kern_subr.c revision 1.194 1 /* $NetBSD: kern_subr.c,v 1.194 2008/11/12 14:29:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Copyright (c) 1992, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * This software was developed by the Computer Systems Engineering group
46 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
47 * contributed to Berkeley.
48 *
49 * All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed by the University of
52 * California, Lawrence Berkeley Laboratory.
53 *
54 * Redistribution and use in source and binary forms, with or without
55 * modification, are permitted provided that the following conditions
56 * are met:
57 * 1. Redistributions of source code must retain the above copyright
58 * notice, this list of conditions and the following disclaimer.
59 * 2. Redistributions in binary form must reproduce the above copyright
60 * notice, this list of conditions and the following disclaimer in the
61 * documentation and/or other materials provided with the distribution.
62 * 3. Neither the name of the University nor the names of its contributors
63 * may be used to endorse or promote products derived from this software
64 * without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76 * SUCH DAMAGE.
77 *
78 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.194 2008/11/12 14:29:31 ad Exp $");
83
84 #include "opt_ddb.h"
85 #include "opt_md.h"
86 #include "opt_syscall_debug.h"
87 #include "opt_ktrace.h"
88 #include "opt_ptrace.h"
89 #include "opt_powerhook.h"
90 #include "opt_tftproot.h"
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/proc.h>
95 #include <sys/malloc.h>
96 #include <sys/mount.h>
97 #include <sys/device.h>
98 #include <sys/reboot.h>
99 #include <sys/conf.h>
100 #include <sys/disk.h>
101 #include <sys/disklabel.h>
102 #include <sys/queue.h>
103 #include <sys/ktrace.h>
104 #include <sys/ptrace.h>
105 #include <sys/fcntl.h>
106 #include <sys/kauth.h>
107 #include <sys/vnode.h>
108 #include <sys/syscallvar.h>
109 #include <sys/xcall.h>
110 #include <sys/module.h>
111
112 #include <uvm/uvm_extern.h>
113
114 #include <dev/cons.h>
115
116 #include <net/if.h>
117
118 /* XXX these should eventually move to subr_autoconf.c */
119 static struct device *finddevice(const char *);
120 static struct device *getdisk(char *, int, int, dev_t *, int);
121 static struct device *parsedisk(char *, int, int, dev_t *);
122 static const char *getwedgename(const char *, int);
123
124 /*
125 * A generic linear hook.
126 */
127 struct hook_desc {
128 LIST_ENTRY(hook_desc) hk_list;
129 void (*hk_fn)(void *);
130 void *hk_arg;
131 };
132 typedef LIST_HEAD(, hook_desc) hook_list_t;
133
134 #ifdef TFTPROOT
135 int tftproot_dhcpboot(struct device *);
136 #endif
137
138 dev_t dumpcdev; /* for savecore */
139
140 void
141 uio_setup_sysspace(struct uio *uio)
142 {
143
144 uio->uio_vmspace = vmspace_kernel();
145 }
146
147 int
148 uiomove(void *buf, size_t n, struct uio *uio)
149 {
150 struct vmspace *vm = uio->uio_vmspace;
151 struct iovec *iov;
152 size_t cnt;
153 int error = 0;
154 char *cp = buf;
155
156 ASSERT_SLEEPABLE();
157
158 #ifdef DIAGNOSTIC
159 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
160 panic("uiomove: mode");
161 #endif
162 while (n > 0 && uio->uio_resid) {
163 iov = uio->uio_iov;
164 cnt = iov->iov_len;
165 if (cnt == 0) {
166 KASSERT(uio->uio_iovcnt > 0);
167 uio->uio_iov++;
168 uio->uio_iovcnt--;
169 continue;
170 }
171 if (cnt > n)
172 cnt = n;
173 if (!VMSPACE_IS_KERNEL_P(vm)) {
174 if (curcpu()->ci_schedstate.spc_flags &
175 SPCF_SHOULDYIELD)
176 preempt();
177 }
178
179 if (uio->uio_rw == UIO_READ) {
180 error = copyout_vmspace(vm, cp, iov->iov_base,
181 cnt);
182 } else {
183 error = copyin_vmspace(vm, iov->iov_base, cp,
184 cnt);
185 }
186 if (error) {
187 break;
188 }
189 iov->iov_base = (char *)iov->iov_base + cnt;
190 iov->iov_len -= cnt;
191 uio->uio_resid -= cnt;
192 uio->uio_offset += cnt;
193 cp += cnt;
194 KDASSERT(cnt <= n);
195 n -= cnt;
196 }
197
198 return (error);
199 }
200
201 /*
202 * Wrapper for uiomove() that validates the arguments against a known-good
203 * kernel buffer.
204 */
205 int
206 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
207 {
208 size_t offset;
209
210 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
211 (offset = uio->uio_offset) != uio->uio_offset)
212 return (EINVAL);
213 if (offset >= buflen)
214 return (0);
215 return (uiomove((char *)buf + offset, buflen - offset, uio));
216 }
217
218 /*
219 * Give next character to user as result of read.
220 */
221 int
222 ureadc(int c, struct uio *uio)
223 {
224 struct iovec *iov;
225
226 if (uio->uio_resid <= 0)
227 panic("ureadc: non-positive resid");
228 again:
229 if (uio->uio_iovcnt <= 0)
230 panic("ureadc: non-positive iovcnt");
231 iov = uio->uio_iov;
232 if (iov->iov_len <= 0) {
233 uio->uio_iovcnt--;
234 uio->uio_iov++;
235 goto again;
236 }
237 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
238 if (subyte(iov->iov_base, c) < 0)
239 return (EFAULT);
240 } else {
241 *(char *)iov->iov_base = c;
242 }
243 iov->iov_base = (char *)iov->iov_base + 1;
244 iov->iov_len--;
245 uio->uio_resid--;
246 uio->uio_offset++;
247 return (0);
248 }
249
250 /*
251 * Like copyin(), but operates on an arbitrary vmspace.
252 */
253 int
254 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
255 {
256 struct iovec iov;
257 struct uio uio;
258 int error;
259
260 if (len == 0)
261 return (0);
262
263 if (VMSPACE_IS_KERNEL_P(vm)) {
264 return kcopy(uaddr, kaddr, len);
265 }
266 if (__predict_true(vm == curproc->p_vmspace)) {
267 return copyin(uaddr, kaddr, len);
268 }
269
270 iov.iov_base = kaddr;
271 iov.iov_len = len;
272 uio.uio_iov = &iov;
273 uio.uio_iovcnt = 1;
274 uio.uio_offset = (off_t)(uintptr_t)uaddr;
275 uio.uio_resid = len;
276 uio.uio_rw = UIO_READ;
277 UIO_SETUP_SYSSPACE(&uio);
278 error = uvm_io(&vm->vm_map, &uio);
279
280 return (error);
281 }
282
283 /*
284 * Like copyout(), but operates on an arbitrary vmspace.
285 */
286 int
287 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
288 {
289 struct iovec iov;
290 struct uio uio;
291 int error;
292
293 if (len == 0)
294 return (0);
295
296 if (VMSPACE_IS_KERNEL_P(vm)) {
297 return kcopy(kaddr, uaddr, len);
298 }
299 if (__predict_true(vm == curproc->p_vmspace)) {
300 return copyout(kaddr, uaddr, len);
301 }
302
303 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
304 iov.iov_len = len;
305 uio.uio_iov = &iov;
306 uio.uio_iovcnt = 1;
307 uio.uio_offset = (off_t)(uintptr_t)uaddr;
308 uio.uio_resid = len;
309 uio.uio_rw = UIO_WRITE;
310 UIO_SETUP_SYSSPACE(&uio);
311 error = uvm_io(&vm->vm_map, &uio);
312
313 return (error);
314 }
315
316 /*
317 * Like copyin(), but operates on an arbitrary process.
318 */
319 int
320 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
321 {
322 struct vmspace *vm;
323 int error;
324
325 error = proc_vmspace_getref(p, &vm);
326 if (error) {
327 return error;
328 }
329 error = copyin_vmspace(vm, uaddr, kaddr, len);
330 uvmspace_free(vm);
331
332 return error;
333 }
334
335 /*
336 * Like copyout(), but operates on an arbitrary process.
337 */
338 int
339 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
340 {
341 struct vmspace *vm;
342 int error;
343
344 error = proc_vmspace_getref(p, &vm);
345 if (error) {
346 return error;
347 }
348 error = copyout_vmspace(vm, kaddr, uaddr, len);
349 uvmspace_free(vm);
350
351 return error;
352 }
353
354 /*
355 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
356 * flag is passed in `ioctlflags' from the ioctl call.
357 */
358 int
359 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
360 {
361 if (ioctlflags & FKIOCTL)
362 return kcopy(src, dst, len);
363 return copyin(src, dst, len);
364 }
365
366 /*
367 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
368 * flag is passed in `ioctlflags' from the ioctl call.
369 */
370 int
371 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
372 {
373 if (ioctlflags & FKIOCTL)
374 return kcopy(src, dst, len);
375 return copyout(src, dst, len);
376 }
377
378 static void *
379 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
380 {
381 struct hook_desc *hd;
382
383 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
384 if (hd == NULL)
385 return (NULL);
386
387 hd->hk_fn = fn;
388 hd->hk_arg = arg;
389 LIST_INSERT_HEAD(list, hd, hk_list);
390
391 return (hd);
392 }
393
394 static void
395 hook_disestablish(hook_list_t *list, void *vhook)
396 {
397 #ifdef DIAGNOSTIC
398 struct hook_desc *hd;
399
400 LIST_FOREACH(hd, list, hk_list) {
401 if (hd == vhook)
402 break;
403 }
404
405 if (hd == NULL)
406 panic("hook_disestablish: hook %p not established", vhook);
407 #endif
408 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
409 free(vhook, M_DEVBUF);
410 }
411
412 static void
413 hook_destroy(hook_list_t *list)
414 {
415 struct hook_desc *hd;
416
417 while ((hd = LIST_FIRST(list)) != NULL) {
418 LIST_REMOVE(hd, hk_list);
419 free(hd, M_DEVBUF);
420 }
421 }
422
423 static void
424 hook_proc_run(hook_list_t *list, struct proc *p)
425 {
426 struct hook_desc *hd;
427
428 LIST_FOREACH(hd, list, hk_list)
429 ((void (*)(struct proc *, void *))*hd->hk_fn)(p, hd->hk_arg);
430 }
431
432 /*
433 * "Shutdown hook" types, functions, and variables.
434 *
435 * Should be invoked immediately before the
436 * system is halted or rebooted, i.e. after file systems unmounted,
437 * after crash dump done, etc.
438 *
439 * Each shutdown hook is removed from the list before it's run, so that
440 * it won't be run again.
441 */
442
443 static hook_list_t shutdownhook_list;
444
445 void *
446 shutdownhook_establish(void (*fn)(void *), void *arg)
447 {
448 return hook_establish(&shutdownhook_list, fn, arg);
449 }
450
451 void
452 shutdownhook_disestablish(void *vhook)
453 {
454 hook_disestablish(&shutdownhook_list, vhook);
455 }
456
457 /*
458 * Run shutdown hooks. Should be invoked immediately before the
459 * system is halted or rebooted, i.e. after file systems unmounted,
460 * after crash dump done, etc.
461 *
462 * Each shutdown hook is removed from the list before it's run, so that
463 * it won't be run again.
464 */
465 void
466 doshutdownhooks(void)
467 {
468 struct hook_desc *dp;
469
470 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
471 LIST_REMOVE(dp, hk_list);
472 (*dp->hk_fn)(dp->hk_arg);
473 #if 0
474 /*
475 * Don't bother freeing the hook structure,, since we may
476 * be rebooting because of a memory corruption problem,
477 * and this might only make things worse. It doesn't
478 * matter, anyway, since the system is just about to
479 * reboot.
480 */
481 free(dp, M_DEVBUF);
482 #endif
483 }
484 }
485
486 /*
487 * "Mountroot hook" types, functions, and variables.
488 */
489
490 static hook_list_t mountroothook_list;
491
492 void *
493 mountroothook_establish(void (*fn)(struct device *), struct device *dev)
494 {
495 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
496 }
497
498 void
499 mountroothook_disestablish(void *vhook)
500 {
501 hook_disestablish(&mountroothook_list, vhook);
502 }
503
504 void
505 mountroothook_destroy(void)
506 {
507 hook_destroy(&mountroothook_list);
508 }
509
510 void
511 domountroothook(void)
512 {
513 struct hook_desc *hd;
514
515 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
516 if (hd->hk_arg == (void *)root_device) {
517 (*hd->hk_fn)(hd->hk_arg);
518 return;
519 }
520 }
521 }
522
523 static hook_list_t exechook_list;
524
525 void *
526 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
527 {
528 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
529 }
530
531 void
532 exechook_disestablish(void *vhook)
533 {
534 hook_disestablish(&exechook_list, vhook);
535 }
536
537 /*
538 * Run exec hooks.
539 */
540 void
541 doexechooks(struct proc *p)
542 {
543 hook_proc_run(&exechook_list, p);
544 }
545
546 static hook_list_t exithook_list;
547
548 void *
549 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
550 {
551 return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
552 }
553
554 void
555 exithook_disestablish(void *vhook)
556 {
557 hook_disestablish(&exithook_list, vhook);
558 }
559
560 /*
561 * Run exit hooks.
562 */
563 void
564 doexithooks(struct proc *p)
565 {
566 hook_proc_run(&exithook_list, p);
567 }
568
569 static hook_list_t forkhook_list;
570
571 void *
572 forkhook_establish(void (*fn)(struct proc *, struct proc *))
573 {
574 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
575 }
576
577 void
578 forkhook_disestablish(void *vhook)
579 {
580 hook_disestablish(&forkhook_list, vhook);
581 }
582
583 /*
584 * Run fork hooks.
585 */
586 void
587 doforkhooks(struct proc *p2, struct proc *p1)
588 {
589 struct hook_desc *hd;
590
591 LIST_FOREACH(hd, &forkhook_list, hk_list) {
592 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
593 (p2, p1);
594 }
595 }
596
597 /*
598 * "Power hook" types, functions, and variables.
599 * The list of power hooks is kept ordered with the last registered hook
600 * first.
601 * When running the hooks on power down the hooks are called in reverse
602 * registration order, when powering up in registration order.
603 */
604 struct powerhook_desc {
605 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
606 void (*sfd_fn)(int, void *);
607 void *sfd_arg;
608 char sfd_name[16];
609 };
610
611 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
612 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
613
614 void *
615 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
616 {
617 struct powerhook_desc *ndp;
618
619 ndp = (struct powerhook_desc *)
620 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
621 if (ndp == NULL)
622 return (NULL);
623
624 ndp->sfd_fn = fn;
625 ndp->sfd_arg = arg;
626 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
627 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
628
629 aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
630 return (ndp);
631 }
632
633 void
634 powerhook_disestablish(void *vhook)
635 {
636 #ifdef DIAGNOSTIC
637 struct powerhook_desc *dp;
638
639 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
640 if (dp == vhook)
641 goto found;
642 panic("powerhook_disestablish: hook %p not established", vhook);
643 found:
644 #endif
645
646 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
647 sfd_list);
648 free(vhook, M_DEVBUF);
649 }
650
651 /*
652 * Run power hooks.
653 */
654 void
655 dopowerhooks(int why)
656 {
657 struct powerhook_desc *dp;
658
659 #ifdef POWERHOOK_DEBUG
660 const char *why_name;
661 static const char * pwr_names[] = {PWR_NAMES};
662 why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
663 #endif
664
665 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
666 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
667 #ifdef POWERHOOK_DEBUG
668 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
669 #endif
670 (*dp->sfd_fn)(why, dp->sfd_arg);
671 }
672 } else {
673 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
674 #ifdef POWERHOOK_DEBUG
675 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
676 #endif
677 (*dp->sfd_fn)(why, dp->sfd_arg);
678 }
679 }
680
681 #ifdef POWERHOOK_DEBUG
682 printf("dopowerhooks: %s done\n", why_name);
683 #endif
684 }
685
686 static int
687 isswap(struct device *dv)
688 {
689 struct dkwedge_info wi;
690 struct vnode *vn;
691 int error;
692
693 if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
694 return 0;
695
696 if ((vn = opendisk(dv)) == NULL)
697 return 0;
698
699 error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
700 VOP_CLOSE(vn, FREAD, NOCRED);
701 vput(vn);
702 if (error) {
703 #ifdef DEBUG_WEDGE
704 printf("%s: Get wedge info returned %d\n", device_xname(dv), error);
705 #endif
706 return 0;
707 }
708 return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
709 }
710
711 /*
712 * Determine the root device and, if instructed to, the root file system.
713 */
714
715 #include "md.h"
716
717 #if NMD > 0
718 extern struct cfdriver md_cd;
719 #ifdef MEMORY_DISK_IS_ROOT
720 int md_is_root = 1;
721 #else
722 int md_is_root = 0;
723 #endif
724 #endif
725
726 /*
727 * The device and wedge that we booted from. If booted_wedge is NULL,
728 * the we might consult booted_partition.
729 */
730 struct device *booted_device;
731 struct device *booted_wedge;
732 int booted_partition;
733
734 /*
735 * Use partition letters if it's a disk class but not a wedge.
736 * XXX Check for wedge is kinda gross.
737 */
738 #define DEV_USES_PARTITIONS(dv) \
739 (device_class((dv)) == DV_DISK && \
740 !device_is_a((dv), "dk"))
741
742 void
743 setroot(struct device *bootdv, int bootpartition)
744 {
745 struct device *dv;
746 int len, majdev;
747 dev_t nrootdev;
748 dev_t ndumpdev = NODEV;
749 char buf[128];
750 const char *rootdevname;
751 const char *dumpdevname;
752 struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
753 struct device *dumpdv = NULL;
754 struct ifnet *ifp;
755 const char *deffsname;
756 struct vfsops *vops;
757
758 #ifdef TFTPROOT
759 if (tftproot_dhcpboot(bootdv) != 0)
760 boothowto |= RB_ASKNAME;
761 #endif
762
763 #if NMD > 0
764 if (md_is_root) {
765 /*
766 * XXX there should be "root on md0" in the config file,
767 * but it isn't always
768 */
769 bootdv = md_cd.cd_devs[0];
770 bootpartition = 0;
771 }
772 #endif
773
774 /*
775 * If NFS is specified as the file system, and we found
776 * a DV_DISK boot device (or no boot device at all), then
777 * find a reasonable network interface for "rootspec".
778 */
779 vops = vfs_getopsbyname("nfs");
780 if (vops != NULL && vops->vfs_mountroot == mountroot &&
781 rootspec == NULL &&
782 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
783 IFNET_FOREACH(ifp) {
784 if ((ifp->if_flags &
785 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
786 break;
787 }
788 if (ifp == NULL) {
789 /*
790 * Can't find a suitable interface; ask the
791 * user.
792 */
793 boothowto |= RB_ASKNAME;
794 } else {
795 /*
796 * Have a suitable interface; behave as if
797 * the user specified this interface.
798 */
799 rootspec = (const char *)ifp->if_xname;
800 }
801 }
802 if (vops != NULL)
803 vfs_delref(vops);
804
805 /*
806 * If wildcarded root and we the boot device wasn't determined,
807 * ask the user.
808 */
809 if (rootspec == NULL && bootdv == NULL)
810 boothowto |= RB_ASKNAME;
811
812 top:
813 if (boothowto & RB_ASKNAME) {
814 struct device *defdumpdv;
815
816 for (;;) {
817 printf("root device");
818 if (bootdv != NULL) {
819 printf(" (default %s", device_xname(bootdv));
820 if (DEV_USES_PARTITIONS(bootdv))
821 printf("%c", bootpartition + 'a');
822 printf(")");
823 }
824 printf(": ");
825 len = cngetsn(buf, sizeof(buf));
826 if (len == 0 && bootdv != NULL) {
827 strlcpy(buf, device_xname(bootdv), sizeof(buf));
828 len = strlen(buf);
829 }
830 if (len > 0 && buf[len - 1] == '*') {
831 buf[--len] = '\0';
832 dv = getdisk(buf, len, 1, &nrootdev, 0);
833 if (dv != NULL) {
834 rootdv = dv;
835 break;
836 }
837 }
838 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
839 if (dv != NULL) {
840 rootdv = dv;
841 break;
842 }
843 }
844
845 /*
846 * Set up the default dump device. If root is on
847 * a network device, there is no default dump
848 * device, since we don't support dumps to the
849 * network.
850 */
851 if (DEV_USES_PARTITIONS(rootdv) == 0)
852 defdumpdv = NULL;
853 else
854 defdumpdv = rootdv;
855
856 for (;;) {
857 printf("dump device");
858 if (defdumpdv != NULL) {
859 /*
860 * Note, we know it's a disk if we get here.
861 */
862 printf(" (default %sb)", device_xname(defdumpdv));
863 }
864 printf(": ");
865 len = cngetsn(buf, sizeof(buf));
866 if (len == 0) {
867 if (defdumpdv != NULL) {
868 ndumpdev = MAKEDISKDEV(major(nrootdev),
869 DISKUNIT(nrootdev), 1);
870 }
871 dumpdv = defdumpdv;
872 break;
873 }
874 if (len == 4 && strcmp(buf, "none") == 0) {
875 dumpdv = NULL;
876 break;
877 }
878 dv = getdisk(buf, len, 1, &ndumpdev, 1);
879 if (dv != NULL) {
880 dumpdv = dv;
881 break;
882 }
883 }
884
885 rootdev = nrootdev;
886 dumpdev = ndumpdev;
887
888 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
889 vops = LIST_NEXT(vops, vfs_list)) {
890 if (vops->vfs_mountroot != NULL &&
891 vops->vfs_mountroot == mountroot)
892 break;
893 }
894
895 if (vops == NULL) {
896 mountroot = NULL;
897 deffsname = "generic";
898 } else
899 deffsname = vops->vfs_name;
900
901 for (;;) {
902 printf("file system (default %s): ", deffsname);
903 len = cngetsn(buf, sizeof(buf));
904 if (len == 0)
905 break;
906 if (len == 4 && strcmp(buf, "halt") == 0)
907 cpu_reboot(RB_HALT, NULL);
908 else if (len == 6 && strcmp(buf, "reboot") == 0)
909 cpu_reboot(0, NULL);
910 #if defined(DDB)
911 else if (len == 3 && strcmp(buf, "ddb") == 0) {
912 console_debugger();
913 }
914 #endif
915 else if (len == 7 && strcmp(buf, "generic") == 0) {
916 mountroot = NULL;
917 break;
918 }
919 vops = vfs_getopsbyname(buf);
920 if (vops == NULL || vops->vfs_mountroot == NULL) {
921 printf("use one of: generic");
922 for (vops = LIST_FIRST(&vfs_list);
923 vops != NULL;
924 vops = LIST_NEXT(vops, vfs_list)) {
925 if (vops->vfs_mountroot != NULL)
926 printf(" %s", vops->vfs_name);
927 }
928 #if defined(DDB)
929 printf(" ddb");
930 #endif
931 printf(" halt reboot\n");
932 } else {
933 mountroot = vops->vfs_mountroot;
934 vfs_delref(vops);
935 break;
936 }
937 }
938
939 } else if (rootspec == NULL) {
940 /*
941 * Wildcarded root; use the boot device.
942 */
943 rootdv = bootdv;
944
945 if (bootdv)
946 majdev = devsw_name2blk(device_xname(bootdv), NULL, 0);
947 else
948 majdev = -1;
949 if (majdev >= 0) {
950 /*
951 * Root is on a disk. `bootpartition' is root,
952 * unless the device does not use partitions.
953 */
954 if (DEV_USES_PARTITIONS(bootdv))
955 rootdev = MAKEDISKDEV(majdev,
956 device_unit(bootdv),
957 bootpartition);
958 else
959 rootdev = makedev(majdev, device_unit(bootdv));
960 }
961 } else {
962
963 /*
964 * `root on <dev> ...'
965 */
966
967 /*
968 * If it's a network interface, we can bail out
969 * early.
970 */
971 dv = finddevice(rootspec);
972 if (dv != NULL && device_class(dv) == DV_IFNET) {
973 rootdv = dv;
974 goto haveroot;
975 }
976
977 if (rootdev == NODEV &&
978 device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
979 (majdev = devsw_name2blk(device_xname(dv), NULL, 0)) >= 0)
980 rootdev = makedev(majdev, device_unit(dv));
981
982 rootdevname = devsw_blk2name(major(rootdev));
983 if (rootdevname == NULL) {
984 printf("unknown device major 0x%x\n", rootdev);
985 boothowto |= RB_ASKNAME;
986 goto top;
987 }
988 memset(buf, 0, sizeof(buf));
989 snprintf(buf, sizeof(buf), "%s%d", rootdevname,
990 DISKUNIT(rootdev));
991
992 rootdv = finddevice(buf);
993 if (rootdv == NULL) {
994 printf("device %s (0x%x) not configured\n",
995 buf, rootdev);
996 boothowto |= RB_ASKNAME;
997 goto top;
998 }
999 }
1000
1001 haveroot:
1002
1003 root_device = rootdv;
1004
1005 switch (device_class(rootdv)) {
1006 case DV_IFNET:
1007 case DV_DISK:
1008 aprint_normal("root on %s", device_xname(rootdv));
1009 if (DEV_USES_PARTITIONS(rootdv))
1010 aprint_normal("%c", DISKPART(rootdev) + 'a');
1011 break;
1012
1013 default:
1014 printf("can't determine root device\n");
1015 boothowto |= RB_ASKNAME;
1016 goto top;
1017 }
1018
1019 /*
1020 * Now configure the dump device.
1021 *
1022 * If we haven't figured out the dump device, do so, with
1023 * the following rules:
1024 *
1025 * (a) We already know dumpdv in the RB_ASKNAME case.
1026 *
1027 * (b) If dumpspec is set, try to use it. If the device
1028 * is not available, punt.
1029 *
1030 * (c) If dumpspec is not set, the dump device is
1031 * wildcarded or unspecified. If the root device
1032 * is DV_IFNET, punt. Otherwise, use partition b
1033 * of the root device.
1034 */
1035
1036 if (boothowto & RB_ASKNAME) { /* (a) */
1037 if (dumpdv == NULL)
1038 goto nodumpdev;
1039 } else if (dumpspec != NULL) { /* (b) */
1040 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1041 /*
1042 * Operator doesn't want a dump device.
1043 * Or looks like they tried to pick a network
1044 * device. Oops.
1045 */
1046 goto nodumpdev;
1047 }
1048
1049 dumpdevname = devsw_blk2name(major(dumpdev));
1050 if (dumpdevname == NULL)
1051 goto nodumpdev;
1052 memset(buf, 0, sizeof(buf));
1053 snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
1054 DISKUNIT(dumpdev));
1055
1056 dumpdv = finddevice(buf);
1057 if (dumpdv == NULL) {
1058 /*
1059 * Device not configured.
1060 */
1061 goto nodumpdev;
1062 }
1063 } else { /* (c) */
1064 if (DEV_USES_PARTITIONS(rootdv) == 0) {
1065 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1066 dv = TAILQ_NEXT(dv, dv_list))
1067 if (isswap(dv))
1068 break;
1069 if (dv == NULL)
1070 goto nodumpdev;
1071
1072 majdev = devsw_name2blk(device_xname(dv), NULL, 0);
1073 if (majdev < 0)
1074 goto nodumpdev;
1075 dumpdv = dv;
1076 dumpdev = makedev(majdev, device_unit(dumpdv));
1077 } else {
1078 dumpdv = rootdv;
1079 dumpdev = MAKEDISKDEV(major(rootdev),
1080 device_unit(dumpdv), 1);
1081 }
1082 }
1083
1084 dumpcdev = devsw_blk2chr(dumpdev);
1085 aprint_normal(" dumps on %s", device_xname(dumpdv));
1086 if (DEV_USES_PARTITIONS(dumpdv))
1087 aprint_normal("%c", DISKPART(dumpdev) + 'a');
1088 aprint_normal("\n");
1089 return;
1090
1091 nodumpdev:
1092 dumpdev = NODEV;
1093 dumpcdev = NODEV;
1094 aprint_normal("\n");
1095 }
1096
1097 static struct device *
1098 finddevice(const char *name)
1099 {
1100 const char *wname;
1101
1102 if ((wname = getwedgename(name, strlen(name))) != NULL)
1103 return dkwedge_find_by_wname(wname);
1104
1105 return device_find_by_xname(name);
1106 }
1107
1108 static struct device *
1109 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1110 {
1111 struct device *dv;
1112
1113 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1114 printf("use one of:");
1115 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1116 if (DEV_USES_PARTITIONS(dv))
1117 printf(" %s[a-%c]", device_xname(dv),
1118 'a' + MAXPARTITIONS - 1);
1119 else if (device_class(dv) == DV_DISK)
1120 printf(" %s", device_xname(dv));
1121 if (isdump == 0 && device_class(dv) == DV_IFNET)
1122 printf(" %s", device_xname(dv));
1123 }
1124 dkwedge_print_wnames();
1125 if (isdump)
1126 printf(" none");
1127 #if defined(DDB)
1128 printf(" ddb");
1129 #endif
1130 printf(" halt reboot\n");
1131 }
1132 return dv;
1133 }
1134
1135 static const char *
1136 getwedgename(const char *name, int namelen)
1137 {
1138 const char *wpfx = "wedge:";
1139 const int wpfxlen = strlen(wpfx);
1140
1141 if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1142 return NULL;
1143
1144 return name + wpfxlen;
1145 }
1146
1147 static struct device *
1148 parsedisk(char *str, int len, int defpart, dev_t *devp)
1149 {
1150 struct device *dv;
1151 const char *wname;
1152 char *cp, c;
1153 int majdev, part;
1154 if (len == 0)
1155 return (NULL);
1156
1157 if (len == 4 && strcmp(str, "halt") == 0)
1158 cpu_reboot(RB_HALT, NULL);
1159 else if (len == 6 && strcmp(str, "reboot") == 0)
1160 cpu_reboot(0, NULL);
1161 #if defined(DDB)
1162 else if (len == 3 && strcmp(str, "ddb") == 0)
1163 console_debugger();
1164 #endif
1165
1166 cp = str + len - 1;
1167 c = *cp;
1168
1169 if ((wname = getwedgename(str, len)) != NULL) {
1170 if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1171 return NULL;
1172 part = defpart;
1173 goto gotdisk;
1174 } else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1175 part = c - 'a';
1176 *cp = '\0';
1177 } else
1178 part = defpart;
1179
1180 dv = finddevice(str);
1181 if (dv != NULL) {
1182 if (device_class(dv) == DV_DISK) {
1183 gotdisk:
1184 majdev = devsw_name2blk(device_xname(dv), NULL, 0);
1185 if (majdev < 0)
1186 panic("parsedisk");
1187 if (DEV_USES_PARTITIONS(dv))
1188 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1189 part);
1190 else
1191 *devp = makedev(majdev, device_unit(dv));
1192 }
1193
1194 if (device_class(dv) == DV_IFNET)
1195 *devp = NODEV;
1196 }
1197
1198 *cp = c;
1199 return (dv);
1200 }
1201
1202 /*
1203 * snprintf() `bytes' into `buf', reformatting it so that the number,
1204 * plus a possible `x' + suffix extension) fits into len bytes (including
1205 * the terminating NUL).
1206 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1207 * E.g, given a len of 9 and a suffix of `B':
1208 * bytes result
1209 * ----- ------
1210 * 99999 `99999 B'
1211 * 100000 `97 kB'
1212 * 66715648 `65152 kB'
1213 * 252215296 `240 MB'
1214 */
1215 int
1216 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1217 int divisor)
1218 {
1219 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1220 const char *prefixes;
1221 int r;
1222 uint64_t umax;
1223 size_t i, suffixlen;
1224
1225 if (buf == NULL || suffix == NULL)
1226 return (-1);
1227 if (len > 0)
1228 buf[0] = '\0';
1229 suffixlen = strlen(suffix);
1230 /* check if enough room for `x y' + suffix + `\0' */
1231 if (len < 4 + suffixlen)
1232 return (-1);
1233
1234 if (divisor == 1024) {
1235 /*
1236 * binary multiplies
1237 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1238 */
1239 prefixes = " KMGTPE";
1240 } else
1241 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1242
1243 umax = 1;
1244 for (i = 0; i < len - suffixlen - 3; i++)
1245 umax *= 10;
1246 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1247 bytes /= divisor;
1248
1249 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1250 i == 0 ? "" : " ", prefixes[i], suffix);
1251
1252 return (r);
1253 }
1254
1255 int
1256 format_bytes(char *buf, size_t len, uint64_t bytes)
1257 {
1258 int rv;
1259 size_t nlen;
1260
1261 rv = humanize_number(buf, len, bytes, "B", 1024);
1262 if (rv != -1) {
1263 /* nuke the trailing ` B' if it exists */
1264 nlen = strlen(buf) - 2;
1265 if (strcmp(&buf[nlen], " B") == 0)
1266 buf[nlen] = '\0';
1267 }
1268 return (rv);
1269 }
1270
1271 /*
1272 * Return true if system call tracing is enabled for the specified process.
1273 */
1274 bool
1275 trace_is_enabled(struct proc *p)
1276 {
1277 #ifdef SYSCALL_DEBUG
1278 return (true);
1279 #endif
1280 #ifdef KTRACE
1281 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1282 return (true);
1283 #endif
1284 #ifdef PTRACE
1285 if (ISSET(p->p_slflag, PSL_SYSCALL))
1286 return (true);
1287 #endif
1288
1289 return (false);
1290 }
1291
1292 /*
1293 * Start trace of particular system call. If process is being traced,
1294 * this routine is called by MD syscall dispatch code just before
1295 * a system call is actually executed.
1296 */
1297 int
1298 trace_enter(register_t code, const register_t *args, int narg)
1299 {
1300 #ifdef SYSCALL_DEBUG
1301 scdebug_call(code, args);
1302 #endif /* SYSCALL_DEBUG */
1303
1304 ktrsyscall(code, args, narg);
1305
1306 #ifdef PTRACE
1307 if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1308 (PSL_SYSCALL|PSL_TRACED))
1309 process_stoptrace();
1310 #endif
1311 return 0;
1312 }
1313
1314 /*
1315 * End trace of particular system call. If process is being traced,
1316 * this routine is called by MD syscall dispatch code just after
1317 * a system call finishes.
1318 * MD caller guarantees the passed 'code' is within the supported
1319 * system call number range for emulation the process runs under.
1320 */
1321 void
1322 trace_exit(register_t code, register_t rval[], int error)
1323 {
1324 #ifdef SYSCALL_DEBUG
1325 scdebug_ret(code, error, rval);
1326 #endif /* SYSCALL_DEBUG */
1327
1328 ktrsysret(code, error, rval);
1329
1330 #ifdef PTRACE
1331 if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1332 (PSL_SYSCALL|PSL_TRACED))
1333 process_stoptrace();
1334 #endif
1335 }
1336
1337 int
1338 syscall_establish(const struct emul *em, const struct syscall_package *sp)
1339 {
1340 struct sysent *sy;
1341 int i;
1342
1343 KASSERT(mutex_owned(&module_lock));
1344
1345 if (em == NULL) {
1346 em = &emul_netbsd;
1347 }
1348 sy = em->e_sysent;
1349
1350 /*
1351 * Ensure that all preconditions are valid, since this is
1352 * an all or nothing deal. Once a system call is entered,
1353 * it can become busy and we could be unable to remove it
1354 * on error.
1355 */
1356 for (i = 0; sp[i].sp_call != NULL; i++) {
1357 if (sy[sp[i].sp_code].sy_call != sys_nomodule) {
1358 return EBUSY;
1359 }
1360 }
1361 /* Everything looks good, patch them in. */
1362 for (i = 0; sp[i].sp_call != NULL; i++) {
1363 sy[sp[i].sp_code].sy_call = sp[i].sp_call;
1364 }
1365
1366 return 0;
1367 }
1368
1369 int
1370 syscall_disestablish(const struct emul *em, const struct syscall_package *sp)
1371 {
1372 struct sysent *sy;
1373 uint64_t where;
1374 lwp_t *l;
1375 int i;
1376
1377 KASSERT(mutex_owned(&module_lock));
1378
1379 if (em == NULL) {
1380 em = &emul_netbsd;
1381 }
1382 sy = em->e_sysent;
1383
1384 /*
1385 * First, patch the system calls to sys_nomodule to gate further
1386 * activity.
1387 */
1388 for (i = 0; sp[i].sp_call != NULL; i++) {
1389 KASSERT(sy[sp[i].sp_code].sy_call == sp[i].sp_call);
1390 sy[sp[i].sp_code].sy_call = sys_nomodule;
1391 }
1392
1393 /*
1394 * Run a cross call to cycle through all CPUs. This does two
1395 * things: lock activity provides a barrier and makes our update
1396 * of sy_call visible to all CPUs, and upon return we can be sure
1397 * that we see pertinent values of l_sysent posted by remote CPUs.
1398 */
1399 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1400 xc_wait(where);
1401
1402 /*
1403 * Now it's safe to check l_sysent. Run through all LWPs and see
1404 * if anyone is still using the system call.
1405 */
1406 for (i = 0; sp[i].sp_call != NULL; i++) {
1407 mutex_enter(proc_lock);
1408 LIST_FOREACH(l, &alllwp, l_list) {
1409 if (l->l_sysent == &sy[sp[i].sp_code]) {
1410 break;
1411 }
1412 }
1413 mutex_exit(proc_lock);
1414 if (l == NULL) {
1415 continue;
1416 }
1417 /*
1418 * We lose: one or more calls are still in use. Put back
1419 * the old entrypoints and act like nothing happened.
1420 * When we drop module_lock, any system calls held in
1421 * sys_nomodule() will be restarted.
1422 */
1423 for (i = 0; sp[i].sp_call != NULL; i++) {
1424 sy[sp[i].sp_code].sy_call = sp[i].sp_call;
1425 }
1426 return EBUSY;
1427 }
1428
1429 return 0;
1430 }
1431