list);
430 free(hd, M_DEVBUF);
431 }
432 }
433
434 static void
435 hook_proc_run(hook_list_t *list, struct proc *p)
436 {
437 struct hook_desc *hd;
438
439 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
440 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
441 hd->hk_arg);
442 }
443 }
444
445 /*
446 * "Shutdown hook" types, functions, and variables.
447 *
448 * Should be invoked immediately before the
449 * system is halted or rebooted, i.e. after file systems unmounted,
450 * after crash dump done, etc.
451 *
452 * Each shutdown hook is removed from the list before it's run, so that
453 * it won't be run again.
454 */
455
456 static hook_list_t shutdownhook_list;
457
458 void *
459 shutdownhook_establish(void (*fn)(void *), void *arg)
460 {
461 return hook_establish(&shutdownhook_list, fn, arg);
462 }
463
464 void
465 shutdownhook_disestablish(void *vhook)
466 {
467 hook_disestablish(&shutdownhook_list, vhook);
468 }
469
470 /*
471 * Run shutdown hooks. Should be invoked immediately before the
472 * system is halted or rebooted, i.e. after file systems unmounted,
473 * after crash dump done, etc.
474 *
475 * Each shutdown hook is removed from the list before it's run, so that
476 * it won't be run again.
477 */
478 void
479 doshutdownhooks(void)
480 {
481 struct hook_desc *dp;
482
483 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
484 LIST_REMOVE(dp, hk_list);
485 (*dp->hk_fn)(dp->hk_arg);
486 #if 0
487 /*
488 * Don't bother freeing the hook structure,, since we may
489 * be rebooting because of a memory corruption problem,
490 * and this might only make things worse. It doesn't
491 * matter, anyway, since the system is just about to
492 * reboot.
493 */
494 free(dp, M_DEVBUF);
495 #endif
496 }
497 }
498
499 /*
500 * "Mountroot hook" types, functions, and variables.
501 */
502
503 static hook_list_t mountroothook_list;
504
505 void *
506 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
507 {
508 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
509 }
510
511 void
512 mountroothook_disestablish(void *vhook)
513 {
514 hook_disestablish(&mountroothook_list, vhook);
515 }
516
517 void
518 mountroothook_destroy(void)
519 {
520 hook_destroy(&mountroothook_list);
521 }
522
523 void
524 domountroothook(void)
525 {
526 struct hook_desc *hd;
527
528 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
529 if (hd->hk_arg == (void *)root_device) {
530 (*hd->hk_fn)(hd->hk_arg);
531 return;
532 }
533 }
534 }
535
536 static hook_list_t exechook_list;
537
538 void *
539 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
540 {
541 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
542 }
543
544 void
545 exechook_disestablish(void *vhook)
546 {
547 hook_disestablish(&exechook_list, vhook);
548 }
549
550 /*
551 * Run exec hooks.
552 */
553 void
554 doexechooks(struct proc *p)
555 {
556 hook_proc_run(&exechook_list, p);
557 }
558
559 static hook_list_t exithook_list;
560
561 void *
562 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
563 {
564 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
565 }
566
567 void
568 exithook_disestablish(void *vhook)
569 {
570 hook_disestablish(&exithook_list, vhook);
571 }
572
573 /*
574 * Run exit hooks.
575 */
576 void
577 doexithooks(struct proc *p)
578 {
579 hook_proc_run(&exithook_list, p);
580 }
581
582 static hook_list_t forkhook_list;
583
584 void *
585 forkhook_establish(void (*fn)(struct proc *, struct proc *))
586 {
587 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
588 }
589
590 void
591 forkhook_disestablish(void *vhook)
592 {
593 hook_disestablish(&forkhook_list, vhook);
594 }
595
596 /*
597 * Run fork hooks.
598 */
599 void
600 doforkhooks(struct proc *p2, struct proc *p1)
601 {
602 struct hook_desc *hd;
603
604 LIST_FOREACH(hd, &forkhook_list, hk_list) {
605 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
606 (p2, p1);
607 }
608 }
609
610 /*
611 * "Power hook" types, functions, and variables.
612 * The list of power hooks is kept ordered with the last registered hook
613 * first.
614 * When running the hooks on power down the hooks are called in reverse
615 * registration order, when powering up in registration order.
616 */
617 struct powerhook_desc {
618 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
619 void (*sfd_fn)(int, void *);
620 void *sfd_arg;
621 char sfd_name[16];
622 };
623
624 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
625 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
626
627 void *
628 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
629 {
630 struct powerhook_desc *ndp;
631
632 ndp = (struct powerhook_desc *)
633 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
634 if (ndp == NULL)
635 return (NULL);
636
637 ndp->sfd_fn = fn;
638 ndp->sfd_arg = arg;
639 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
640 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
641
642 return (ndp);
643 }
644
645 void
646 powerhook_disestablish(void *vhook)
647 {
648 #ifdef DIAGNOSTIC
649 struct powerhook_desc *dp;
650
651 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
652 if (dp == vhook)
653 goto found;
654 panic("powerhook_disestablish: hook %p not established", vhook);
655 found:
656 #endif
657
658 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
659 sfd_list);
660 free(vhook, M_DEVBUF);
661 }
662
663 /*
664 * Run power hooks.
665 */
666 void
667 dopowerhooks(int why)
668 {
669 struct powerhook_desc *dp;
670
671 #ifdef POWERHOOK_DEBUG
672 const char *why_name;
673 static const char * pwr_names[] = {PWR_NAMES};
674 why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
675 #endif
676
677 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
678 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
679 #ifdef POWERHOOK_DEBUG
680 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
681 #endif
682 (*dp->sfd_fn)(why, dp->sfd_arg);
683 }
684 } else {
685 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
686 #ifdef POWERHOOK_DEBUG
687 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
688 #endif
689 (*dp->sfd_fn)(why, dp->sfd_arg);
690 }
691 }
692
693 #ifdef POWERHOOK_DEBUG
694 printf("dopowerhooks: %s done\n", why_name);
695 #endif
696 }
697
698 static int
699 isswap(struct device *dv)
700 {
701 struct dkwedge_info wi;
702 struct vnode *vn;
703 int error;
704
705 if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
706 return 0;
707
708 if ((vn = opendisk(dv)) == NULL)
709 return 0;
710
711 error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED, 0);
712 VOP_CLOSE(vn, FREAD, NOCRED, 0);
713 vput(vn);
714 if (error) {
715 #ifdef DEBUG_WEDGE
716 printf("%s: Get wedge info returned %d\n", dv->dv_xname, error);
717 #endif
718 return 0;
719 }
720 return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
721 }
722
723 /*
724 * Determine the root device and, if instructed to, the root file system.
725 */
726
727 #include "md.h"
728 #if NMD == 0
729 #undef MEMORY_DISK_HOOKS
730 #endif
731
732 #ifdef MEMORY_DISK_HOOKS
733 static struct device fakemdrootdev[NMD];
734 extern struct cfdriver md_cd;
735 #endif
736
737 #ifdef MEMORY_DISK_IS_ROOT
738 #define BOOT_FROM_MEMORY_HOOKS 1
739 #endif
740
741 /*
742 * The device and wedge that we booted from. If booted_wedge is NULL,
743 * the we might consult booted_partition.
744 */
745 struct device *booted_device;
746 struct device *booted_wedge;
747 int booted_partition;
748
749 /*
750 * Use partition letters if it's a disk class but not a wedge.
751 * XXX Check for wedge is kinda gross.
752 */
753 #define DEV_USES_PARTITIONS(dv) \
754 (device_class((dv)) == DV_DISK && \
755 !device_is_a((dv), "dk"))
756
757 void
758 setroot(struct device *bootdv, int bootpartition)
759 {
760 struct device *dv;
761 int len, majdev;
762 #ifdef MEMORY_DISK_HOOKS
763 int i;
764 #endif
765 dev_t nrootdev;
766 dev_t ndumpdev = NODEV;
767 char buf[128];
768 const char *rootdevname;
769 const char *dumpdevname;
770 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
771 struct device *dumpdv = NULL;
772 struct ifnet *ifp;
773 const char *deffsname;
774 struct vfsops *vops;
775
776 #ifdef TFTPROOT
777 if (tftproot_dhcpboot(bootdv) != 0)
778 boothowto |= RB_ASKNAME;
779 #endif
780
781 #ifdef MEMORY_DISK_HOOKS
782 for (i = 0; i < NMD; i++) {
783 fakemdrootdev[i].dv_class = DV_DISK;
784 fakemdrootdev[i].dv_cfdata = NULL;
785 fakemdrootdev[i].dv_cfdriver = &md_cd;
786 fakemdrootdev[i].dv_unit = i;
787 fakemdrootdev[i].dv_parent = NULL;
788 snprintf(fakemdrootdev[i].dv_xname,
789 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
790 }
791 #endif /* MEMORY_DISK_HOOKS */
792
793 #ifdef MEMORY_DISK_IS_ROOT
794 bootdv = &fakemdrootdev[0];
795 bootpartition = 0;
796 #endif
797
798 /*
799 * If NFS is specified as the file system, and we found
800 * a DV_DISK boot device (or no boot device at all), then
801 * find a reasonable network interface for "rootspec".
802 */
803 vops = vfs_getopsbyname("nfs");
804 if (vops != NULL && vops->vfs_mountroot == mountroot &&
805 rootspec == NULL &&
806 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
807 IFNET_FOREACH(ifp) {
808 if ((ifp->if_flags &
809 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
810 break;
811 }
812 if (ifp == NULL) {
813 /*
814 * Can't find a suitable interface; ask the
815 * user.
816 */
817 boothowto |= RB_ASKNAME;
818 } else {
819 /*
820 * Have a suitable interface; behave as if
821 * the user specified this interface.
822 */
823 rootspec = (const char *)ifp->if_xname;
824 }
825 }
826
827 /*
828 * If wildcarded root and we the boot device wasn't determined,
829 * ask the user.
830 */
831 if (rootspec == NULL && bootdv == NULL)
832 boothowto |= RB_ASKNAME;
833
834 top:
835 if (boothowto & RB_ASKNAME) {
836 struct device *defdumpdv;
837
838 for (;;) {
839 printf("root device");
840 if (bootdv != NULL) {
841 printf(" (default %s", bootdv->dv_xname);
842 if (DEV_USES_PARTITIONS(bootdv))
843 printf("%c", bootpartition + 'a');
844 printf(")");
845 }
846 printf(": ");
847 len = cngetsn(buf, sizeof(buf));
848 if (len == 0 && bootdv != NULL) {
849 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
850 len = strlen(buf);
851 }
852 if (len > 0 && buf[len - 1] == '*') {
853 buf[--len] = '\0';
854 dv = getdisk(buf, len, 1, &nrootdev, 0);
855 if (dv != NULL) {
856 rootdv = dv;
857 break;
858 }
859 }
860 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
861 if (dv != NULL) {
862 rootdv = dv;
863 break;
864 }
865 }
866
867 /*
868 * Set up the default dump device. If root is on
869 * a network device, there is no default dump
870 * device, since we don't support dumps to the
871 * network.
872 */
873 if (DEV_USES_PARTITIONS(rootdv) == 0)
874 defdumpdv = NULL;
875 else
876 defdumpdv = rootdv;
877
878 for (;;) {
879 printf("dump device");
880 if (defdumpdv != NULL) {
881 /*
882 * Note, we know it's a disk if we get here.
883 */
884 printf(" (default %sb)", defdumpdv->dv_xname);
885 }
886 printf(": ");
887 len = cngetsn(buf, sizeof(buf));
888 if (len == 0) {
889 if (defdumpdv != NULL) {
890 ndumpdev = MAKEDISKDEV(major(nrootdev),
891 DISKUNIT(nrootdev), 1);
892 }
893 dumpdv = defdumpdv;
894 break;
895 }
896 if (len == 4 && strcmp(buf, "none") == 0) {
897 dumpdv = NULL;
898 break;
899 }
900 dv = getdisk(buf, len, 1, &ndumpdev, 1);
901 if (dv != NULL) {
902 dumpdv = dv;
903 break;
904 }
905 }
906
907 rootdev = nrootdev;
908 dumpdev = ndumpdev;
909
910 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
911 vops = LIST_NEXT(vops, vfs_list)) {
912 if (vops->vfs_mountroot != NULL &&
913 vops->vfs_mountroot == mountroot)
914 break;
915 }
916
917 if (vops == NULL) {
918 mountroot = NULL;
919 deffsname = "generic";
920 } else
921 deffsname = vops->vfs_name;
922
923 for (;;) {
924 printf("file system (default %s): ", deffsname);
925 len = cngetsn(buf, sizeof(buf));
926 if (len == 0)
927 break;
928 if (len == 4 && strcmp(buf, "halt") == 0)
929 cpu_reboot(RB_HALT, NULL);
930 else if (len == 6 && strcmp(buf, "reboot") == 0)
931 cpu_reboot(0, NULL);
932 #if defined(DDB)
933 else if (len == 3 && strcmp(buf, "ddb") == 0) {
934 console_debugger();
935 }
936 #endif
937 else if (len == 7 && strcmp(buf, "generic") == 0) {
938 mountroot = NULL;
939 break;
940 }
941 vops = vfs_getopsbyname(buf);
942 if (vops == NULL || vops->vfs_mountroot == NULL) {
943 printf("use one of: generic");
944 for (vops = LIST_FIRST(&vfs_list);
945 vops != NULL;
946 vops = LIST_NEXT(vops, vfs_list)) {
947 if (vops->vfs_mountroot != NULL)
948 printf(" %s", vops->vfs_name);
949 }
950 #if defined(DDB)
951 printf(" ddb");
952 #endif
953 printf(" halt reboot\n");
954 } else {
955 mountroot = vops->vfs_mountroot;
956 break;
957 }
958 }
959
960 } else if (rootspec == NULL) {
961 /*
962 * Wildcarded root; use the boot device.
963 */
964 rootdv = bootdv;
965
966 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
967 if (majdev >= 0) {
968 /*
969 * Root is on a disk. `bootpartition' is root,
970 * unless the device does not use partitions.
971 */
972 if (DEV_USES_PARTITIONS(bootdv))
973 rootdev = MAKEDISKDEV(majdev,
974 device_unit(bootdv),
975 bootpartition);
976 else
977 rootdev = makedev(majdev, device_unit(bootdv));
978 }
979 } else {
980
981 /*
982 * `root on <dev> ...'
983 */
984
985 /*
986 * If it's a network interface, we can bail out
987 * early.
988 */
989 dv = finddevice(rootspec);
990 if (dv != NULL && device_class(dv) == DV_IFNET) {
991 rootdv = dv;
992 goto haveroot;
993 }
994
995 if (rootdev == NODEV &&
996 device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
997 (majdev = devsw_name2blk(dv->dv_xname, NULL, 0)) >= 0)
998 rootdev = makedev(majdev, device_unit(dv));
999
1000 rootdevname = devsw_blk2name(major(rootdev));
1001 if (rootdevname == NULL) {
1002 printf("unknown device major 0x%x\n", rootdev);
1003 boothowto |= RB_ASKNAME;
1004 goto top;
1005 }
1006 memset(buf, 0, sizeof(buf));
1007 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1008 DISKUNIT(rootdev));
1009
1010 rootdv = finddevice(buf);
1011 if (rootdv == NULL) {
1012 printf("device %s (0x%x) not configured\n",
1013 buf, rootdev);
1014 boothowto |= RB_ASKNAME;
1015 goto top;
1016 }
1017 }
1018
1019 haveroot:
1020
1021 root_device = rootdv;
1022
1023 switch (device_class(rootdv)) {
1024 case DV_IFNET:
1025 case DV_DISK:
1026 aprint_normal("root on %s", rootdv->dv_xname);
1027 if (DEV_USES_PARTITIONS(rootdv))
1028 aprint_normal("%c", DISKPART(rootdev) + 'a');
1029 break;
1030
1031 default:
1032 printf("can't determine root device\n");
1033 boothowto |= RB_ASKNAME;
1034 goto top;
1035 }
1036
1037 /*
1038 * Now configure the dump device.
1039 *
1040 * If we haven't figured out the dump device, do so, with
1041 * the following rules:
1042 *
1043 * (a) We already know dumpdv in the RB_ASKNAME case.
1044 *
1045 * (b) If dumpspec is set, try to use it. If the device
1046 * is not available, punt.
1047 *
1048 * (c) If dumpspec is not set, the dump device is
1049 * wildcarded or unspecified. If the root device
1050 * is DV_IFNET, punt. Otherwise, use partition b
1051 * of the root device.
1052 */
1053
1054 if (boothowto & RB_ASKNAME) { /* (a) */
1055 if (dumpdv == NULL)
1056 goto nodumpdev;
1057 } else if (dumpspec != NULL) { /* (b) */
1058 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1059 /*
1060 * Operator doesn't want a dump device.
1061 * Or looks like they tried to pick a network
1062 * device. Oops.
1063 */
1064 goto nodumpdev;
1065 }
1066
1067 dumpdevname = devsw_blk2name(major(dumpdev));
1068 if (dumpdevname == NULL)
1069 goto nodumpdev;
1070 memset(buf, 0, sizeof(buf));
1071 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1072 DISKUNIT(dumpdev));
1073
1074 dumpdv = finddevice(buf);
1075 if (dumpdv == NULL) {
1076 /*
1077 * Device not configured.
1078 */
1079 goto nodumpdev;
1080 }
1081 } else { /* (c) */
1082 if (DEV_USES_PARTITIONS(rootdv) == 0) {
1083 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1084 dv = TAILQ_NEXT(dv, dv_list))
1085 if (isswap(dv))
1086 break;
1087 if (dv == NULL)
1088 goto nodumpdev;
1089
1090 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1091 if (majdev < 0)
1092 goto nodumpdev;
1093 dumpdv = dv;
1094 dumpdev = makedev(majdev, device_unit(dumpdv));
1095 } else {
1096 dumpdv = rootdv;
1097 dumpdev = MAKEDISKDEV(major(rootdev),
1098 device_unit(dumpdv), 1);
1099 }
1100 }
1101
1102 aprint_normal(" dumps on %s", dumpdv->dv_xname);
1103 if (DEV_USES_PARTITIONS(dumpdv))
1104 aprint_normal("%c", DISKPART(dumpdev) + 'a');
1105 aprint_normal("\n");
1106 return;
1107
1108 nodumpdev:
1109 dumpdev = NODEV;
1110 aprint_normal("\n");
1111 }
1112
1113 static struct device *
1114 finddevice(const char *name)
1115 {
1116 const char *wname;
1117 struct device *dv;
1118 #if defined(BOOT_FROM_MEMORY_HOOKS)
1119 int j;
1120 #endif /* BOOT_FROM_MEMORY_HOOKS */
1121
1122 if ((wname = getwedgename(name, strlen(name))) != NULL)
1123 return dkwedge_find_by_wname(wname);
1124
1125 #ifdef BOOT_FROM_MEMORY_HOOKS
1126 for (j = 0; j < NMD; j++) {
1127 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0)
1128 return &fakemdrootdev[j];
1129 }
1130 #endif /* BOOT_FROM_MEMORY_HOOKS */
1131
1132 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1133 if (strcmp(dv->dv_xname, name) == 0)
1134 break;
1135 }
1136 return dv;
1137 }
1138
1139 static struct device *
1140 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1141 {
1142 struct device *dv;
1143 #ifdef MEMORY_DISK_HOOKS
1144 int i;
1145 #endif
1146
1147 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1148 printf("use one of:");
1149 #ifdef MEMORY_DISK_HOOKS
1150 if (isdump == 0)
1151 for (i = 0; i < NMD; i++)
1152 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1153 'a' + MAXPARTITIONS - 1);
1154 #endif
1155 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1156 if (DEV_USES_PARTITIONS(dv))
1157 printf(" %s[a-%c]", dv->dv_xname,
1158 'a' + MAXPARTITIONS - 1);
1159 else if (device_class(dv) == DV_DISK)
1160 printf(" %s", dv->dv_xname);
1161 if (isdump == 0 && device_class(dv) == DV_IFNET)
1162 printf(" %s", dv->dv_xname);
1163 }
1164 dkwedge_print_wnames();
1165 if (isdump)
1166 printf(" none");
1167 #if defined(DDB)
1168 printf(" ddb");
1169 #endif
1170 printf(" halt reboot\n");
1171 }
1172 return dv;
1173 }
1174
1175 static const char *
1176 getwedgename(const char *name, int namelen)
1177 {
1178 const char *wpfx = "wedge:";
1179 const int wpfxlen = strlen(wpfx);
1180
1181 if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1182 return NULL;
1183
1184 return name + wpfxlen;
1185 }
1186
1187 static struct device *
1188 parsedisk(char *str, int len, int defpart, dev_t *devp)
1189 {
1190 struct device *dv;
1191 const char *wname;
1192 char *cp, c;
1193 int majdev, part;
1194 #ifdef MEMORY_DISK_HOOKS
1195 int i;
1196 #endif
1197 if (len == 0)
1198 return (NULL);
1199
1200 if (len == 4 && strcmp(str, "halt") == 0)
1201 cpu_reboot(RB_HALT, NULL);
1202 else if (len == 6 && strcmp(str, "reboot") == 0)
1203 cpu_reboot(0, NULL);
1204 #if defined(DDB)
1205 else if (len == 3 && strcmp(str, "ddb") == 0)
1206 console_debugger();
1207 #endif
1208
1209 cp = str + len - 1;
1210 c = *cp;
1211
1212 if ((wname = getwedgename(str, len)) != NULL) {
1213 if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1214 return NULL;
1215 part = defpart;
1216 goto gotdisk;
1217 } else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1218 part = c - 'a';
1219 *cp = '\0';
1220 } else
1221 part = defpart;
1222
1223 #ifdef MEMORY_DISK_HOOKS
1224 for (i = 0; i < NMD; i++)
1225 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1226 dv = &fakemdrootdev[i];
1227 goto gotdisk;
1228 }
1229 #endif
1230
1231 dv = finddevice(str);
1232 if (dv != NULL) {
1233 if (device_class(dv) == DV_DISK) {
1234 gotdisk:
1235 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1236 if (majdev < 0)
1237 panic("parsedisk");
1238 if (DEV_USES_PARTITIONS(dv))
1239 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1240 part);
1241 else
1242 *devp = makedev(majdev, device_unit(dv));
1243 }
1244
1245 if (device_class(dv) == DV_IFNET)
1246 *devp = NODEV;
1247 }
1248
1249 *cp = c;
1250 return (dv);
1251 }
1252
1253 /*
1254 * snprintf() `bytes' into `buf', reformatting it so that the number,
1255 * plus a possible `x' + suffix extension) fits into len bytes (including
1256 * the terminating NUL).
1257 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1258 * E.g, given a len of 9 and a suffix of `B':
1259 * bytes result
1260 * ----- ------
1261 * 99999 `99999 B'
1262 * 100000 `97 kB'
1263 * 66715648 `65152 kB'
1264 * 252215296 `240 MB'
1265 */
1266 int
1267 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1268 int divisor)
1269 {
1270 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1271 const char *prefixes;
1272 int r;
1273 uint64_t umax;
1274 size_t i, suffixlen;
1275
1276 if (buf == NULL || suffix == NULL)
1277 return (-1);
1278 if (len > 0)
1279 buf[0] = '\0';
1280 suffixlen = strlen(suffix);
1281 /* check if enough room for `x y' + suffix + `\0' */
1282 if (len < 4 + suffixlen)
1283 return (-1);
1284
1285 if (divisor == 1024) {
1286 /*
1287 * binary multiplies
1288 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1289 */
1290 prefixes = " KMGTPE";
1291 } else
1292 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1293
1294 umax = 1;
1295 for (i = 0; i < len - suffixlen - 3; i++)
1296 umax *= 10;
1297 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1298 bytes /= divisor;
1299
1300 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1301 i == 0 ? "" : " ", prefixes[i], suffix);
1302
1303 return (r);
1304 }
1305
1306 int
1307 format_bytes(char *buf, size_t len, uint64_t bytes)
1308 {
1309 int rv;
1310 size_t nlen;
1311
1312 rv = humanize_number(buf, len, bytes, "B", 1024);
1313 if (rv != -1) {
1314 /* nuke the trailing ` B' if it exists */
1315 nlen = strlen(buf) - 2;
1316 if (strcmp(&buf[nlen], " B") == 0)
1317 buf[nlen] = '\0';
1318 }
1319 return (rv);
1320 }
1321
1322 /*
1323 * Return true if system call tracing is enabled for the specified process.
1324 */
1325 bool
1326 trace_is_enabled(struct proc *p)
1327 {
1328 #ifdef SYSCALL_DEBUG
1329 return (true);
1330 #endif
1331 #ifdef KTRACE
1332 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1333 return (true);
1334 #endif
1335 #ifdef SYSTRACE
1336 if (ISSET(p->p_flag, PK_SYSTRACE))
1337 return (true);
1338 #endif
1339 #ifdef PTRACE
1340 if (ISSET(p->p_slflag, PSL_SYSCALL))
1341 return (true);
1342 #endif
1343
1344 return (false);
1345 }
1346
1347 /*
1348 * Start trace of particular system call. If process is being traced,
1349 * this routine is called by MD syscall dispatch code just before
1350 * a system call is actually executed.
1351 * MD caller guarantees the passed 'code' is within the supported
1352 * system call number range for emulation the process runs under.
1353 */
1354 int
1355 trace_enter(struct lwp *l, register_t code,
1356 register_t realcode, const struct sysent *callp, void *args)
1357 {
1358 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1359 struct proc *p = l->l_proc;
1360
1361 #ifdef SYSCALL_DEBUG
1362 scdebug_call(l, code, args);
1363 #endif /* SYSCALL_DEBUG */
1364
1365 #ifdef KTRACE
1366 if (KTRPOINT(p, KTR_SYSCALL))
1367 ktrsyscall(l, code, realcode, callp, args);
1368 #endif /* KTRACE */
1369
1370 #ifdef PTRACE
1371 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1372 (PSL_SYSCALL|PSL_TRACED))
1373 process_stoptrace(l);
1374 #endif
1375
1376 #ifdef SYSTRACE
1377 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1378 int error;
1379 KERNEL_LOCK(1, l);
1380 error = systrace_enter(l, code, args);
1381 KERNEL_UNLOCK_ONE(l);
1382 return error;
1383 }
1384 #endif
1385 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1386 return 0;
1387 }
1388
1389 /*
1390 * End trace of particular system call. If process is being traced,
1391 * this routine is called by MD syscall dispatch code just after
1392 * a system call finishes.
1393 * MD caller guarantees the passed 'code' is within the supported
1394 * system call number range for emulation the process runs under.
1395 */
1396 void
1397 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
1398 int error)
1399 {
1400 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1401 struct proc *p = l->l_proc;
1402
1403 #ifdef SYSCALL_DEBUG
1404 scdebug_ret(l, code, error, rval);
1405 #endif /* SYSCALL_DEBUG */
1406
1407 #ifdef KTRACE
1408 if (KTRPOINT(p, KTR_SYSRET))
1409 ktrsysret(l, code, error, rval);
1410 #endif /* KTRACE */
1411
1412 #ifdef PTRACE
1413 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1414 (PSL_SYSCALL|PSL_TRACED))
1415 process_stoptrace(l);
1416 #endif
1417
1418 #ifdef SYSTRACE
1419 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1420 KERNEL_LOCK(1, l);
1421 systrace_exit(l, code, args, rval, error);
1422 KERNEL_UNLOCK_ONE(l);
1423 }
1424 #endif
1425 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1426 }
1427