kern_subr.c revision 1.168 1 /* $NetBSD: kern_subr.c,v 1.168 2007/12/22 11:38:54 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Copyright (c) 1992, 1993
50 * The Regents of the University of California. All rights reserved.
51 *
52 * This software was developed by the Computer Systems Engineering group
53 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
54 * contributed to Berkeley.
55 *
56 * All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed by the University of
59 * California, Lawrence Berkeley Laboratory.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * 2. Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * 3. Neither the name of the University nor the names of its contributors
70 * may be used to endorse or promote products derived from this software
71 * without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 *
85 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
86 */
87
88 #include <sys/cdefs.h>
89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.168 2007/12/22 11:38:54 dsl Exp $");
90
91 #include "opt_ddb.h"
92 #include "opt_md.h"
93 #include "opt_syscall_debug.h"
94 #include "opt_ktrace.h"
95 #include "opt_ptrace.h"
96 #include "opt_systrace.h"
97 #include "opt_powerhook.h"
98 #include "opt_tftproot.h"
99
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/proc.h>
103 #include <sys/malloc.h>
104 #include <sys/mount.h>
105 #include <sys/device.h>
106 #include <sys/reboot.h>
107 #include <sys/conf.h>
108 #include <sys/disk.h>
109 #include <sys/disklabel.h>
110 #include <sys/queue.h>
111 #include <sys/systrace.h>
112 #include <sys/ktrace.h>
113 #include <sys/ptrace.h>
114 #include <sys/fcntl.h>
115 #include <sys/kauth.h>
116 #include <sys/vnode.h>
117 #include <sys/pmf.h>
118
119 #include <uvm/uvm_extern.h>
120
121 #include <dev/cons.h>
122
123 #include <net/if.h>
124
125 /* XXX these should eventually move to subr_autoconf.c */
126 static struct device *finddevice(const char *);
127 static struct device *getdisk(char *, int, int, dev_t *, int);
128 static struct device *parsedisk(char *, int, int, dev_t *);
129 static const char *getwedgename(const char *, int);
130
131 /*
132 * A generic linear hook.
133 */
134 struct hook_desc {
135 LIST_ENTRY(hook_desc) hk_list;
136 void (*hk_fn)(void *);
137 void *hk_arg;
138 };
139 typedef LIST_HEAD(, hook_desc) hook_list_t;
140
141 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
142
143 #ifdef TFTPROOT
144 int tftproot_dhcpboot(struct device *);
145 #endif
146
147 void
148 uio_setup_sysspace(struct uio *uio)
149 {
150
151 uio->uio_vmspace = vmspace_kernel();
152 }
153
154 int
155 uiomove(void *buf, size_t n, struct uio *uio)
156 {
157 struct vmspace *vm = uio->uio_vmspace;
158 struct iovec *iov;
159 u_int cnt;
160 int error = 0;
161 size_t on;
162 char *cp = buf;
163 #ifdef MULTIPROCESSOR
164 int hold_count;
165 #endif
166
167 if ((on = n) >= 1024) {
168 KERNEL_UNLOCK_ALL(NULL, &hold_count);
169 }
170
171 ASSERT_SLEEPABLE(NULL, "uiomove");
172
173 #ifdef DIAGNOSTIC
174 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
175 panic("uiomove: mode");
176 #endif
177 while (n > 0 && uio->uio_resid) {
178 iov = uio->uio_iov;
179 cnt = iov->iov_len;
180 if (cnt == 0) {
181 KASSERT(uio->uio_iovcnt > 0);
182 uio->uio_iov++;
183 uio->uio_iovcnt--;
184 continue;
185 }
186 if (cnt > n)
187 cnt = n;
188 if (!VMSPACE_IS_KERNEL_P(vm)) {
189 if (curcpu()->ci_schedstate.spc_flags &
190 SPCF_SHOULDYIELD)
191 preempt();
192 }
193
194 if (uio->uio_rw == UIO_READ) {
195 error = copyout_vmspace(vm, cp, iov->iov_base,
196 cnt);
197 } else {
198 error = copyin_vmspace(vm, iov->iov_base, cp,
199 cnt);
200 }
201 if (error) {
202 break;
203 }
204 iov->iov_base = (char *)iov->iov_base + cnt;
205 iov->iov_len -= cnt;
206 uio->uio_resid -= cnt;
207 uio->uio_offset += cnt;
208 cp += cnt;
209 KDASSERT(cnt <= n);
210 n -= cnt;
211 }
212
213 if (on >= 1024) {
214 KERNEL_LOCK(hold_count, NULL);
215 }
216 return (error);
217 }
218
219 /*
220 * Wrapper for uiomove() that validates the arguments against a known-good
221 * kernel buffer.
222 */
223 int
224 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
225 {
226 size_t offset;
227
228 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
229 (offset = uio->uio_offset) != uio->uio_offset)
230 return (EINVAL);
231 if (offset >= buflen)
232 return (0);
233 return (uiomove((char *)buf + offset, buflen - offset, uio));
234 }
235
236 /*
237 * Give next character to user as result of read.
238 */
239 int
240 ureadc(int c, struct uio *uio)
241 {
242 struct iovec *iov;
243
244 if (uio->uio_resid <= 0)
245 panic("ureadc: non-positive resid");
246 again:
247 if (uio->uio_iovcnt <= 0)
248 panic("ureadc: non-positive iovcnt");
249 iov = uio->uio_iov;
250 if (iov->iov_len <= 0) {
251 uio->uio_iovcnt--;
252 uio->uio_iov++;
253 goto again;
254 }
255 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
256 if (subyte(iov->iov_base, c) < 0)
257 return (EFAULT);
258 } else {
259 *(char *)iov->iov_base = c;
260 }
261 iov->iov_base = (char *)iov->iov_base + 1;
262 iov->iov_len--;
263 uio->uio_resid--;
264 uio->uio_offset++;
265 return (0);
266 }
267
268 /*
269 * Like copyin(), but operates on an arbitrary vmspace.
270 */
271 int
272 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
273 {
274 struct iovec iov;
275 struct uio uio;
276 int error;
277
278 if (len == 0)
279 return (0);
280
281 if (VMSPACE_IS_KERNEL_P(vm)) {
282 return kcopy(uaddr, kaddr, len);
283 }
284 if (__predict_true(vm == curproc->p_vmspace)) {
285 return copyin(uaddr, kaddr, len);
286 }
287
288 iov.iov_base = kaddr;
289 iov.iov_len = len;
290 uio.uio_iov = &iov;
291 uio.uio_iovcnt = 1;
292 uio.uio_offset = (off_t)(intptr_t)uaddr;
293 uio.uio_resid = len;
294 uio.uio_rw = UIO_READ;
295 UIO_SETUP_SYSSPACE(&uio);
296 error = uvm_io(&vm->vm_map, &uio);
297
298 return (error);
299 }
300
301 /*
302 * Like copyout(), but operates on an arbitrary vmspace.
303 */
304 int
305 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
306 {
307 struct iovec iov;
308 struct uio uio;
309 int error;
310
311 if (len == 0)
312 return (0);
313
314 if (VMSPACE_IS_KERNEL_P(vm)) {
315 return kcopy(kaddr, uaddr, len);
316 }
317 if (__predict_true(vm == curproc->p_vmspace)) {
318 return copyout(kaddr, uaddr, len);
319 }
320
321 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
322 iov.iov_len = len;
323 uio.uio_iov = &iov;
324 uio.uio_iovcnt = 1;
325 uio.uio_offset = (off_t)(intptr_t)uaddr;
326 uio.uio_resid = len;
327 uio.uio_rw = UIO_WRITE;
328 UIO_SETUP_SYSSPACE(&uio);
329 error = uvm_io(&vm->vm_map, &uio);
330
331 return (error);
332 }
333
334 /*
335 * Like copyin(), but operates on an arbitrary process.
336 */
337 int
338 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
339 {
340 struct vmspace *vm;
341 int error;
342
343 error = proc_vmspace_getref(p, &vm);
344 if (error) {
345 return error;
346 }
347 error = copyin_vmspace(vm, uaddr, kaddr, len);
348 uvmspace_free(vm);
349
350 return error;
351 }
352
353 /*
354 * Like copyout(), but operates on an arbitrary process.
355 */
356 int
357 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
358 {
359 struct vmspace *vm;
360 int error;
361
362 error = proc_vmspace_getref(p, &vm);
363 if (error) {
364 return error;
365 }
366 error = copyout_vmspace(vm, kaddr, uaddr, len);
367 uvmspace_free(vm);
368
369 return error;
370 }
371
372 /*
373 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
374 * flag is passed in `ioctlflags' from the ioctl call.
375 */
376 int
377 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
378 {
379 if (ioctlflags & FKIOCTL)
380 return kcopy(src, dst, len);
381 return copyin(src, dst, len);
382 }
383
384 /*
385 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
386 * flag is passed in `ioctlflags' from the ioctl call.
387 */
388 int
389 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
390 {
391 if (ioctlflags & FKIOCTL)
392 return kcopy(src, dst, len);
393 return copyout(src, dst, len);
394 }
395
396 static void *
397 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
398 {
399 struct hook_desc *hd;
400
401 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
402 if (hd == NULL)
403 return (NULL);
404
405 hd->hk_fn = fn;
406 hd->hk_arg = arg;
407 LIST_INSERT_HEAD(list, hd, hk_list);
408
409 return (hd);
410 }
411
412 static void
413 hook_disestablish(hook_list_t *list, void *vhook)
414 {
415 #ifdef DIAGNOSTIC
416 struct hook_desc *hd;
417
418 LIST_FOREACH(hd, list, hk_list) {
419 if (hd == vhook)
420 break;
421 }
422
423 if (hd == NULL)
424 panic("hook_disestablish: hook %p not established", vhook);
425 #endif
426 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
427 free(vhook, M_DEVBUF);
428 }
429
430 static void
431 hook_destroy(hook_list_t *list)
432 {
433 struct hook_desc *hd;
434
435 while ((hd = LIST_FIRST(list)) != NULL) {
436 LIST_REMOVE(hd, hk_list);
437 free(hd, M_DEVBUF);
438 }
439 }
440
441 static void
442 hook_proc_run(hook_list_t *list, struct proc *p)
443 {
444 struct hook_desc *hd;
445
446 for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
447 ((void (*)(struct proc *, void *))*hd->hk_fn)(p,
448 hd->hk_arg);
449 }
450 }
451
452 /*
453 * "Shutdown hook" types, functions, and variables.
454 *
455 * Should be invoked immediately before the
456 * system is halted or rebooted, i.e. after file systems unmounted,
457 * after crash dump done, etc.
458 *
459 * Each shutdown hook is removed from the list before it's run, so that
460 * it won't be run again.
461 */
462
463 static hook_list_t shutdownhook_list;
464
465 void *
466 shutdownhook_establish(void (*fn)(void *), void *arg)
467 {
468 return hook_establish(&shutdownhook_list, fn, arg);
469 }
470
471 void
472 shutdownhook_disestablish(void *vhook)
473 {
474 hook_disestablish(&shutdownhook_list, vhook);
475 }
476
477 /*
478 * Run shutdown hooks. Should be invoked immediately before the
479 * system is halted or rebooted, i.e. after file systems unmounted,
480 * after crash dump done, etc.
481 *
482 * Each shutdown hook is removed from the list before it's run, so that
483 * it won't be run again.
484 */
485 void
486 doshutdownhooks(void)
487 {
488 struct hook_desc *dp;
489
490 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
491 LIST_REMOVE(dp, hk_list);
492 (*dp->hk_fn)(dp->hk_arg);
493 #if 0
494 /*
495 * Don't bother freeing the hook structure,, since we may
496 * be rebooting because of a memory corruption problem,
497 * and this might only make things worse. It doesn't
498 * matter, anyway, since the system is just about to
499 * reboot.
500 */
501 free(dp, M_DEVBUF);
502 #endif
503 }
504
505 pmf_system_shutdown();
506 }
507
508 /*
509 * "Mountroot hook" types, functions, and variables.
510 */
511
512 static hook_list_t mountroothook_list;
513
514 void *
515 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
516 {
517 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
518 }
519
520 void
521 mountroothook_disestablish(void *vhook)
522 {
523 hook_disestablish(&mountroothook_list, vhook);
524 }
525
526 void
527 mountroothook_destroy(void)
528 {
529 hook_destroy(&mountroothook_list);
530 }
531
532 void
533 domountroothook(void)
534 {
535 struct hook_desc *hd;
536
537 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
538 if (hd->hk_arg == (void *)root_device) {
539 (*hd->hk_fn)(hd->hk_arg);
540 return;
541 }
542 }
543 }
544
545 static hook_list_t exechook_list;
546
547 void *
548 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
549 {
550 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
551 }
552
553 void
554 exechook_disestablish(void *vhook)
555 {
556 hook_disestablish(&exechook_list, vhook);
557 }
558
559 /*
560 * Run exec hooks.
561 */
562 void
563 doexechooks(struct proc *p)
564 {
565 hook_proc_run(&exechook_list, p);
566 }
567
568 static hook_list_t exithook_list;
569
570 void *
571 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
572 {
573 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
574 }
575
576 void
577 exithook_disestablish(void *vhook)
578 {
579 hook_disestablish(&exithook_list, vhook);
580 }
581
582 /*
583 * Run exit hooks.
584 */
585 void
586 doexithooks(struct proc *p)
587 {
588 hook_proc_run(&exithook_list, p);
589 }
590
591 static hook_list_t forkhook_list;
592
593 void *
594 forkhook_establish(void (*fn)(struct proc *, struct proc *))
595 {
596 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
597 }
598
599 void
600 forkhook_disestablish(void *vhook)
601 {
602 hook_disestablish(&forkhook_list, vhook);
603 }
604
605 /*
606 * Run fork hooks.
607 */
608 void
609 doforkhooks(struct proc *p2, struct proc *p1)
610 {
611 struct hook_desc *hd;
612
613 LIST_FOREACH(hd, &forkhook_list, hk_list) {
614 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
615 (p2, p1);
616 }
617 }
618
619 /*
620 * "Power hook" types, functions, and variables.
621 * The list of power hooks is kept ordered with the last registered hook
622 * first.
623 * When running the hooks on power down the hooks are called in reverse
624 * registration order, when powering up in registration order.
625 */
626 struct powerhook_desc {
627 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
628 void (*sfd_fn)(int, void *);
629 void *sfd_arg;
630 char sfd_name[16];
631 };
632
633 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
634 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
635
636 void *
637 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
638 {
639 struct powerhook_desc *ndp;
640
641 ndp = (struct powerhook_desc *)
642 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
643 if (ndp == NULL)
644 return (NULL);
645
646 ndp->sfd_fn = fn;
647 ndp->sfd_arg = arg;
648 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
649 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
650
651 aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
652 return (ndp);
653 }
654
655 void
656 powerhook_disestablish(void *vhook)
657 {
658 #ifdef DIAGNOSTIC
659 struct powerhook_desc *dp;
660
661 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
662 if (dp == vhook)
663 goto found;
664 panic("powerhook_disestablish: hook %p not established", vhook);
665 found:
666 #endif
667
668 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
669 sfd_list);
670 free(vhook, M_DEVBUF);
671 }
672
673 /*
674 * Run power hooks.
675 */
676 void
677 dopowerhooks(int why)
678 {
679 struct powerhook_desc *dp;
680
681 #ifdef POWERHOOK_DEBUG
682 const char *why_name;
683 static const char * pwr_names[] = {PWR_NAMES};
684 why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
685 #endif
686
687 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
688 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
689 #ifdef POWERHOOK_DEBUG
690 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
691 #endif
692 (*dp->sfd_fn)(why, dp->sfd_arg);
693 }
694 } else {
695 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
696 #ifdef POWERHOOK_DEBUG
697 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
698 #endif
699 (*dp->sfd_fn)(why, dp->sfd_arg);
700 }
701 }
702
703 #ifdef POWERHOOK_DEBUG
704 printf("dopowerhooks: %s done\n", why_name);
705 #endif
706 }
707
708 static int
709 isswap(struct device *dv)
710 {
711 struct dkwedge_info wi;
712 struct vnode *vn;
713 int error;
714
715 if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
716 return 0;
717
718 if ((vn = opendisk(dv)) == NULL)
719 return 0;
720
721 error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
722 VOP_CLOSE(vn, FREAD, NOCRED);
723 vput(vn);
724 if (error) {
725 #ifdef DEBUG_WEDGE
726 printf("%s: Get wedge info returned %d\n", dv->dv_xname, error);
727 #endif
728 return 0;
729 }
730 return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
731 }
732
733 /*
734 * Determine the root device and, if instructed to, the root file system.
735 */
736
737 #include "md.h"
738 #if NMD == 0
739 #undef MEMORY_DISK_HOOKS
740 #endif
741
742 #ifdef MEMORY_DISK_HOOKS
743 static struct device fakemdrootdev[NMD];
744 extern struct cfdriver md_cd;
745 #endif
746
747 #ifdef MEMORY_DISK_IS_ROOT
748 #define BOOT_FROM_MEMORY_HOOKS 1
749 #endif
750
751 /*
752 * The device and wedge that we booted from. If booted_wedge is NULL,
753 * the we might consult booted_partition.
754 */
755 struct device *booted_device;
756 struct device *booted_wedge;
757 int booted_partition;
758
759 /*
760 * Use partition letters if it's a disk class but not a wedge.
761 * XXX Check for wedge is kinda gross.
762 */
763 #define DEV_USES_PARTITIONS(dv) \
764 (device_class((dv)) == DV_DISK && \
765 !device_is_a((dv), "dk"))
766
767 void
768 setroot(struct device *bootdv, int bootpartition)
769 {
770 struct device *dv;
771 int len, majdev;
772 #ifdef MEMORY_DISK_HOOKS
773 int i;
774 #endif
775 dev_t nrootdev;
776 dev_t ndumpdev = NODEV;
777 char buf[128];
778 const char *rootdevname;
779 const char *dumpdevname;
780 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
781 struct device *dumpdv = NULL;
782 struct ifnet *ifp;
783 const char *deffsname;
784 struct vfsops *vops;
785
786 #ifdef TFTPROOT
787 if (tftproot_dhcpboot(bootdv) != 0)
788 boothowto |= RB_ASKNAME;
789 #endif
790
791 #ifdef MEMORY_DISK_HOOKS
792 for (i = 0; i < NMD; i++) {
793 fakemdrootdev[i].dv_class = DV_DISK;
794 fakemdrootdev[i].dv_cfdata = NULL;
795 fakemdrootdev[i].dv_cfdriver = &md_cd;
796 fakemdrootdev[i].dv_unit = i;
797 fakemdrootdev[i].dv_parent = NULL;
798 snprintf(fakemdrootdev[i].dv_xname,
799 sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
800 }
801 #endif /* MEMORY_DISK_HOOKS */
802
803 #ifdef MEMORY_DISK_IS_ROOT
804 bootdv = &fakemdrootdev[0];
805 bootpartition = 0;
806 #endif
807
808 /*
809 * If NFS is specified as the file system, and we found
810 * a DV_DISK boot device (or no boot device at all), then
811 * find a reasonable network interface for "rootspec".
812 */
813 vops = vfs_getopsbyname("nfs");
814 if (vops != NULL && vops->vfs_mountroot == mountroot &&
815 rootspec == NULL &&
816 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
817 IFNET_FOREACH(ifp) {
818 if ((ifp->if_flags &
819 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
820 break;
821 }
822 if (ifp == NULL) {
823 /*
824 * Can't find a suitable interface; ask the
825 * user.
826 */
827 boothowto |= RB_ASKNAME;
828 } else {
829 /*
830 * Have a suitable interface; behave as if
831 * the user specified this interface.
832 */
833 rootspec = (const char *)ifp->if_xname;
834 }
835 }
836 if (vops != NULL)
837 vfs_delref(vops);
838
839 /*
840 * If wildcarded root and we the boot device wasn't determined,
841 * ask the user.
842 */
843 if (rootspec == NULL && bootdv == NULL)
844 boothowto |= RB_ASKNAME;
845
846 top:
847 if (boothowto & RB_ASKNAME) {
848 struct device *defdumpdv;
849
850 for (;;) {
851 printf("root device");
852 if (bootdv != NULL) {
853 printf(" (default %s", bootdv->dv_xname);
854 if (DEV_USES_PARTITIONS(bootdv))
855 printf("%c", bootpartition + 'a');
856 printf(")");
857 }
858 printf(": ");
859 len = cngetsn(buf, sizeof(buf));
860 if (len == 0 && bootdv != NULL) {
861 strlcpy(buf, bootdv->dv_xname, sizeof(buf));
862 len = strlen(buf);
863 }
864 if (len > 0 && buf[len - 1] == '*') {
865 buf[--len] = '\0';
866 dv = getdisk(buf, len, 1, &nrootdev, 0);
867 if (dv != NULL) {
868 rootdv = dv;
869 break;
870 }
871 }
872 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
873 if (dv != NULL) {
874 rootdv = dv;
875 break;
876 }
877 }
878
879 /*
880 * Set up the default dump device. If root is on
881 * a network device, there is no default dump
882 * device, since we don't support dumps to the
883 * network.
884 */
885 if (DEV_USES_PARTITIONS(rootdv) == 0)
886 defdumpdv = NULL;
887 else
888 defdumpdv = rootdv;
889
890 for (;;) {
891 printf("dump device");
892 if (defdumpdv != NULL) {
893 /*
894 * Note, we know it's a disk if we get here.
895 */
896 printf(" (default %sb)", defdumpdv->dv_xname);
897 }
898 printf(": ");
899 len = cngetsn(buf, sizeof(buf));
900 if (len == 0) {
901 if (defdumpdv != NULL) {
902 ndumpdev = MAKEDISKDEV(major(nrootdev),
903 DISKUNIT(nrootdev), 1);
904 }
905 dumpdv = defdumpdv;
906 break;
907 }
908 if (len == 4 && strcmp(buf, "none") == 0) {
909 dumpdv = NULL;
910 break;
911 }
912 dv = getdisk(buf, len, 1, &ndumpdev, 1);
913 if (dv != NULL) {
914 dumpdv = dv;
915 break;
916 }
917 }
918
919 rootdev = nrootdev;
920 dumpdev = ndumpdev;
921
922 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
923 vops = LIST_NEXT(vops, vfs_list)) {
924 if (vops->vfs_mountroot != NULL &&
925 vops->vfs_mountroot == mountroot)
926 break;
927 }
928
929 if (vops == NULL) {
930 mountroot = NULL;
931 deffsname = "generic";
932 } else
933 deffsname = vops->vfs_name;
934
935 for (;;) {
936 printf("file system (default %s): ", deffsname);
937 len = cngetsn(buf, sizeof(buf));
938 if (len == 0)
939 break;
940 if (len == 4 && strcmp(buf, "halt") == 0)
941 cpu_reboot(RB_HALT, NULL);
942 else if (len == 6 && strcmp(buf, "reboot") == 0)
943 cpu_reboot(0, NULL);
944 #if defined(DDB)
945 else if (len == 3 && strcmp(buf, "ddb") == 0) {
946 console_debugger();
947 }
948 #endif
949 else if (len == 7 && strcmp(buf, "generic") == 0) {
950 mountroot = NULL;
951 break;
952 }
953 vops = vfs_getopsbyname(buf);
954 if (vops == NULL || vops->vfs_mountroot == NULL) {
955 printf("use one of: generic");
956 for (vops = LIST_FIRST(&vfs_list);
957 vops != NULL;
958 vops = LIST_NEXT(vops, vfs_list)) {
959 if (vops->vfs_mountroot != NULL)
960 printf(" %s", vops->vfs_name);
961 }
962 #if defined(DDB)
963 printf(" ddb");
964 #endif
965 printf(" halt reboot\n");
966 } else {
967 mountroot = vops->vfs_mountroot;
968 vfs_delref(vops);
969 break;
970 }
971 }
972
973 } else if (rootspec == NULL) {
974 /*
975 * Wildcarded root; use the boot device.
976 */
977 rootdv = bootdv;
978
979 majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
980 if (majdev >= 0) {
981 /*
982 * Root is on a disk. `bootpartition' is root,
983 * unless the device does not use partitions.
984 */
985 if (DEV_USES_PARTITIONS(bootdv))
986 rootdev = MAKEDISKDEV(majdev,
987 device_unit(bootdv),
988 bootpartition);
989 else
990 rootdev = makedev(majdev, device_unit(bootdv));
991 }
992 } else {
993
994 /*
995 * `root on <dev> ...'
996 */
997
998 /*
999 * If it's a network interface, we can bail out
1000 * early.
1001 */
1002 dv = finddevice(rootspec);
1003 if (dv != NULL && device_class(dv) == DV_IFNET) {
1004 rootdv = dv;
1005 goto haveroot;
1006 }
1007
1008 if (rootdev == NODEV &&
1009 device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
1010 (majdev = devsw_name2blk(dv->dv_xname, NULL, 0)) >= 0)
1011 rootdev = makedev(majdev, device_unit(dv));
1012
1013 rootdevname = devsw_blk2name(major(rootdev));
1014 if (rootdevname == NULL) {
1015 printf("unknown device major 0x%x\n", rootdev);
1016 boothowto |= RB_ASKNAME;
1017 goto top;
1018 }
1019 memset(buf, 0, sizeof(buf));
1020 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
1021 DISKUNIT(rootdev));
1022
1023 rootdv = finddevice(buf);
1024 if (rootdv == NULL) {
1025 printf("device %s (0x%x) not configured\n",
1026 buf, rootdev);
1027 boothowto |= RB_ASKNAME;
1028 goto top;
1029 }
1030 }
1031
1032 haveroot:
1033
1034 root_device = rootdv;
1035
1036 switch (device_class(rootdv)) {
1037 case DV_IFNET:
1038 case DV_DISK:
1039 aprint_normal("root on %s", rootdv->dv_xname);
1040 if (DEV_USES_PARTITIONS(rootdv))
1041 aprint_normal("%c", DISKPART(rootdev) + 'a');
1042 break;
1043
1044 default:
1045 printf("can't determine root device\n");
1046 boothowto |= RB_ASKNAME;
1047 goto top;
1048 }
1049
1050 /*
1051 * Now configure the dump device.
1052 *
1053 * If we haven't figured out the dump device, do so, with
1054 * the following rules:
1055 *
1056 * (a) We already know dumpdv in the RB_ASKNAME case.
1057 *
1058 * (b) If dumpspec is set, try to use it. If the device
1059 * is not available, punt.
1060 *
1061 * (c) If dumpspec is not set, the dump device is
1062 * wildcarded or unspecified. If the root device
1063 * is DV_IFNET, punt. Otherwise, use partition b
1064 * of the root device.
1065 */
1066
1067 if (boothowto & RB_ASKNAME) { /* (a) */
1068 if (dumpdv == NULL)
1069 goto nodumpdev;
1070 } else if (dumpspec != NULL) { /* (b) */
1071 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1072 /*
1073 * Operator doesn't want a dump device.
1074 * Or looks like they tried to pick a network
1075 * device. Oops.
1076 */
1077 goto nodumpdev;
1078 }
1079
1080 dumpdevname = devsw_blk2name(major(dumpdev));
1081 if (dumpdevname == NULL)
1082 goto nodumpdev;
1083 memset(buf, 0, sizeof(buf));
1084 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1085 DISKUNIT(dumpdev));
1086
1087 dumpdv = finddevice(buf);
1088 if (dumpdv == NULL) {
1089 /*
1090 * Device not configured.
1091 */
1092 goto nodumpdev;
1093 }
1094 } else { /* (c) */
1095 if (DEV_USES_PARTITIONS(rootdv) == 0) {
1096 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1097 dv = TAILQ_NEXT(dv, dv_list))
1098 if (isswap(dv))
1099 break;
1100 if (dv == NULL)
1101 goto nodumpdev;
1102
1103 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1104 if (majdev < 0)
1105 goto nodumpdev;
1106 dumpdv = dv;
1107 dumpdev = makedev(majdev, device_unit(dumpdv));
1108 } else {
1109 dumpdv = rootdv;
1110 dumpdev = MAKEDISKDEV(major(rootdev),
1111 device_unit(dumpdv), 1);
1112 }
1113 }
1114
1115 aprint_normal(" dumps on %s", dumpdv->dv_xname);
1116 if (DEV_USES_PARTITIONS(dumpdv))
1117 aprint_normal("%c", DISKPART(dumpdev) + 'a');
1118 aprint_normal("\n");
1119 return;
1120
1121 nodumpdev:
1122 dumpdev = NODEV;
1123 aprint_normal("\n");
1124 }
1125
1126 static struct device *
1127 finddevice(const char *name)
1128 {
1129 const char *wname;
1130 struct device *dv;
1131 #if defined(BOOT_FROM_MEMORY_HOOKS)
1132 int j;
1133 #endif /* BOOT_FROM_MEMORY_HOOKS */
1134
1135 if ((wname = getwedgename(name, strlen(name))) != NULL)
1136 return dkwedge_find_by_wname(wname);
1137
1138 #ifdef BOOT_FROM_MEMORY_HOOKS
1139 for (j = 0; j < NMD; j++) {
1140 if (strcmp(name, fakemdrootdev[j].dv_xname) == 0)
1141 return &fakemdrootdev[j];
1142 }
1143 #endif /* BOOT_FROM_MEMORY_HOOKS */
1144
1145 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1146 if (strcmp(dv->dv_xname, name) == 0)
1147 break;
1148 }
1149 return dv;
1150 }
1151
1152 static struct device *
1153 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1154 {
1155 struct device *dv;
1156 #ifdef MEMORY_DISK_HOOKS
1157 int i;
1158 #endif
1159
1160 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1161 printf("use one of:");
1162 #ifdef MEMORY_DISK_HOOKS
1163 if (isdump == 0)
1164 for (i = 0; i < NMD; i++)
1165 printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
1166 'a' + MAXPARTITIONS - 1);
1167 #endif
1168 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1169 if (DEV_USES_PARTITIONS(dv))
1170 printf(" %s[a-%c]", dv->dv_xname,
1171 'a' + MAXPARTITIONS - 1);
1172 else if (device_class(dv) == DV_DISK)
1173 printf(" %s", dv->dv_xname);
1174 if (isdump == 0 && device_class(dv) == DV_IFNET)
1175 printf(" %s", dv->dv_xname);
1176 }
1177 dkwedge_print_wnames();
1178 if (isdump)
1179 printf(" none");
1180 #if defined(DDB)
1181 printf(" ddb");
1182 #endif
1183 printf(" halt reboot\n");
1184 }
1185 return dv;
1186 }
1187
1188 static const char *
1189 getwedgename(const char *name, int namelen)
1190 {
1191 const char *wpfx = "wedge:";
1192 const int wpfxlen = strlen(wpfx);
1193
1194 if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1195 return NULL;
1196
1197 return name + wpfxlen;
1198 }
1199
1200 static struct device *
1201 parsedisk(char *str, int len, int defpart, dev_t *devp)
1202 {
1203 struct device *dv;
1204 const char *wname;
1205 char *cp, c;
1206 int majdev, part;
1207 #ifdef MEMORY_DISK_HOOKS
1208 int i;
1209 #endif
1210 if (len == 0)
1211 return (NULL);
1212
1213 if (len == 4 && strcmp(str, "halt") == 0)
1214 cpu_reboot(RB_HALT, NULL);
1215 else if (len == 6 && strcmp(str, "reboot") == 0)
1216 cpu_reboot(0, NULL);
1217 #if defined(DDB)
1218 else if (len == 3 && strcmp(str, "ddb") == 0)
1219 console_debugger();
1220 #endif
1221
1222 cp = str + len - 1;
1223 c = *cp;
1224
1225 if ((wname = getwedgename(str, len)) != NULL) {
1226 if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1227 return NULL;
1228 part = defpart;
1229 goto gotdisk;
1230 } else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1231 part = c - 'a';
1232 *cp = '\0';
1233 } else
1234 part = defpart;
1235
1236 #ifdef MEMORY_DISK_HOOKS
1237 for (i = 0; i < NMD; i++)
1238 if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
1239 dv = &fakemdrootdev[i];
1240 goto gotdisk;
1241 }
1242 #endif
1243
1244 dv = finddevice(str);
1245 if (dv != NULL) {
1246 if (device_class(dv) == DV_DISK) {
1247 gotdisk:
1248 majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
1249 if (majdev < 0)
1250 panic("parsedisk");
1251 if (DEV_USES_PARTITIONS(dv))
1252 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1253 part);
1254 else
1255 *devp = makedev(majdev, device_unit(dv));
1256 }
1257
1258 if (device_class(dv) == DV_IFNET)
1259 *devp = NODEV;
1260 }
1261
1262 *cp = c;
1263 return (dv);
1264 }
1265
1266 /*
1267 * snprintf() `bytes' into `buf', reformatting it so that the number,
1268 * plus a possible `x' + suffix extension) fits into len bytes (including
1269 * the terminating NUL).
1270 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1271 * E.g, given a len of 9 and a suffix of `B':
1272 * bytes result
1273 * ----- ------
1274 * 99999 `99999 B'
1275 * 100000 `97 kB'
1276 * 66715648 `65152 kB'
1277 * 252215296 `240 MB'
1278 */
1279 int
1280 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1281 int divisor)
1282 {
1283 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1284 const char *prefixes;
1285 int r;
1286 uint64_t umax;
1287 size_t i, suffixlen;
1288
1289 if (buf == NULL || suffix == NULL)
1290 return (-1);
1291 if (len > 0)
1292 buf[0] = '\0';
1293 suffixlen = strlen(suffix);
1294 /* check if enough room for `x y' + suffix + `\0' */
1295 if (len < 4 + suffixlen)
1296 return (-1);
1297
1298 if (divisor == 1024) {
1299 /*
1300 * binary multiplies
1301 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1302 */
1303 prefixes = " KMGTPE";
1304 } else
1305 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1306
1307 umax = 1;
1308 for (i = 0; i < len - suffixlen - 3; i++)
1309 umax *= 10;
1310 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1311 bytes /= divisor;
1312
1313 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1314 i == 0 ? "" : " ", prefixes[i], suffix);
1315
1316 return (r);
1317 }
1318
1319 int
1320 format_bytes(char *buf, size_t len, uint64_t bytes)
1321 {
1322 int rv;
1323 size_t nlen;
1324
1325 rv = humanize_number(buf, len, bytes, "B", 1024);
1326 if (rv != -1) {
1327 /* nuke the trailing ` B' if it exists */
1328 nlen = strlen(buf) - 2;
1329 if (strcmp(&buf[nlen], " B") == 0)
1330 buf[nlen] = '\0';
1331 }
1332 return (rv);
1333 }
1334
1335 /*
1336 * Return true if system call tracing is enabled for the specified process.
1337 */
1338 bool
1339 trace_is_enabled(struct proc *p)
1340 {
1341 #ifdef SYSCALL_DEBUG
1342 return (true);
1343 #endif
1344 #ifdef KTRACE
1345 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1346 return (true);
1347 #endif
1348 #ifdef SYSTRACE
1349 if (ISSET(p->p_flag, PK_SYSTRACE))
1350 return (true);
1351 #endif
1352 #ifdef PTRACE
1353 if (ISSET(p->p_slflag, PSL_SYSCALL))
1354 return (true);
1355 #endif
1356
1357 return (false);
1358 }
1359
1360 /*
1361 * Start trace of particular system call. If process is being traced,
1362 * this routine is called by MD syscall dispatch code just before
1363 * a system call is actually executed.
1364 * MD caller guarantees the passed 'code' is within the supported
1365 * system call number range for emulation the process runs under.
1366 */
1367 int
1368 trace_enter(struct lwp *l, register_t code, register_t realcode,
1369 const struct sysent *callp, register_t *args)
1370 {
1371 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1372 struct proc *p = l->l_proc;
1373
1374 #ifdef SYSCALL_DEBUG
1375 scdebug_call(l, code, args);
1376 #endif /* SYSCALL_DEBUG */
1377
1378 ktrsyscall(code, realcode, callp, args);
1379
1380 #ifdef PTRACE
1381 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1382 (PSL_SYSCALL|PSL_TRACED))
1383 process_stoptrace(l);
1384 #endif
1385
1386 #ifdef SYSTRACE
1387 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1388 int error;
1389 KERNEL_LOCK(1, l);
1390 error = systrace_enter(l, code, args);
1391 KERNEL_UNLOCK_ONE(l);
1392 return error;
1393 }
1394 #endif
1395 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1396 return 0;
1397 }
1398
1399 /*
1400 * End trace of particular system call. If process is being traced,
1401 * this routine is called by MD syscall dispatch code just after
1402 * a system call finishes.
1403 * MD caller guarantees the passed 'code' is within the supported
1404 * system call number range for emulation the process runs under.
1405 */
1406 void
1407 trace_exit(struct lwp *l, register_t code, const register_t *args,
1408 register_t rval[], int error)
1409 {
1410 #if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
1411 struct proc *p = l->l_proc;
1412
1413 #ifdef SYSCALL_DEBUG
1414 scdebug_ret(l, code, error, rval);
1415 #endif /* SYSCALL_DEBUG */
1416
1417 ktrsysret(code, error, rval);
1418
1419 #ifdef PTRACE
1420 if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1421 (PSL_SYSCALL|PSL_TRACED))
1422 process_stoptrace(l);
1423 #endif
1424
1425 #ifdef SYSTRACE
1426 if (ISSET(p->p_flag, PK_SYSTRACE)) {
1427 KERNEL_LOCK(1, l);
1428 systrace_exit(l, code, args, rval, error);
1429 KERNEL_UNLOCK_ONE(l);
1430 }
1431 #endif
1432 #endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
1433 }
1434
1435 /*
1436 * Disable kernel preemption.
1437 */
1438 void
1439 crit_enter(void)
1440 {
1441 /* nothing */
1442 }
1443
1444 /*
1445 * Reenable kernel preemption.
1446 */
1447 void
1448 crit_exit(void)
1449 {
1450 /* nothing */
1451 }
1452