Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.175
      1 /*	$NetBSD: kern_subr.c,v 1.175 2008/01/15 14:26:42 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Copyright (c) 1992, 1993
     50  *	The Regents of the University of California.  All rights reserved.
     51  *
     52  * This software was developed by the Computer Systems Engineering group
     53  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     54  * contributed to Berkeley.
     55  *
     56  * All advertising materials mentioning features or use of this software
     57  * must display the following acknowledgement:
     58  *	This product includes software developed by the University of
     59  *	California, Lawrence Berkeley Laboratory.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  * 2. Redistributions in binary form must reproduce the above copyright
     67  *    notice, this list of conditions and the following disclaimer in the
     68  *    documentation and/or other materials provided with the distribution.
     69  * 3. Neither the name of the University nor the names of its contributors
     70  *    may be used to endorse or promote products derived from this software
     71  *    without specific prior written permission.
     72  *
     73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     83  * SUCH DAMAGE.
     84  *
     85  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     86  */
     87 
     88 #include <sys/cdefs.h>
     89 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.175 2008/01/15 14:26:42 ad Exp $");
     90 
     91 #include "opt_ddb.h"
     92 #include "opt_md.h"
     93 #include "opt_syscall_debug.h"
     94 #include "opt_ktrace.h"
     95 #include "opt_ptrace.h"
     96 #include "opt_powerhook.h"
     97 #include "opt_tftproot.h"
     98 
     99 #include <sys/param.h>
    100 #include <sys/systm.h>
    101 #include <sys/proc.h>
    102 #include <sys/malloc.h>
    103 #include <sys/mount.h>
    104 #include <sys/device.h>
    105 #include <sys/reboot.h>
    106 #include <sys/conf.h>
    107 #include <sys/disk.h>
    108 #include <sys/disklabel.h>
    109 #include <sys/queue.h>
    110 #include <sys/ktrace.h>
    111 #include <sys/ptrace.h>
    112 #include <sys/fcntl.h>
    113 #include <sys/kauth.h>
    114 #include <sys/vnode.h>
    115 #include <sys/pmf.h>
    116 
    117 #include <uvm/uvm_extern.h>
    118 
    119 #include <dev/cons.h>
    120 
    121 #include <net/if.h>
    122 
    123 /* XXX these should eventually move to subr_autoconf.c */
    124 static struct device *finddevice(const char *);
    125 static struct device *getdisk(char *, int, int, dev_t *, int);
    126 static struct device *parsedisk(char *, int, int, dev_t *);
    127 static const char *getwedgename(const char *, int);
    128 
    129 /*
    130  * A generic linear hook.
    131  */
    132 struct hook_desc {
    133 	LIST_ENTRY(hook_desc) hk_list;
    134 	void	(*hk_fn)(void *);
    135 	void	*hk_arg;
    136 };
    137 typedef LIST_HEAD(, hook_desc) hook_list_t;
    138 
    139 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
    140 
    141 #ifdef TFTPROOT
    142 int tftproot_dhcpboot(struct device *);
    143 #endif
    144 
    145 dev_t	dumpcdev;	/* for savecore */
    146 
    147 void
    148 uio_setup_sysspace(struct uio *uio)
    149 {
    150 
    151 	uio->uio_vmspace = vmspace_kernel();
    152 }
    153 
    154 int
    155 uiomove(void *buf, size_t n, struct uio *uio)
    156 {
    157 	struct vmspace *vm = uio->uio_vmspace;
    158 	struct iovec *iov;
    159 	u_int cnt;
    160 	int error = 0;
    161 	char *cp = buf;
    162 
    163 	ASSERT_SLEEPABLE(NULL, "uiomove");
    164 
    165 #ifdef DIAGNOSTIC
    166 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    167 		panic("uiomove: mode");
    168 #endif
    169 	while (n > 0 && uio->uio_resid) {
    170 		iov = uio->uio_iov;
    171 		cnt = iov->iov_len;
    172 		if (cnt == 0) {
    173 			KASSERT(uio->uio_iovcnt > 0);
    174 			uio->uio_iov++;
    175 			uio->uio_iovcnt--;
    176 			continue;
    177 		}
    178 		if (cnt > n)
    179 			cnt = n;
    180 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    181 			if (curcpu()->ci_schedstate.spc_flags &
    182 			    SPCF_SHOULDYIELD)
    183 				preempt();
    184 		}
    185 
    186 		if (uio->uio_rw == UIO_READ) {
    187 			error = copyout_vmspace(vm, cp, iov->iov_base,
    188 			    cnt);
    189 		} else {
    190 			error = copyin_vmspace(vm, iov->iov_base, cp,
    191 			    cnt);
    192 		}
    193 		if (error) {
    194 			break;
    195 		}
    196 		iov->iov_base = (char *)iov->iov_base + cnt;
    197 		iov->iov_len -= cnt;
    198 		uio->uio_resid -= cnt;
    199 		uio->uio_offset += cnt;
    200 		cp += cnt;
    201 		KDASSERT(cnt <= n);
    202 		n -= cnt;
    203 	}
    204 
    205 	return (error);
    206 }
    207 
    208 /*
    209  * Wrapper for uiomove() that validates the arguments against a known-good
    210  * kernel buffer.
    211  */
    212 int
    213 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    214 {
    215 	size_t offset;
    216 
    217 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
    218 	    (offset = uio->uio_offset) != uio->uio_offset)
    219 		return (EINVAL);
    220 	if (offset >= buflen)
    221 		return (0);
    222 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    223 }
    224 
    225 /*
    226  * Give next character to user as result of read.
    227  */
    228 int
    229 ureadc(int c, struct uio *uio)
    230 {
    231 	struct iovec *iov;
    232 
    233 	if (uio->uio_resid <= 0)
    234 		panic("ureadc: non-positive resid");
    235 again:
    236 	if (uio->uio_iovcnt <= 0)
    237 		panic("ureadc: non-positive iovcnt");
    238 	iov = uio->uio_iov;
    239 	if (iov->iov_len <= 0) {
    240 		uio->uio_iovcnt--;
    241 		uio->uio_iov++;
    242 		goto again;
    243 	}
    244 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    245 		if (subyte(iov->iov_base, c) < 0)
    246 			return (EFAULT);
    247 	} else {
    248 		*(char *)iov->iov_base = c;
    249 	}
    250 	iov->iov_base = (char *)iov->iov_base + 1;
    251 	iov->iov_len--;
    252 	uio->uio_resid--;
    253 	uio->uio_offset++;
    254 	return (0);
    255 }
    256 
    257 /*
    258  * Like copyin(), but operates on an arbitrary vmspace.
    259  */
    260 int
    261 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    262 {
    263 	struct iovec iov;
    264 	struct uio uio;
    265 	int error;
    266 
    267 	if (len == 0)
    268 		return (0);
    269 
    270 	if (VMSPACE_IS_KERNEL_P(vm)) {
    271 		return kcopy(uaddr, kaddr, len);
    272 	}
    273 	if (__predict_true(vm == curproc->p_vmspace)) {
    274 		return copyin(uaddr, kaddr, len);
    275 	}
    276 
    277 	iov.iov_base = kaddr;
    278 	iov.iov_len = len;
    279 	uio.uio_iov = &iov;
    280 	uio.uio_iovcnt = 1;
    281 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    282 	uio.uio_resid = len;
    283 	uio.uio_rw = UIO_READ;
    284 	UIO_SETUP_SYSSPACE(&uio);
    285 	error = uvm_io(&vm->vm_map, &uio);
    286 
    287 	return (error);
    288 }
    289 
    290 /*
    291  * Like copyout(), but operates on an arbitrary vmspace.
    292  */
    293 int
    294 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    295 {
    296 	struct iovec iov;
    297 	struct uio uio;
    298 	int error;
    299 
    300 	if (len == 0)
    301 		return (0);
    302 
    303 	if (VMSPACE_IS_KERNEL_P(vm)) {
    304 		return kcopy(kaddr, uaddr, len);
    305 	}
    306 	if (__predict_true(vm == curproc->p_vmspace)) {
    307 		return copyout(kaddr, uaddr, len);
    308 	}
    309 
    310 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    311 	iov.iov_len = len;
    312 	uio.uio_iov = &iov;
    313 	uio.uio_iovcnt = 1;
    314 	uio.uio_offset = (off_t)(intptr_t)uaddr;
    315 	uio.uio_resid = len;
    316 	uio.uio_rw = UIO_WRITE;
    317 	UIO_SETUP_SYSSPACE(&uio);
    318 	error = uvm_io(&vm->vm_map, &uio);
    319 
    320 	return (error);
    321 }
    322 
    323 /*
    324  * Like copyin(), but operates on an arbitrary process.
    325  */
    326 int
    327 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    328 {
    329 	struct vmspace *vm;
    330 	int error;
    331 
    332 	error = proc_vmspace_getref(p, &vm);
    333 	if (error) {
    334 		return error;
    335 	}
    336 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    337 	uvmspace_free(vm);
    338 
    339 	return error;
    340 }
    341 
    342 /*
    343  * Like copyout(), but operates on an arbitrary process.
    344  */
    345 int
    346 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    347 {
    348 	struct vmspace *vm;
    349 	int error;
    350 
    351 	error = proc_vmspace_getref(p, &vm);
    352 	if (error) {
    353 		return error;
    354 	}
    355 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    356 	uvmspace_free(vm);
    357 
    358 	return error;
    359 }
    360 
    361 /*
    362  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    363  * flag is passed in `ioctlflags' from the ioctl call.
    364  */
    365 int
    366 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    367 {
    368 	if (ioctlflags & FKIOCTL)
    369 		return kcopy(src, dst, len);
    370 	return copyin(src, dst, len);
    371 }
    372 
    373 /*
    374  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    375  * flag is passed in `ioctlflags' from the ioctl call.
    376  */
    377 int
    378 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    379 {
    380 	if (ioctlflags & FKIOCTL)
    381 		return kcopy(src, dst, len);
    382 	return copyout(src, dst, len);
    383 }
    384 
    385 static void *
    386 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    387 {
    388 	struct hook_desc *hd;
    389 
    390 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    391 	if (hd == NULL)
    392 		return (NULL);
    393 
    394 	hd->hk_fn = fn;
    395 	hd->hk_arg = arg;
    396 	LIST_INSERT_HEAD(list, hd, hk_list);
    397 
    398 	return (hd);
    399 }
    400 
    401 static void
    402 hook_disestablish(hook_list_t *list, void *vhook)
    403 {
    404 #ifdef DIAGNOSTIC
    405 	struct hook_desc *hd;
    406 
    407 	LIST_FOREACH(hd, list, hk_list) {
    408                 if (hd == vhook)
    409 			break;
    410 	}
    411 
    412 	if (hd == NULL)
    413 		panic("hook_disestablish: hook %p not established", vhook);
    414 #endif
    415 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    416 	free(vhook, M_DEVBUF);
    417 }
    418 
    419 static void
    420 hook_destroy(hook_list_t *list)
    421 {
    422 	struct hook_desc *hd;
    423 
    424 	while ((hd = LIST_FIRST(list)) != NULL) {
    425 		LIST_REMOVE(hd, hk_list);
    426 		free(hd, M_DEVBUF);
    427 	}
    428 }
    429 
    430 static void
    431 hook_proc_run(hook_list_t *list, struct proc *p)
    432 {
    433 	struct hook_desc *hd;
    434 
    435 	for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
    436 		((void (*)(struct proc *, void *))*hd->hk_fn)(p,
    437 		    hd->hk_arg);
    438 	}
    439 }
    440 
    441 /*
    442  * "Shutdown hook" types, functions, and variables.
    443  *
    444  * Should be invoked immediately before the
    445  * system is halted or rebooted, i.e. after file systems unmounted,
    446  * after crash dump done, etc.
    447  *
    448  * Each shutdown hook is removed from the list before it's run, so that
    449  * it won't be run again.
    450  */
    451 
    452 static hook_list_t shutdownhook_list;
    453 
    454 void *
    455 shutdownhook_establish(void (*fn)(void *), void *arg)
    456 {
    457 	return hook_establish(&shutdownhook_list, fn, arg);
    458 }
    459 
    460 void
    461 shutdownhook_disestablish(void *vhook)
    462 {
    463 	hook_disestablish(&shutdownhook_list, vhook);
    464 }
    465 
    466 /*
    467  * Run shutdown hooks.  Should be invoked immediately before the
    468  * system is halted or rebooted, i.e. after file systems unmounted,
    469  * after crash dump done, etc.
    470  *
    471  * Each shutdown hook is removed from the list before it's run, so that
    472  * it won't be run again.
    473  */
    474 void
    475 doshutdownhooks(void)
    476 {
    477 	struct hook_desc *dp;
    478 
    479 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    480 		LIST_REMOVE(dp, hk_list);
    481 		(*dp->hk_fn)(dp->hk_arg);
    482 #if 0
    483 		/*
    484 		 * Don't bother freeing the hook structure,, since we may
    485 		 * be rebooting because of a memory corruption problem,
    486 		 * and this might only make things worse.  It doesn't
    487 		 * matter, anyway, since the system is just about to
    488 		 * reboot.
    489 		 */
    490 		free(dp, M_DEVBUF);
    491 #endif
    492 	}
    493 
    494 	pmf_system_shutdown();
    495 }
    496 
    497 /*
    498  * "Mountroot hook" types, functions, and variables.
    499  */
    500 
    501 static hook_list_t mountroothook_list;
    502 
    503 void *
    504 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
    505 {
    506 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    507 }
    508 
    509 void
    510 mountroothook_disestablish(void *vhook)
    511 {
    512 	hook_disestablish(&mountroothook_list, vhook);
    513 }
    514 
    515 void
    516 mountroothook_destroy(void)
    517 {
    518 	hook_destroy(&mountroothook_list);
    519 }
    520 
    521 void
    522 domountroothook(void)
    523 {
    524 	struct hook_desc *hd;
    525 
    526 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    527 		if (hd->hk_arg == (void *)root_device) {
    528 			(*hd->hk_fn)(hd->hk_arg);
    529 			return;
    530 		}
    531 	}
    532 }
    533 
    534 static hook_list_t exechook_list;
    535 
    536 void *
    537 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    538 {
    539 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    540 }
    541 
    542 void
    543 exechook_disestablish(void *vhook)
    544 {
    545 	hook_disestablish(&exechook_list, vhook);
    546 }
    547 
    548 /*
    549  * Run exec hooks.
    550  */
    551 void
    552 doexechooks(struct proc *p)
    553 {
    554 	hook_proc_run(&exechook_list, p);
    555 }
    556 
    557 static hook_list_t exithook_list;
    558 
    559 void *
    560 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    561 {
    562 	return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    563 }
    564 
    565 void
    566 exithook_disestablish(void *vhook)
    567 {
    568 	hook_disestablish(&exithook_list, vhook);
    569 }
    570 
    571 /*
    572  * Run exit hooks.
    573  */
    574 void
    575 doexithooks(struct proc *p)
    576 {
    577 	hook_proc_run(&exithook_list, p);
    578 }
    579 
    580 static hook_list_t forkhook_list;
    581 
    582 void *
    583 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    584 {
    585 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    586 }
    587 
    588 void
    589 forkhook_disestablish(void *vhook)
    590 {
    591 	hook_disestablish(&forkhook_list, vhook);
    592 }
    593 
    594 /*
    595  * Run fork hooks.
    596  */
    597 void
    598 doforkhooks(struct proc *p2, struct proc *p1)
    599 {
    600 	struct hook_desc *hd;
    601 
    602 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    603 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    604 		    (p2, p1);
    605 	}
    606 }
    607 
    608 /*
    609  * "Power hook" types, functions, and variables.
    610  * The list of power hooks is kept ordered with the last registered hook
    611  * first.
    612  * When running the hooks on power down the hooks are called in reverse
    613  * registration order, when powering up in registration order.
    614  */
    615 struct powerhook_desc {
    616 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    617 	void	(*sfd_fn)(int, void *);
    618 	void	*sfd_arg;
    619 	char	sfd_name[16];
    620 };
    621 
    622 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    623     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    624 
    625 void *
    626 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
    627 {
    628 	struct powerhook_desc *ndp;
    629 
    630 	ndp = (struct powerhook_desc *)
    631 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    632 	if (ndp == NULL)
    633 		return (NULL);
    634 
    635 	ndp->sfd_fn = fn;
    636 	ndp->sfd_arg = arg;
    637 	strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
    638 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    639 
    640 	aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
    641 	return (ndp);
    642 }
    643 
    644 void
    645 powerhook_disestablish(void *vhook)
    646 {
    647 #ifdef DIAGNOSTIC
    648 	struct powerhook_desc *dp;
    649 
    650 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    651                 if (dp == vhook)
    652 			goto found;
    653 	panic("powerhook_disestablish: hook %p not established", vhook);
    654  found:
    655 #endif
    656 
    657 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    658 	    sfd_list);
    659 	free(vhook, M_DEVBUF);
    660 }
    661 
    662 /*
    663  * Run power hooks.
    664  */
    665 void
    666 dopowerhooks(int why)
    667 {
    668 	struct powerhook_desc *dp;
    669 
    670 #ifdef POWERHOOK_DEBUG
    671 	const char *why_name;
    672 	static const char * pwr_names[] = {PWR_NAMES};
    673 	why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
    674 #endif
    675 
    676 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    677 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    678 #ifdef POWERHOOK_DEBUG
    679 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
    680 #endif
    681 			(*dp->sfd_fn)(why, dp->sfd_arg);
    682 		}
    683 	} else {
    684 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    685 #ifdef POWERHOOK_DEBUG
    686 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
    687 #endif
    688 			(*dp->sfd_fn)(why, dp->sfd_arg);
    689 		}
    690 	}
    691 
    692 #ifdef POWERHOOK_DEBUG
    693 	printf("dopowerhooks: %s done\n", why_name);
    694 #endif
    695 }
    696 
    697 static int
    698 isswap(struct device *dv)
    699 {
    700 	struct dkwedge_info wi;
    701 	struct vnode *vn;
    702 	int error;
    703 
    704 	if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
    705 		return 0;
    706 
    707 	if ((vn = opendisk(dv)) == NULL)
    708 		return 0;
    709 
    710 	error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
    711 	VOP_CLOSE(vn, FREAD, NOCRED);
    712 	vput(vn);
    713 	if (error) {
    714 #ifdef DEBUG_WEDGE
    715 		printf("%s: Get wedge info returned %d\n", dv->dv_xname, error);
    716 #endif
    717 		return 0;
    718 	}
    719 	return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
    720 }
    721 
    722 /*
    723  * Determine the root device and, if instructed to, the root file system.
    724  */
    725 
    726 #include "md.h"
    727 #if NMD == 0
    728 #undef MEMORY_DISK_HOOKS
    729 #endif
    730 
    731 #ifdef MEMORY_DISK_HOOKS
    732 static struct device fakemdrootdev[NMD];
    733 extern struct cfdriver md_cd;
    734 #endif
    735 
    736 #ifdef MEMORY_DISK_IS_ROOT
    737 #define BOOT_FROM_MEMORY_HOOKS 1
    738 #endif
    739 
    740 /*
    741  * The device and wedge that we booted from.  If booted_wedge is NULL,
    742  * the we might consult booted_partition.
    743  */
    744 struct device *booted_device;
    745 struct device *booted_wedge;
    746 int booted_partition;
    747 
    748 /*
    749  * Use partition letters if it's a disk class but not a wedge.
    750  * XXX Check for wedge is kinda gross.
    751  */
    752 #define	DEV_USES_PARTITIONS(dv)						\
    753 	(device_class((dv)) == DV_DISK &&				\
    754 	 !device_is_a((dv), "dk"))
    755 
    756 void
    757 setroot(struct device *bootdv, int bootpartition)
    758 {
    759 	struct device *dv;
    760 	int len, majdev;
    761 #ifdef MEMORY_DISK_HOOKS
    762 	int i;
    763 #endif
    764 	dev_t nrootdev;
    765 	dev_t ndumpdev = NODEV;
    766 	char buf[128];
    767 	const char *rootdevname;
    768 	const char *dumpdevname;
    769 	struct device *rootdv = NULL;		/* XXX gcc -Wuninitialized */
    770 	struct device *dumpdv = NULL;
    771 	struct ifnet *ifp;
    772 	const char *deffsname;
    773 	struct vfsops *vops;
    774 
    775 #ifdef TFTPROOT
    776 	if (tftproot_dhcpboot(bootdv) != 0)
    777 		boothowto |= RB_ASKNAME;
    778 #endif
    779 
    780 #ifdef MEMORY_DISK_HOOKS
    781 	for (i = 0; i < NMD; i++) {
    782 		fakemdrootdev[i].dv_class  = DV_DISK;
    783 		fakemdrootdev[i].dv_cfdata = NULL;
    784 		fakemdrootdev[i].dv_cfdriver = &md_cd;
    785 		fakemdrootdev[i].dv_unit   = i;
    786 		fakemdrootdev[i].dv_parent = NULL;
    787 		snprintf(fakemdrootdev[i].dv_xname,
    788 		    sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
    789 	}
    790 #endif /* MEMORY_DISK_HOOKS */
    791 
    792 #ifdef MEMORY_DISK_IS_ROOT
    793 	bootdv = &fakemdrootdev[0];
    794 	bootpartition = 0;
    795 #endif
    796 
    797 	/*
    798 	 * If NFS is specified as the file system, and we found
    799 	 * a DV_DISK boot device (or no boot device at all), then
    800 	 * find a reasonable network interface for "rootspec".
    801 	 */
    802 	vops = vfs_getopsbyname("nfs");
    803 	if (vops != NULL && vops->vfs_mountroot == mountroot &&
    804 	    rootspec == NULL &&
    805 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
    806 		IFNET_FOREACH(ifp) {
    807 			if ((ifp->if_flags &
    808 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    809 				break;
    810 		}
    811 		if (ifp == NULL) {
    812 			/*
    813 			 * Can't find a suitable interface; ask the
    814 			 * user.
    815 			 */
    816 			boothowto |= RB_ASKNAME;
    817 		} else {
    818 			/*
    819 			 * Have a suitable interface; behave as if
    820 			 * the user specified this interface.
    821 			 */
    822 			rootspec = (const char *)ifp->if_xname;
    823 		}
    824 	}
    825 	if (vops != NULL)
    826 		vfs_delref(vops);
    827 
    828 	/*
    829 	 * If wildcarded root and we the boot device wasn't determined,
    830 	 * ask the user.
    831 	 */
    832 	if (rootspec == NULL && bootdv == NULL)
    833 		boothowto |= RB_ASKNAME;
    834 
    835  top:
    836 	if (boothowto & RB_ASKNAME) {
    837 		struct device *defdumpdv;
    838 
    839 		for (;;) {
    840 			printf("root device");
    841 			if (bootdv != NULL) {
    842 				printf(" (default %s", bootdv->dv_xname);
    843 				if (DEV_USES_PARTITIONS(bootdv))
    844 					printf("%c", bootpartition + 'a');
    845 				printf(")");
    846 			}
    847 			printf(": ");
    848 			len = cngetsn(buf, sizeof(buf));
    849 			if (len == 0 && bootdv != NULL) {
    850 				strlcpy(buf, bootdv->dv_xname, sizeof(buf));
    851 				len = strlen(buf);
    852 			}
    853 			if (len > 0 && buf[len - 1] == '*') {
    854 				buf[--len] = '\0';
    855 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    856 				if (dv != NULL) {
    857 					rootdv = dv;
    858 					break;
    859 				}
    860 			}
    861 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    862 			if (dv != NULL) {
    863 				rootdv = dv;
    864 				break;
    865 			}
    866 		}
    867 
    868 		/*
    869 		 * Set up the default dump device.  If root is on
    870 		 * a network device, there is no default dump
    871 		 * device, since we don't support dumps to the
    872 		 * network.
    873 		 */
    874 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    875 			defdumpdv = NULL;
    876 		else
    877 			defdumpdv = rootdv;
    878 
    879 		for (;;) {
    880 			printf("dump device");
    881 			if (defdumpdv != NULL) {
    882 				/*
    883 				 * Note, we know it's a disk if we get here.
    884 				 */
    885 				printf(" (default %sb)", defdumpdv->dv_xname);
    886 			}
    887 			printf(": ");
    888 			len = cngetsn(buf, sizeof(buf));
    889 			if (len == 0) {
    890 				if (defdumpdv != NULL) {
    891 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    892 					    DISKUNIT(nrootdev), 1);
    893 				}
    894 				dumpdv = defdumpdv;
    895 				break;
    896 			}
    897 			if (len == 4 && strcmp(buf, "none") == 0) {
    898 				dumpdv = NULL;
    899 				break;
    900 			}
    901 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    902 			if (dv != NULL) {
    903 				dumpdv = dv;
    904 				break;
    905 			}
    906 		}
    907 
    908 		rootdev = nrootdev;
    909 		dumpdev = ndumpdev;
    910 
    911 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    912 		     vops = LIST_NEXT(vops, vfs_list)) {
    913 			if (vops->vfs_mountroot != NULL &&
    914 			    vops->vfs_mountroot == mountroot)
    915 			break;
    916 		}
    917 
    918 		if (vops == NULL) {
    919 			mountroot = NULL;
    920 			deffsname = "generic";
    921 		} else
    922 			deffsname = vops->vfs_name;
    923 
    924 		for (;;) {
    925 			printf("file system (default %s): ", deffsname);
    926 			len = cngetsn(buf, sizeof(buf));
    927 			if (len == 0)
    928 				break;
    929 			if (len == 4 && strcmp(buf, "halt") == 0)
    930 				cpu_reboot(RB_HALT, NULL);
    931 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    932 				cpu_reboot(0, NULL);
    933 #if defined(DDB)
    934 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    935 				console_debugger();
    936 			}
    937 #endif
    938 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    939 				mountroot = NULL;
    940 				break;
    941 			}
    942 			vops = vfs_getopsbyname(buf);
    943 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    944 				printf("use one of: generic");
    945 				for (vops = LIST_FIRST(&vfs_list);
    946 				     vops != NULL;
    947 				     vops = LIST_NEXT(vops, vfs_list)) {
    948 					if (vops->vfs_mountroot != NULL)
    949 						printf(" %s", vops->vfs_name);
    950 				}
    951 #if defined(DDB)
    952 				printf(" ddb");
    953 #endif
    954 				printf(" halt reboot\n");
    955 			} else {
    956 				mountroot = vops->vfs_mountroot;
    957 				vfs_delref(vops);
    958 				break;
    959 			}
    960 		}
    961 
    962 	} else if (rootspec == NULL) {
    963 		/*
    964 		 * Wildcarded root; use the boot device.
    965 		 */
    966 		rootdv = bootdv;
    967 
    968 		majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
    969 		if (majdev >= 0) {
    970 			/*
    971 			 * Root is on a disk.  `bootpartition' is root,
    972 			 * unless the device does not use partitions.
    973 			 */
    974 			if (DEV_USES_PARTITIONS(bootdv))
    975 				rootdev = MAKEDISKDEV(majdev,
    976 						      device_unit(bootdv),
    977 						      bootpartition);
    978 			else
    979 				rootdev = makedev(majdev, device_unit(bootdv));
    980 		}
    981 	} else {
    982 
    983 		/*
    984 		 * `root on <dev> ...'
    985 		 */
    986 
    987 		/*
    988 		 * If it's a network interface, we can bail out
    989 		 * early.
    990 		 */
    991 		dv = finddevice(rootspec);
    992 		if (dv != NULL && device_class(dv) == DV_IFNET) {
    993 			rootdv = dv;
    994 			goto haveroot;
    995 		}
    996 
    997 		if (rootdev == NODEV &&
    998 		    device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
    999 		    (majdev = devsw_name2blk(dv->dv_xname, NULL, 0)) >= 0)
   1000 			rootdev = makedev(majdev, device_unit(dv));
   1001 
   1002 		rootdevname = devsw_blk2name(major(rootdev));
   1003 		if (rootdevname == NULL) {
   1004 			printf("unknown device major 0x%x\n", rootdev);
   1005 			boothowto |= RB_ASKNAME;
   1006 			goto top;
   1007 		}
   1008 		memset(buf, 0, sizeof(buf));
   1009 		snprintf(buf, sizeof(buf), "%s%d", rootdevname,
   1010 		    DISKUNIT(rootdev));
   1011 
   1012 		rootdv = finddevice(buf);
   1013 		if (rootdv == NULL) {
   1014 			printf("device %s (0x%x) not configured\n",
   1015 			    buf, rootdev);
   1016 			boothowto |= RB_ASKNAME;
   1017 			goto top;
   1018 		}
   1019 	}
   1020 
   1021  haveroot:
   1022 
   1023 	root_device = rootdv;
   1024 
   1025 	switch (device_class(rootdv)) {
   1026 	case DV_IFNET:
   1027 	case DV_DISK:
   1028 		aprint_normal("root on %s", rootdv->dv_xname);
   1029 		if (DEV_USES_PARTITIONS(rootdv))
   1030 			aprint_normal("%c", DISKPART(rootdev) + 'a');
   1031 		break;
   1032 
   1033 	default:
   1034 		printf("can't determine root device\n");
   1035 		boothowto |= RB_ASKNAME;
   1036 		goto top;
   1037 	}
   1038 
   1039 	/*
   1040 	 * Now configure the dump device.
   1041 	 *
   1042 	 * If we haven't figured out the dump device, do so, with
   1043 	 * the following rules:
   1044 	 *
   1045 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1046 	 *
   1047 	 *	(b) If dumpspec is set, try to use it.  If the device
   1048 	 *	    is not available, punt.
   1049 	 *
   1050 	 *	(c) If dumpspec is not set, the dump device is
   1051 	 *	    wildcarded or unspecified.  If the root device
   1052 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1053 	 *	    of the root device.
   1054 	 */
   1055 
   1056 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1057 		if (dumpdv == NULL)
   1058 			goto nodumpdev;
   1059 	} else if (dumpspec != NULL) {		/* (b) */
   1060 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1061 			/*
   1062 			 * Operator doesn't want a dump device.
   1063 			 * Or looks like they tried to pick a network
   1064 			 * device.  Oops.
   1065 			 */
   1066 			goto nodumpdev;
   1067 		}
   1068 
   1069 		dumpdevname = devsw_blk2name(major(dumpdev));
   1070 		if (dumpdevname == NULL)
   1071 			goto nodumpdev;
   1072 		memset(buf, 0, sizeof(buf));
   1073 		snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
   1074 		    DISKUNIT(dumpdev));
   1075 
   1076 		dumpdv = finddevice(buf);
   1077 		if (dumpdv == NULL) {
   1078 			/*
   1079 			 * Device not configured.
   1080 			 */
   1081 			goto nodumpdev;
   1082 		}
   1083 	} else {				/* (c) */
   1084 		if (DEV_USES_PARTITIONS(rootdv) == 0) {
   1085 			for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1086 			    dv = TAILQ_NEXT(dv, dv_list))
   1087 				if (isswap(dv))
   1088 					break;
   1089 			if (dv == NULL)
   1090 				goto nodumpdev;
   1091 
   1092 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1093 			if (majdev < 0)
   1094 				goto nodumpdev;
   1095 			dumpdv = dv;
   1096 			dumpdev = makedev(majdev, device_unit(dumpdv));
   1097 		} else {
   1098 			dumpdv = rootdv;
   1099 			dumpdev = MAKEDISKDEV(major(rootdev),
   1100 			    device_unit(dumpdv), 1);
   1101 		}
   1102 	}
   1103 
   1104 	dumpcdev = devsw_blk2chr(dumpdev);
   1105 	aprint_normal(" dumps on %s", dumpdv->dv_xname);
   1106 	if (DEV_USES_PARTITIONS(dumpdv))
   1107 		aprint_normal("%c", DISKPART(dumpdev) + 'a');
   1108 	aprint_normal("\n");
   1109 	return;
   1110 
   1111  nodumpdev:
   1112 	dumpdev = NODEV;
   1113 	dumpcdev = NODEV;
   1114 	aprint_normal("\n");
   1115 }
   1116 
   1117 static struct device *
   1118 finddevice(const char *name)
   1119 {
   1120 	const char *wname;
   1121 	struct device *dv;
   1122 #if defined(BOOT_FROM_MEMORY_HOOKS)
   1123 	int j;
   1124 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1125 
   1126 	if ((wname = getwedgename(name, strlen(name))) != NULL)
   1127 		return dkwedge_find_by_wname(wname);
   1128 
   1129 #ifdef BOOT_FROM_MEMORY_HOOKS
   1130 	for (j = 0; j < NMD; j++) {
   1131 		if (strcmp(name, fakemdrootdev[j].dv_xname) == 0)
   1132 			return &fakemdrootdev[j];
   1133 	}
   1134 #endif /* BOOT_FROM_MEMORY_HOOKS */
   1135 
   1136 	TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1137 		if (strcmp(dv->dv_xname, name) == 0)
   1138 			break;
   1139 	}
   1140 	return dv;
   1141 }
   1142 
   1143 static struct device *
   1144 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1145 {
   1146 	struct device	*dv;
   1147 #ifdef MEMORY_DISK_HOOKS
   1148 	int		i;
   1149 #endif
   1150 
   1151 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1152 		printf("use one of:");
   1153 #ifdef MEMORY_DISK_HOOKS
   1154 		if (isdump == 0)
   1155 			for (i = 0; i < NMD; i++)
   1156 				printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
   1157 				    'a' + MAXPARTITIONS - 1);
   1158 #endif
   1159 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1160 			if (DEV_USES_PARTITIONS(dv))
   1161 				printf(" %s[a-%c]", dv->dv_xname,
   1162 				    'a' + MAXPARTITIONS - 1);
   1163 			else if (device_class(dv) == DV_DISK)
   1164 				printf(" %s", dv->dv_xname);
   1165 			if (isdump == 0 && device_class(dv) == DV_IFNET)
   1166 				printf(" %s", dv->dv_xname);
   1167 		}
   1168 		dkwedge_print_wnames();
   1169 		if (isdump)
   1170 			printf(" none");
   1171 #if defined(DDB)
   1172 		printf(" ddb");
   1173 #endif
   1174 		printf(" halt reboot\n");
   1175 	}
   1176 	return dv;
   1177 }
   1178 
   1179 static const char *
   1180 getwedgename(const char *name, int namelen)
   1181 {
   1182 	const char *wpfx = "wedge:";
   1183 	const int wpfxlen = strlen(wpfx);
   1184 
   1185 	if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
   1186 		return NULL;
   1187 
   1188 	return name + wpfxlen;
   1189 }
   1190 
   1191 static struct device *
   1192 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1193 {
   1194 	struct device *dv;
   1195 	const char *wname;
   1196 	char *cp, c;
   1197 	int majdev, part;
   1198 #ifdef MEMORY_DISK_HOOKS
   1199 	int i;
   1200 #endif
   1201 	if (len == 0)
   1202 		return (NULL);
   1203 
   1204 	if (len == 4 && strcmp(str, "halt") == 0)
   1205 		cpu_reboot(RB_HALT, NULL);
   1206 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1207 		cpu_reboot(0, NULL);
   1208 #if defined(DDB)
   1209 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1210 		console_debugger();
   1211 #endif
   1212 
   1213 	cp = str + len - 1;
   1214 	c = *cp;
   1215 
   1216 	if ((wname = getwedgename(str, len)) != NULL) {
   1217 		if ((dv = dkwedge_find_by_wname(wname)) == NULL)
   1218 			return NULL;
   1219 		part = defpart;
   1220 		goto gotdisk;
   1221 	} else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1222 		part = c - 'a';
   1223 		*cp = '\0';
   1224 	} else
   1225 		part = defpart;
   1226 
   1227 #ifdef MEMORY_DISK_HOOKS
   1228 	for (i = 0; i < NMD; i++)
   1229 		if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
   1230 			dv = &fakemdrootdev[i];
   1231 			goto gotdisk;
   1232 		}
   1233 #endif
   1234 
   1235 	dv = finddevice(str);
   1236 	if (dv != NULL) {
   1237 		if (device_class(dv) == DV_DISK) {
   1238  gotdisk:
   1239 			majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
   1240 			if (majdev < 0)
   1241 				panic("parsedisk");
   1242 			if (DEV_USES_PARTITIONS(dv))
   1243 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
   1244 						    part);
   1245 			else
   1246 				*devp = makedev(majdev, device_unit(dv));
   1247 		}
   1248 
   1249 		if (device_class(dv) == DV_IFNET)
   1250 			*devp = NODEV;
   1251 	}
   1252 
   1253 	*cp = c;
   1254 	return (dv);
   1255 }
   1256 
   1257 /*
   1258  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1259  * plus a possible `x' + suffix extension) fits into len bytes (including
   1260  * the terminating NUL).
   1261  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1262  * E.g, given a len of 9 and a suffix of `B':
   1263  *	bytes		result
   1264  *	-----		------
   1265  *	99999		`99999 B'
   1266  *	100000		`97 kB'
   1267  *	66715648	`65152 kB'
   1268  *	252215296	`240 MB'
   1269  */
   1270 int
   1271 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1272     int divisor)
   1273 {
   1274        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1275 	const char *prefixes;
   1276 	int		r;
   1277 	uint64_t	umax;
   1278 	size_t		i, suffixlen;
   1279 
   1280 	if (buf == NULL || suffix == NULL)
   1281 		return (-1);
   1282 	if (len > 0)
   1283 		buf[0] = '\0';
   1284 	suffixlen = strlen(suffix);
   1285 	/* check if enough room for `x y' + suffix + `\0' */
   1286 	if (len < 4 + suffixlen)
   1287 		return (-1);
   1288 
   1289 	if (divisor == 1024) {
   1290 		/*
   1291 		 * binary multiplies
   1292 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1293 		 */
   1294 		prefixes = " KMGTPE";
   1295 	} else
   1296 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1297 
   1298 	umax = 1;
   1299 	for (i = 0; i < len - suffixlen - 3; i++)
   1300 		umax *= 10;
   1301 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1302 		bytes /= divisor;
   1303 
   1304 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1305 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1306 
   1307 	return (r);
   1308 }
   1309 
   1310 int
   1311 format_bytes(char *buf, size_t len, uint64_t bytes)
   1312 {
   1313 	int	rv;
   1314 	size_t	nlen;
   1315 
   1316 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1317 	if (rv != -1) {
   1318 			/* nuke the trailing ` B' if it exists */
   1319 		nlen = strlen(buf) - 2;
   1320 		if (strcmp(&buf[nlen], " B") == 0)
   1321 			buf[nlen] = '\0';
   1322 	}
   1323 	return (rv);
   1324 }
   1325 
   1326 /*
   1327  * Return true if system call tracing is enabled for the specified process.
   1328  */
   1329 bool
   1330 trace_is_enabled(struct proc *p)
   1331 {
   1332 #ifdef SYSCALL_DEBUG
   1333 	return (true);
   1334 #endif
   1335 #ifdef KTRACE
   1336 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
   1337 		return (true);
   1338 #endif
   1339 #ifdef PTRACE
   1340 	if (ISSET(p->p_slflag, PSL_SYSCALL))
   1341 		return (true);
   1342 #endif
   1343 
   1344 	return (false);
   1345 }
   1346 
   1347 /*
   1348  * Start trace of particular system call. If process is being traced,
   1349  * this routine is called by MD syscall dispatch code just before
   1350  * a system call is actually executed.
   1351  * MD caller guarantees the passed 'code' is within the supported
   1352  * system call number range for emulation the process runs under.
   1353  */
   1354 int
   1355 trace_enter(register_t code, register_t realcode,
   1356     const struct sysent *callp, const register_t *args)
   1357 {
   1358 #ifdef SYSCALL_DEBUG
   1359 	scdebug_call(code, args);
   1360 #endif /* SYSCALL_DEBUG */
   1361 
   1362 	ktrsyscall(code, realcode, callp, args);
   1363 
   1364 #ifdef PTRACE
   1365 	if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1366 	    (PSL_SYSCALL|PSL_TRACED))
   1367 		process_stoptrace();
   1368 #endif
   1369 	return 0;
   1370 }
   1371 
   1372 /*
   1373  * End trace of particular system call. If process is being traced,
   1374  * this routine is called by MD syscall dispatch code just after
   1375  * a system call finishes.
   1376  * MD caller guarantees the passed 'code' is within the supported
   1377  * system call number range for emulation the process runs under.
   1378  */
   1379 void
   1380 trace_exit(register_t code, const register_t *args,
   1381     register_t rval[], int error)
   1382 {
   1383 #ifdef SYSCALL_DEBUG
   1384 	scdebug_ret(code, error, rval);
   1385 #endif /* SYSCALL_DEBUG */
   1386 
   1387 	ktrsysret(code, error, rval);
   1388 
   1389 #ifdef PTRACE
   1390 	if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1391 	    (PSL_SYSCALL|PSL_TRACED))
   1392 		process_stoptrace();
   1393 #endif
   1394 }
   1395 
   1396 /*
   1397  * Disable kernel preemption.
   1398  */
   1399 void
   1400 crit_enter(void)
   1401 {
   1402 	/* nothing */
   1403 }
   1404 
   1405 /*
   1406  * Reenable kernel preemption.
   1407  */
   1408 void
   1409 crit_exit(void)
   1410 {
   1411 	/* nothing */
   1412 }
   1413