Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.165
      1 /*	$NetBSD: kern_subr.c,v 1.165 2007/10/12 13:00:18 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Copyright (c) 1992, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * This software was developed by the Computer Systems Engineering group
     53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     54  * contributed to Berkeley.
     55  *
     56  * All advertising materials mentioning features or use of this software
     57  * must display the following acknowledgement:
     58  *	This product includes software developed by the University of
     59  *	California, Lawrence Berkeley Laboratory.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  * 2. Redistributions in binary form must reproduce the above copyright
     67  *    notice, this list of conditions and the following disclaimer in the
     68  *    documentation and/or other materials provided with the distribution.
     69  * 3. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.165 2007/10/12 13:00:18 ad Exp $");
     90 
     91 #include "opt_ddb.h"
     92 #include "opt_md.h"
     93 #include "opt_syscall_debug.h"
     94 #include "opt_ktrace.h"
     95 #include "opt_ptrace.h"
     96 #include "opt_systrace.h"
     97 #include "opt_powerhook.h"
     98 #include "opt_tftproot.h"
     99 
    100 #include <sys/param.h>
    101 #include <sys/systm.h>
    102 #include <sys/proc.h>
    103 #include <sys/malloc.h>
    104 #include <sys/mount.h>
    105 #include <sys/device.h>
    106 #include <sys/reboot.h>
    107 #include <sys/conf.h>
    108 #include <sys/disk.h>
    109 #include <sys/disklabel.h>
    110 #include <sys/queue.h>
    111 #include <sys/systrace.h>
    112 #include <sys/ktrace.h>
    113 #include <sys/ptrace.h>
    114 #include <sys/fcntl.h>
    115 #include <sys/kauth.h>
    116 #include <sys/vnode.h>
    117 
    118 #include <uvm/uvm_extern.h>
    119 
    120 #include <dev/cons.h>
    121 
    122 #include <net/if.h>
    123 
    124 /* XXX these should eventually move to subr_autoconf.c */
    125 static struct device *finddevice(const char *);
    126 static struct device *getdisk(char *, int, int, dev_t *, int);
    127 static struct device *parsedisk(char *, int, int, dev_t *);
    128 static const char *getwedgename(const char *, int);
    129 
    130 /*
    131  * A generic linear hook.
    132  */
    133 struct hook_desc {
    134 	LIST_ENTRY(hook_desc) hk_list;
    135 	void	(*hk_fn)(void *);
    136 	void	*hk_arg;
    137 };
    138 typedef LIST_HEAD(, hook_desc) hook_list_t;
    139 
    140 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
    141 
    142 #ifdef TFTPROOT
    143 int tftproot_dhcpboot(struct device *);
    144 #endif
    145 
    146 void
    147 uio_setup_sysspace(struct uio *uio)
    148 {
    149 
    150 	uio->uio_vmspace = vmspace_kernel();
    151 }
    152 
    153 int
    154 uiomove(void *buf, size_t n, struct uio *uio)
    155 {
    156 	struct vmspace *vm = uio->uio_vmspace;
    157 	struct iovec *iov;
    158 	u_int cnt;
    159 	int error = 0;
    160 	size_t on;
    161 	char *cp = buf;
    162 #ifdef MULTIPROCESSOR
    163 	int hold_count;
    164 #endif
    165 
    166 	if ((on = n) >= 1024) {
    167 		KERNEL_UNLOCK_ALL(NULL, &hold_count);
    168 	}
    169 
    170 	ASSERT_SLEEPABLE(NULL, "uiomove");
    171 
    172 #ifdef DIAGNOSTIC
    173 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    174 		panic("uiomove: mode");
    175 #endif
    176 	while (n > 0 && uio->uio_resid) {
    177 		iov = uio->uio_iov;
    178 		cnt = iov->iov_len;
    179 		if (cnt == 0) {
    180 			KASSERT(uio->uio_iovcnt > 0);
    181 			uio->uio_iov++;
    182 			uio->uio_iovcnt--;
    183 			continue;
    184 		}
    185 		if (cnt > n)
    186 			cnt = n;
    187 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    188 			if (curcpu()->ci_schedstate.spc_flags &
    189 			    SPCF_SHOULDYIELD)
    190 				preempt();
    191 		}
    192 
    193 		if (uio->uio_rw == UIO_READ) {
    194 			error = copyout_vmspace(vm, cp, iov->iov_base,
    195 			    cnt);
    196 		} else {
    197 			error = copyin_vmspace(vm, iov->iov_base, cp,
    198 			    cnt);
    199 		}
    200 		if (error) {
    201 			break;
    202 		}
    203 		iov->iov_base = (char *)iov->iov_base + cnt;
    204 		iov->iov_len -= cnt;
    205 		uio->uio_resid -= cnt;
    206 		uio->uio_offset += cnt;
    207 		cp += cnt;
    208 		KDASSERT(cnt <= n);
    209 		n -= cnt;
    210 	}
    211 
    212 	if (on >= 1024) {
    213 		KERNEL_LOCK(hold_count, NULL);
    214 	}
    215 	return (error);
    216 }
    217 
    218 /*
    219  * Wrapper for uiomove() that validates the arguments against a known-good
    220  * kernel buffer.
    221  */
    222 int
    223 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    224 {
    225 	size_t offset;
    226 
    227 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
    228 	    (offset = uio->uio_offset) != uio->uio_offset)
    229 		return (EINVAL);
    230 	if (offset >= buflen)
    231 		return (0);
    232 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    233 }
    234 
    235 /*
    236  * Give next character to user as result of read.
    237  */
    238 int
    239 ureadc(int c, struct uio *uio)
    240 {
    241 	struct iovec *iov;
    242 
    243 	if (uio->uio_resid <= 0)
    244 		panic("ureadc: non-positive resid");
    245 again:
    246 	if (uio->uio_iovcnt <= 0)
    247 		panic("ureadc: non-positive iovcnt");
    248 	iov = uio->uio_iov;
    249 	if (iov->iov_len <= 0) {
    250 		uio->uio_iovcnt--;
    251 		uio->uio_iov++;
    252 		goto again;
    253 	}
    254 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    255 		if (subyte(iov->iov_base, c) < 0)
    256 			return (EFAULT);
    257 	} else {
    258 		*(char *)iov->iov_base = c;
    259 	}
    260 	iov->iov_base = (char *)iov->iov_base + 1;
    261 	iov->iov_len--;
    262 	uio->uio_resid--;
    263 	uio->uio_offset++;
    264 	return (0);
    265 }
    266 
    267 /*
    268  * Like copyin(), but operates on an arbitrary vmspace.
    269  */
    270 int
    271 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    272 {
    273 	struct iovec iov;
    274 	struct uio uio;
    275 	int error;
    276 
    277 	if (len == 0)
    278 		return (0);
    279 
    280 	if (VMSPACE_IS_KERNEL_P(vm)) {
    281 		return kcopy(uaddr, kaddr, len);
    282 	}
    283 	if (__predict_true(vm == curproc->p_vmspace)) {
    284 		return copyin(uaddr, kaddr, len);
    285 	}
    286 
    287 	iov.iov_base = kaddr;
    288 	iov.iov_len = len;
    289 	uio.uio_iov = &iov;
    290 	uio.uio_iovcnt = 1;
    291 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    292 	uio.uio_resid = len;
    293 	uio.uio_rw = UIO_READ;
    294 	UIO_SETUP_SYSSPACE(&uio);
    295 	error = uvm_io(&vm->vm_map, &uio);
    296 
    297 	return (error);
    298 }
    299 
    300 /*
    301  * Like copyout(), but operates on an arbitrary vmspace.
    302  */
    303 int
    304 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    305 {
    306 	struct iovec iov;
    307 	struct uio uio;
    308 	int error;
    309 
    310 	if (len == 0)
    311 		return (0);
    312 
    313 	if (VMSPACE_IS_KERNEL_P(vm)) {
    314 		return kcopy(kaddr, uaddr, len);
    315 	}
    316 	if (__predict_true(vm == curproc->p_vmspace)) {
    317 		return copyout(kaddr, uaddr, len);
    318 	}
    319 
    320 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    321 	iov.iov_len = len;
    322 	uio.uio_iov = &iov;
    323 	uio.uio_iovcnt = 1;
    324 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    325 	uio.uio_resid = len;
    326 	uio.uio_rw = UIO_WRITE;
    327 	UIO_SETUP_SYSSPACE(&uio);
    328 	error = uvm_io(&vm->vm_map, &uio);
    329 
    330 	return (error);
    331 }
    332 
    333 /*
    334  * Like copyin(), but operates on an arbitrary process.
    335  */
    336 int
    337 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    338 {
    339 	struct vmspace *vm;
    340 	int error;
    341 
    342 	error = proc_vmspace_getref(p, &vm);
    343 	if (error) {
    344 		return error;
    345 	}
    346 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    347 	uvmspace_free(vm);
    348 
    349 	return error;
    350 }
    351 
    352 /*
    353  * Like copyout(), but operates on an arbitrary process.
    354  */
    355 int
    356 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    357 {
    358 	struct vmspace *vm;
    359 	int error;
    360 
    361 	error = proc_vmspace_getref(p, &vm);
    362 	if (error) {
    363 		return error;
    364 	}
    365 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    366 	uvmspace_free(vm);
    367 
    368 	return error;
    369 }
    370 
    371 /*
    372  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    373  * flag is passed in `ioctlflags' from the ioctl call.
    374  */
    375 int
    376 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    377 {
    378 	if (ioctlflags & FKIOCTL)
    379 		return kcopy(src, dst, len);
    380 	return copyin(src, dst, len);
    381 }
    382 
    383 /*
    384  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    385  * flag is passed in `ioctlflags' from the ioctl call.
    386  */
    387 int
    388 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    389 {
    390 	if (ioctlflags & FKIOCTL)
    391 		return kcopy(src, dst, len);
    392 	return copyout(src, dst, len);
    393 }
    394 
    395 static void *
    396 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    397 {
    398 	struct hook_desc *hd;
    399 
    400 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    401 	if (hd == NULL)
    402 		return (NULL);
    403 
    404 	hd->hk_fn = fn;
    405 	hd->hk_arg = arg;
    406 	LIST_INSERT_HEAD(list, hd, hk_list);
    407 
    408 	return (hd);
    409 }
    410 
    411 static void
    412 hook_disestablish(hook_list_t *list, void *vhook)
    413 {
    414 #ifdef DIAGNOSTIC
    415 	struct hook_desc *hd;
    416 
    417 	LIST_FOREACH(hd, list, hk_list) {
    418                 if (hd == vhook)
    419 			break;
    420 	}
    421 
    422 	if (hd == NULL)
    423 		panic("hook_disestablish: hook %p not established", vhook);
    424 #endif
    425 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    426 	free(vhook, M_DEVBUF);
    427 }
    428 
    429 static void
    430 hook_destroy(hook_list_t *list)
    431 {
    432 	struct hook_desc *hd;
    433 
    434 	while ((hd = LIST_FIRST(list)) != NULL) {
    435 		LIST_REMOVE(hd, hk_list);
    436 		free(hd, M_DEVBUF);
    437 	}
    438 }
    439 
    440 static void
    441 hook_proc_run(hook_list_t *list, struct proc *p)
    442 {
    443 	struct hook_desc *hd;
    444 
    445 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
    446 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
    447 		    hd->hk_arg);
    448 	}
    449 }
    450 
    451 /*
    452  * "Shutdown hook" types, functions, and variables.
    453  *
    454  * Should be invoked immediately before the
    455  * system is halted or rebooted, i.e. after file systems unmounted,
    456  * after crash dump done, etc.
    457  *
    458  * Each shutdown hook is removed from the list before it's run, so that
    459  * it won't be run again.
    460  */
    461 
    462 static hook_list_t shutdownhook_list;
    463 
    464 void *
    465 shutdownhook_establish(void (*fn)(void *), void *arg)
    466 {
    467 	return hook_establish(&shutdownhook_list, fn, arg);
    468 }
    469 
    470 void
    471 shutdownhook_disestablish(void *vhook)
    472 {
    473 	hook_disestablish(&shutdownhook_list, vhook);
    474 }
    475 
    476 /*
    477  * Run shutdown hooks.  Should be invoked immediately before the
    478  * system is halted or rebooted, i.e. after file systems unmounted,
    479  * after crash dump done, etc.
    480  *
    481  * Each shutdown hook is removed from the list before it's run, so that
    482  * it won't be run again.
    483  */
    484 void
    485 doshutdownhooks(void)
    486 {
    487 	struct hook_desc *dp;
    488 
    489 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    490 		LIST_REMOVE(dp, hk_list);
    491 		(*dp->hk_fn)(dp->hk_arg);
    492 #if 0
    493 		/*
    494 		 * Don't bother freeing the hook structure,, since we may
    495 		 * be rebooting because of a memory corruption problem,
    496 		 * and this might only make things worse.  It doesn't
    497 		 * matter, anyway, since the system is just about to
    498 		 * reboot.
    499 		 */
    500 		free(dp, M_DEVBUF);
    501 #endif
    502 	}
    503 }
    504 
    505 /*
    506  * "Mountroot hook" types, functions, and variables.
    507  */
    508 
    509 static hook_list_t mountroothook_list;
    510 
    511 void *
    512 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
    513 {
    514 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    515 }
    516 
    517 void
    518 mountroothook_disestablish(void *vhook)
    519 {
    520 	hook_disestablish(&mountroothook_list, vhook);
    521 }
    522 
    523 void
    524 mountroothook_destroy(void)
    525 {
    526 	hook_destroy(&mountroothook_list);
    527 }
    528 
    529 void
    530 domountroothook(void)
    531 {
    532 	struct hook_desc *hd;
    533 
    534 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    535 		if (hd->hk_arg == (void *)root_device) {
    536 			(*hd->hk_fn)(hd->hk_arg);
    537 			return;
    538 		}
    539 	}
    540 }
    541 
    542 static hook_list_t exechook_list;
    543 
    544 void *
    545 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    546 {
    547 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    548 }
    549 
    550 void
    551 exechook_disestablish(void *vhook)
    552 {
    553 	hook_disestablish(&exechook_list, vhook);
    554 }
    555 
    556 /*
    557  * Run exec hooks.
    558  */
    559 void
    560 doexechooks(struct proc *p)
    561 {
    562 	hook_proc_run(&exechook_list, p);
    563 }
    564 
    565 static hook_list_t exithook_list;
    566 
    567 void *
    568 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    569 {
    570 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    571 }
    572 
    573 void
    574 exithook_disestablish(void *vhook)
    575 {
    576 	hook_disestablish(&exithook_list, vhook);
    577 }
    578 
    579 /*
    580  * Run exit hooks.
    581  */
    582 void
    583 doexithooks(struct proc *p)
    584 {
    585 	hook_proc_run(&exithook_list, p);
    586 }
    587 
    588 static hook_list_t forkhook_list;
    589 
    590 void *
    591 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    592 {
    593 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    594 }
    595 
    596 void
    597 forkhook_disestablish(void *vhook)
    598 {
    599 	hook_disestablish(&forkhook_list, vhook);
    600 }
    601 
    602 /*
    603  * Run fork hooks.
    604  */
    605 void
    606 doforkhooks(struct proc *p2, struct proc *p1)
    607 {
    608 	struct hook_desc *hd;
    609 
    610 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    611 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    612 		    (p2, p1);
    613 	}
    614 }
    615 
    616 /*
    617  * "Power hook" types, functions, and variables.
    618  * The list of power hooks is kept ordered with the last registered hook
    619  * first.
    620  * When running the hooks on power down the hooks are called in reverse
    621  * registration order, when powering up in registration order.
    622  */
    623 struct powerhook_desc {
    624 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    625 	void	(*sfd_fn)(int, void *);
    626 	void	*sfd_arg;
    627 	char	sfd_name[16];
    628 };
    629 
    630 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    631     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    632 
    633 void *
    634 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
    635 {
    636 	struct powerhook_desc *ndp;
    637 
    638 	ndp = (struct powerhook_desc *)
    639 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    640 	if (ndp == NULL)
    641 		return (NULL);
    642 
    643 	ndp->sfd_fn = fn;
    644 	ndp->sfd_arg = arg;
    645 	strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
    646 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    647 
    648 	return (ndp);
    649 }
    650 
    651 void
    652 powerhook_disestablish(void *vhook)
    653 {
    654 #ifdef DIAGNOSTIC
    655 	struct powerhook_desc *dp;
    656 
    657 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    658                 if (dp == vhook)
    659 			goto found;
    660 	panic("powerhook_disestablish: hook %p not established", vhook);
    661  found:
    662 #endif
    663 
    664 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    665 	    sfd_list);
    666 	free(vhook, M_DEVBUF);
    667 }
    668 
    669 /*
    670  * Run power hooks.
    671  */
    672 void
    673 dopowerhooks(int why)
    674 {
    675 	struct powerhook_desc *dp;
    676 
    677 #ifdef POWERHOOK_DEBUG
    678 	const char *why_name;
    679 	static const char * pwr_names[] = {PWR_NAMES};
    680 	why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
    681 #endif
    682 
    683 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    684 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    685 #ifdef POWERHOOK_DEBUG
    686 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
    687 #endif
    688 			(*dp->sfd_fn)(why, dp->sfd_arg);
    689 		}
    690 	} else {
    691 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    692 #ifdef POWERHOOK_DEBUG
    693 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
    694 #endif
    695 			(*dp->sfd_fn)(why, dp->sfd_arg);
    696 		}
    697 	}
    698 
    699 #ifdef POWERHOOK_DEBUG
    700 	printf("dopowerhooks: %s done\n", why_name);
    701 #endif
    702 }
    703 
    704 static int
    705 isswap(struct device *dv)
    706 {
    707 	struct dkwedge_info wi;
    708 	struct vnode *vn;
    709 	int error;
    710 
    711 	if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
    712 		return 0;
    713 
    714 	if ((vn = opendisk(dv)) == NULL)
    715 		return 0;
    716 
    717 	error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED, 0);
    718 	VOP_CLOSE(vn, FREAD, NOCRED, 0);
    719 	vput(vn);
    720 	if (error) {
    721 #ifdef DEBUG_WEDGE
    722 		printf("%s: Get wedge info returned %d\n", dv->dv_xname, error);
    723 #endif
    724 		return 0;
    725 	}
    726 	return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
    727 }
    728 
    729 /*
    730  * Determine the root device and, if instructed to, the root file system.
    731  */
    732 
    733 #include "md.h"
    734 #if NMD == 0
    735 #undef MEMORY_DISK_HOOKS
    736 #endif
    737 
    738 #ifdef MEMORY_DISK_HOOKS
    739 static struct device fakemdrootdev[NMD];
    740 extern struct cfdriver md_cd;
    741 #endif
    742 
    743 #ifdef MEMORY_DISK_IS_ROOT
    744 #define BOOT_FROM_MEMORY_HOOKS 1
    745 #endif
    746 
    747 /*
    748  * The device and wedge that we booted from.  If booted_wedge is NULL,
    749  * the we might consult booted_partition.
    750  */
    751 struct device *booted_device;
    752 struct device *booted_wedge;
    753 int booted_partition;
    754 
    755 /*
    756  * Use partition letters if it's a disk class but not a wedge.
    757  * XXX Check for wedge is kinda gross.
    758  */
    759 #define	DEV_USES_PARTITIONS(dv)						\
    760 	(device_class((dv)) == DV_DISK &&				\
    761 	 !device_is_a((dv), "dk"))
    762 
    763 void
    764 setroot(struct device *bootdv, int bootpartition)
    765 {
    766 	struct device *dv;
    767 	int len, majdev;
    768 #ifdef MEMORY_DISK_HOOKS
    769 	int i;
    770 #endif
    771 	dev_t nrootdev;
    772 	dev_t ndumpdev = NODEV;
    773 	char buf[128];
    774 	const char *rootdevname;
    775 	const char *dumpdevname;
    776 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
    777 	struct device *dumpdv = NULL;
    778 	struct ifnet *ifp;
    779 	const char *deffsname;
    780 	struct vfsops *vops;
    781 
    782 #ifdef TFTPROOT
    783 	if (tftproot_dhcpboot(bootdv) != 0)
    784 		boothowto |= RB_ASKNAME;
    785 #endif
    786 
    787 #ifdef MEMORY_DISK_HOOKS
    788 	for (i = 0; i < NMD; i++) {
    789 		fakemdrootdev[i].dv_class  = DV_DISK;
    790 		fakemdrootdev[i].dv_cfdata = NULL;
    791 		fakemdrootdev[i].dv_cfdriver = &md_cd;
    792 		fakemdrootdev[i].dv_unit   = i;
    793 		fakemdrootdev[i].dv_parent = NULL;
    794 		snprintf(fakemdrootdev[i].dv_xname,
    795 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
    796 	}
    797 #endif /* MEMORY_DISK_HOOKS */
    798 
    799 #ifdef MEMORY_DISK_IS_ROOT
    800 	bootdv = &fakemdrootdev[0];
    801 	bootpartition = 0;
    802 #endif
    803 
    804 	/*
    805 	 * If NFS is specified as the file system, and we found
    806 	 * a DV_DISK boot device (or no boot device at all), then
    807 	 * find a reasonable network interface for "rootspec".
    808 	 */
    809 	vops = vfs_getopsbyname("nfs");
    810 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
    811 	    rootspec == NULL &&
    812 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
    813 		IFNET_FOREACH(ifp) {
    814 			if ((ifp->if_flags &
    815 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    816 				break;
    817 		}
    818 		if (ifp == NULL) {
    819 			/*
    820 			 * Can't find a suitable interface; ask the
    821 			 * user.
    822 			 */
    823 			boothowto |= RB_ASKNAME;
    824 		} else {
    825 			/*
    826 			 * Have a suitable interface; behave as if
    827 			 * the user specified this interface.
    828 			 */
    829 			rootspec = (const char *)ifp->if_xname;
    830 		}
    831 	}
    832 	if (vops != NULL)
    833 		vfs_delref(vops);
    834 
    835 	/*
    836 	 * If wildcarded root and we the boot device wasn't determined,
    837 	 * ask the user.
    838 	 */
    839 	if (rootspec == NULL && bootdv == NULL)
    840 		boothowto |= RB_ASKNAME;
    841 
    842  top:
    843 	if (boothowto & RB_ASKNAME) {
    844 		struct device *defdumpdv;
    845 
    846 		for (;;) {
    847 			printf("root device");
    848 			if (bootdv != NULL) {
    849 				printf(" (default %s", bootdv->dv_xname);
    850 				if (DEV_USES_PARTITIONS(bootdv))
    851 					printf("%c", bootpartition + 'a');
    852 				printf(")");
    853 			}
    854 			printf(": ");
    855 			len = cngetsn(buf, sizeof(buf));
    856 			if (len == 0 && bootdv != NULL) {
    857 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
    858 				len = strlen(buf);
    859 			}
    860 			if (len > 0 && buf[len - 1] == '*') {
    861 				buf[--len] = '\0';
    862 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    863 				if (dv != NULL) {
    864 					rootdv = dv;
    865 					break;
    866 				}
    867 			}
    868 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    869 			if (dv != NULL) {
    870 				rootdv = dv;
    871 				break;
    872 			}
    873 		}
    874 
    875 		/*
    876 		 * Set up the default dump device.  If root is on
    877 		 * a network device, there is no default dump
    878 		 * device, since we don't support dumps to the
    879 		 * network.
    880 		 */
    881 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    882 			defdumpdv = NULL;
    883 		else
    884 			defdumpdv = rootdv;
    885 
    886 		for (;;) {
    887 			printf("dump device");
    888 			if (defdumpdv != NULL) {
    889 				/*
    890 				 * Note, we know it's a disk if we get here.
    891 				 */
    892 				printf(" (default %sb)", defdumpdv->dv_xname);
    893 			}
    894 			printf(": ");
    895 			len = cngetsn(buf, sizeof(buf));
    896 			if (len == 0) {
    897 				if (defdumpdv != NULL) {
    898 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    899 					    DISKUNIT(nrootdev), 1);
    900 				}
    901 				dumpdv = defdumpdv;
    902 				break;
    903 			}
    904 			if (len == 4 && strcmp(buf, "none") == 0) {
    905 				dumpdv = NULL;
    906 				break;
    907 			}
    908 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    909 			if (dv != NULL) {
    910 				dumpdv = dv;
    911 				break;
    912 			}
    913 		}
    914 
    915 		rootdev = nrootdev;
    916 		dumpdev = ndumpdev;
    917 
    918 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    919 		     vops = LIST_NEXT(vops, vfs_list)) {
    920 			if (vops->vfs_mountroot != NULL &&
    921 			    vops->vfs_mountroot == mountroot)
    922 			break;
    923 		}
    924 
    925 		if (vops == NULL) {
    926 			mountroot = NULL;
    927 			deffsname = "generic";
    928 		} else
    929 			deffsname = vops->vfs_name;
    930 
    931 		for (;;) {
    932 			printf("file system (default %s): ", deffsname);
    933 			len = cngetsn(buf, sizeof(buf));
    934 			if (len == 0)
    935 				break;
    936 			if (len == 4 && strcmp(buf, "halt") == 0)
    937 				cpu_reboot(RB_HALT, NULL);
    938 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    939 				cpu_reboot(0, NULL);
    940 #if defined(DDB)
    941 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    942 				console_debugger();
    943 			}
    944 #endif
    945 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    946 				mountroot = NULL;
    947 				break;
    948 			}
    949 			vops = vfs_getopsbyname(buf);
    950 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    951 				printf("use one of: generic");
    952 				for (vops = LIST_FIRST(&vfs_list);
    953 				     vops != NULL;
    954 				     vops = LIST_NEXT(vops, vfs_list)) {
    955 					if (vops->vfs_mountroot != NULL)
    956 						printf(" %s", vops->vfs_name);
    957 				}
    958 #if defined(DDB)
    959 				printf(" ddb");
    960 #endif
    961 				printf(" halt reboot\n");
    962 			} else {
    963 				mountroot = vops->vfs_mountroot;
    964 				vfs_delref(vops);
    965 				break;
    966 			}
    967 		}
    968 
    969 	} else if (rootspec == NULL) {
    970 		/*
    971 		 * Wildcarded root; use the boot device.
    972 		 */
    973 		rootdv = bootdv;
    974 
    975 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
    976 		if (majdev >= 0) {
    977 			/*
    978 			 * Root is on a disk.  `bootpartition' is root,
    979 			 * unless the device does not use partitions.
    980 			 */
    981 			if (DEV_USES_PARTITIONS(bootdv))
    982 				rootdev = MAKEDISKDEV(majdev,
    983 						      device_unit(bootdv),
    984 						      bootpartition);
    985 			else
    986 				rootdev = makedev(majdev, device_unit(bootdv));
    987 		}
    988 	} else {
    989 
    990 		/*
    991 		 * `root on <dev> ...'
    992 		 */
    993 
    994 		/*
    995 		 * If it's a network interface, we can bail out
    996 		 * early.
    997 		 */
    998 		dv = finddevice(rootspec);
    999 		if (dv != NULL && device_class(dv) == DV_IFNET) {
   1000 			rootdv = dv;
   1001 			goto haveroot;
   1002 		}
   1003 
   1004 		if (rootdev == NODEV &&
   1005 		    device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
   1006 		    (majdev = devsw_name2blk(dv->dv_xname, NULL, 0)) >= 0)
   1007 			rootdev = makedev(majdev, device_unit(dv));
   1008 
   1009 		rootdevname = devsw_blk2name(major(rootdev));
   1010 		if (rootdevname == NULL) {
   1011 			printf("unknown device major 0x%x\n", rootdev);
   1012 			boothowto |= RB_ASKNAME;
   1013 			goto top;
   1014 		}
   1015 		memset(buf, 0, sizeof(buf));
   1016 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
   1017 		    DISKUNIT(rootdev));
   1018 
   1019 		rootdv = finddevice(buf);
   1020 		if (rootdv == NULL) {
   1021 			printf("device %s (0x%x) not configured\n",
   1022 			    buf, rootdev);
   1023 			boothowto |= RB_ASKNAME;
   1024 			goto top;
   1025 		}
   1026 	}
   1027 
   1028  haveroot:
   1029 
   1030 	root_device = rootdv;
   1031 
   1032 	switch (device_class(rootdv)) {
   1033 	case DV_IFNET:
   1034 	case DV_DISK:
   1035 		aprint_normal("root on %s", rootdv->dv_xname);
   1036 		if (DEV_USES_PARTITIONS(rootdv))
   1037 			aprint_normal("%c", DISKPART(rootdev) + 'a');
   1038 		break;
   1039 
   1040 	default:
   1041 		printf("can't determine root device\n");
   1042 		boothowto |= RB_ASKNAME;
   1043 		goto top;
   1044 	}
   1045 
   1046 	/*
   1047 	 * Now configure the dump device.
   1048 	 *
   1049 	 * If we haven't figured out the dump device, do so, with
   1050 	 * the following rules:
   1051 	 *
   1052 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1053 	 *
   1054 	 *	(b) If dumpspec is set, try to use it.  If the device
   1055 	 *	    is not available, punt.
   1056 	 *
   1057 	 *	(c) If dumpspec is not set, the dump device is
   1058 	 *	    wildcarded or unspecified.  If the root device
   1059 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1060 	 *	    of the root device.
   1061 	 */
   1062 
   1063 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1064 		if (dumpdv == NULL)
   1065 			goto nodumpdev;
   1066 	} else if (dumpspec != NULL) {		/* (b) */
   1067 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1068 			/*
   1069 			 * Operator doesn't want a dump device.
   1070 			 * Or looks like they tried to pick a network
   1071 			 * device.  Oops.
   1072 			 */
   1073 			goto nodumpdev;
   1074 		}
   1075 
   1076 		dumpdevname = devsw_blk2name(major(dumpdev));
   1077 		if (dumpdevname == NULL)
   1078 			goto nodumpdev;
   1079 		memset(buf, 0, sizeof(buf));
   1080 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
   1081 		    DISKUNIT(dumpdev));
   1082 
   1083 		dumpdv = finddevice(buf);
   1084 		if (dumpdv == NULL) {
   1085 			/*
   1086 			 * Device not configured.
   1087 			 */
   1088 			goto nodumpdev;
   1089 		}
   1090 	} else {				/* (c) */
   1091 		if (DEV_USES_PARTITIONS(rootdv) == 0) {
   1092 			for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1093 			    dv = TAILQ_NEXT(dv, dv_list))
   1094 				if (isswap(dv))
   1095 					break;
   1096 			if (dv == NULL)
   1097 				goto nodumpdev;
   1098 
   1099 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1100 			if (majdev < 0)
   1101 				goto nodumpdev;
   1102 			dumpdv = dv;
   1103 			dumpdev = makedev(majdev, device_unit(dumpdv));
   1104 		} else {
   1105 			dumpdv = rootdv;
   1106 			dumpdev = MAKEDISKDEV(major(rootdev),
   1107 			    device_unit(dumpdv), 1);
   1108 		}
   1109 	}
   1110 
   1111 	aprint_normal(" dumps on %s", dumpdv->dv_xname);
   1112 	if (DEV_USES_PARTITIONS(dumpdv))
   1113 		aprint_normal("%c", DISKPART(dumpdev) + 'a');
   1114 	aprint_normal("\n");
   1115 	return;
   1116 
   1117  nodumpdev:
   1118 	dumpdev = NODEV;
   1119 	aprint_normal("\n");
   1120 }
   1121 
   1122 static struct device *
   1123 finddevice(const char *name)
   1124 {
   1125 	const char *wname;
   1126 	struct device *dv;
   1127 #if defined(BOOT_FROM_MEMORY_HOOKS)
   1128 	int j;
   1129 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1130 
   1131 	if ((wname = getwedgename(name, strlen(name))) != NULL)
   1132 		return dkwedge_find_by_wname(wname);
   1133 
   1134 #ifdef BOOT_FROM_MEMORY_HOOKS
   1135 	for (j = 0; j < NMD; j++) {
   1136 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0)
   1137 			return &fakemdrootdev[j];
   1138 	}
   1139 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1140 
   1141 	TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1142 		if (strcmp(dv->dv_xname, name) == 0)
   1143 			break;
   1144 	}
   1145 	return dv;
   1146 }
   1147 
   1148 static struct device *
   1149 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1150 {
   1151 	struct device	*dv;
   1152 #ifdef MEMORY_DISK_HOOKS
   1153 	int		i;
   1154 #endif
   1155 
   1156 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1157 		printf("use one of:");
   1158 #ifdef MEMORY_DISK_HOOKS
   1159 		if (isdump == 0)
   1160 			for (i = 0; i < NMD; i++)
   1161 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
   1162 				    'a' + MAXPARTITIONS - 1);
   1163 #endif
   1164 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1165 			if (DEV_USES_PARTITIONS(dv))
   1166 				printf(" %s[a-%c]", dv->dv_xname,
   1167 				    'a' + MAXPARTITIONS - 1);
   1168 			else if (device_class(dv) == DV_DISK)
   1169 				printf(" %s", dv->dv_xname);
   1170 			if (isdump == 0 && device_class(dv) == DV_IFNET)
   1171 				printf(" %s", dv->dv_xname);
   1172 		}
   1173 		dkwedge_print_wnames();
   1174 		if (isdump)
   1175 			printf(" none");
   1176 #if defined(DDB)
   1177 		printf(" ddb");
   1178 #endif
   1179 		printf(" halt reboot\n");
   1180 	}
   1181 	return dv;
   1182 }
   1183 
   1184 static const char *
   1185 getwedgename(const char *name, int namelen)
   1186 {
   1187 	const char *wpfx = "wedge:";
   1188 	const int wpfxlen = strlen(wpfx);
   1189 
   1190 	if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
   1191 		return NULL;
   1192 
   1193 	return name + wpfxlen;
   1194 }
   1195 
   1196 static struct device *
   1197 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1198 {
   1199 	struct device *dv;
   1200 	const char *wname;
   1201 	char *cp, c;
   1202 	int majdev, part;
   1203 #ifdef MEMORY_DISK_HOOKS
   1204 	int i;
   1205 #endif
   1206 	if (len == 0)
   1207 		return (NULL);
   1208 
   1209 	if (len == 4 && strcmp(str, "halt") == 0)
   1210 		cpu_reboot(RB_HALT, NULL);
   1211 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1212 		cpu_reboot(0, NULL);
   1213 #if defined(DDB)
   1214 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1215 		console_debugger();
   1216 #endif
   1217 
   1218 	cp = str + len - 1;
   1219 	c = *cp;
   1220 
   1221 	if ((wname = getwedgename(str, len)) != NULL) {
   1222 		if ((dv = dkwedge_find_by_wname(wname)) == NULL)
   1223 			return NULL;
   1224 		part = defpart;
   1225 		goto gotdisk;
   1226 	} else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1227 		part = c - 'a';
   1228 		*cp = '\0';
   1229 	} else
   1230 		part = defpart;
   1231 
   1232 #ifdef MEMORY_DISK_HOOKS
   1233 	for (i = 0; i < NMD; i++)
   1234 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
   1235 			dv = &fakemdrootdev[i];
   1236 			goto gotdisk;
   1237 		}
   1238 #endif
   1239 
   1240 	dv = finddevice(str);
   1241 	if (dv != NULL) {
   1242 		if (device_class(dv) == DV_DISK) {
   1243  gotdisk:
   1244 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1245 			if (majdev < 0)
   1246 				panic("parsedisk");
   1247 			if (DEV_USES_PARTITIONS(dv))
   1248 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
   1249 						    part);
   1250 			else
   1251 				*devp = makedev(majdev, device_unit(dv));
   1252 		}
   1253 
   1254 		if (device_class(dv) == DV_IFNET)
   1255 			*devp = NODEV;
   1256 	}
   1257 
   1258 	*cp = c;
   1259 	return (dv);
   1260 }
   1261 
   1262 /*
   1263  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1264  * plus a possible `x' + suffix extension) fits into len bytes (including
   1265  * the terminating NUL).
   1266  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1267  * E.g, given a len of 9 and a suffix of `B':
   1268  *	bytes		result
   1269  *	-----		------
   1270  *	99999		`99999 B'
   1271  *	100000		`97 kB'
   1272  *	66715648	`65152 kB'
   1273  *	252215296	`240 MB'
   1274  */
   1275 int
   1276 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1277     int divisor)
   1278 {
   1279        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1280 	const char *prefixes;
   1281 	int		r;
   1282 	uint64_t	umax;
   1283 	size_t		i, suffixlen;
   1284 
   1285 	if (buf == NULL || suffix == NULL)
   1286 		return (-1);
   1287 	if (len > 0)
   1288 		buf[0] = '\0';
   1289 	suffixlen = strlen(suffix);
   1290 	/* check if enough room for `x y' + suffix + `\0' */
   1291 	if (len < 4 + suffixlen)
   1292 		return (-1);
   1293 
   1294 	if (divisor == 1024) {
   1295 		/*
   1296 		 * binary multiplies
   1297 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1298 		 */
   1299 		prefixes = " KMGTPE";
   1300 	} else
   1301 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1302 
   1303 	umax = 1;
   1304 	for (i = 0; i < len - suffixlen - 3; i++)
   1305 		umax *= 10;
   1306 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1307 		bytes /= divisor;
   1308 
   1309 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1310 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1311 
   1312 	return (r);
   1313 }
   1314 
   1315 int
   1316 format_bytes(char *buf, size_t len, uint64_t bytes)
   1317 {
   1318 	int	rv;
   1319 	size_t	nlen;
   1320 
   1321 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1322 	if (rv != -1) {
   1323 			/* nuke the trailing ` B' if it exists */
   1324 		nlen = strlen(buf) - 2;
   1325 		if (strcmp(&buf[nlen], " B") == 0)
   1326 			buf[nlen] = '\0';
   1327 	}
   1328 	return (rv);
   1329 }
   1330 
   1331 /*
   1332  * Return true if system call tracing is enabled for the specified process.
   1333  */
   1334 bool
   1335 trace_is_enabled(struct proc *p)
   1336 {
   1337 #ifdef SYSCALL_DEBUG
   1338 	return (true);
   1339 #endif
   1340 #ifdef KTRACE
   1341 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
   1342 		return (true);
   1343 #endif
   1344 #ifdef SYSTRACE
   1345 	if (ISSET(p->p_flag, PK_SYSTRACE))
   1346 		return (true);
   1347 #endif
   1348 #ifdef PTRACE
   1349 	if (ISSET(p->p_slflag, PSL_SYSCALL))
   1350 		return (true);
   1351 #endif
   1352 
   1353 	return (false);
   1354 }
   1355 
   1356 /*
   1357  * Start trace of particular system call. If process is being traced,
   1358  * this routine is called by MD syscall dispatch code just before
   1359  * a system call is actually executed.
   1360  * MD caller guarantees the passed 'code' is within the supported
   1361  * system call number range for emulation the process runs under.
   1362  */
   1363 int
   1364 trace_enter(struct lwp *l, register_t code,
   1365     register_t realcode, const struct sysent *callp, void *args)
   1366 {
   1367 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
   1368 	struct proc *p = l->l_proc;
   1369 
   1370 #ifdef SYSCALL_DEBUG
   1371 	scdebug_call(l, code, args);
   1372 #endif /* SYSCALL_DEBUG */
   1373 
   1374 	ktrsyscall(code, realcode, callp, args);
   1375 
   1376 #ifdef PTRACE
   1377 	if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1378 	    (PSL_SYSCALL|PSL_TRACED))
   1379 		process_stoptrace(l);
   1380 #endif
   1381 
   1382 #ifdef SYSTRACE
   1383 	if (ISSET(p->p_flag, PK_SYSTRACE)) {
   1384 		int error;
   1385 		KERNEL_LOCK(1, l);
   1386 		error = systrace_enter(l, code, args);
   1387 		KERNEL_UNLOCK_ONE(l);
   1388 		return error;
   1389 	}
   1390 #endif
   1391 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
   1392 	return 0;
   1393 }
   1394 
   1395 /*
   1396  * End trace of particular system call. If process is being traced,
   1397  * this routine is called by MD syscall dispatch code just after
   1398  * a system call finishes.
   1399  * MD caller guarantees the passed 'code' is within the supported
   1400  * system call number range for emulation the process runs under.
   1401  */
   1402 void
   1403 trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
   1404     int error)
   1405 {
   1406 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
   1407 	struct proc *p = l->l_proc;
   1408 
   1409 #ifdef SYSCALL_DEBUG
   1410 	scdebug_ret(l, code, error, rval);
   1411 #endif /* SYSCALL_DEBUG */
   1412 
   1413 	ktrsysret(code, error, rval);
   1414 
   1415 #ifdef PTRACE
   1416 	if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1417 	    (PSL_SYSCALL|PSL_TRACED))
   1418 		process_stoptrace(l);
   1419 #endif
   1420 
   1421 #ifdef SYSTRACE
   1422 	if (ISSET(p->p_flag, PK_SYSTRACE)) {
   1423 		KERNEL_LOCK(1, l);
   1424 		systrace_exit(l, code, args, rval, error);
   1425 		KERNEL_UNLOCK_ONE(l);
   1426 	}
   1427 #endif
   1428 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
   1429 }
   1430 
   1431 /*
   1432  * Disable kernel preemption.
   1433  */
   1434 void
   1435 crit_enter(void)
   1436 {
   1437 	/* nothing */
   1438 }
   1439 
   1440 /*
   1441  * Reenable kernel preemption.
   1442  */
   1443 void
   1444 crit_exit(void)
   1445 {
   1446 	/* nothing */
   1447 }
   1448