kern_subr.c revision 1.200 1 /* $NetBSD: kern_subr.c,v 1.200 2009/09/25 19:21:09 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Luke Mewburn.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Copyright (c) 1992, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * This software was developed by the Computer Systems Engineering group
46 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
47 * contributed to Berkeley.
48 *
49 * All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed by the University of
52 * California, Lawrence Berkeley Laboratory.
53 *
54 * Redistribution and use in source and binary forms, with or without
55 * modification, are permitted provided that the following conditions
56 * are met:
57 * 1. Redistributions of source code must retain the above copyright
58 * notice, this list of conditions and the following disclaimer.
59 * 2. Redistributions in binary form must reproduce the above copyright
60 * notice, this list of conditions and the following disclaimer in the
61 * documentation and/or other materials provided with the distribution.
62 * 3. Neither the name of the University nor the names of its contributors
63 * may be used to endorse or promote products derived from this software
64 * without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76 * SUCH DAMAGE.
77 *
78 * @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.200 2009/09/25 19:21:09 dyoung Exp $");
83
84 #include "opt_ddb.h"
85 #include "opt_md.h"
86 #include "opt_syscall_debug.h"
87 #include "opt_ktrace.h"
88 #include "opt_ptrace.h"
89 #include "opt_powerhook.h"
90 #include "opt_tftproot.h"
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/proc.h>
95 #include <sys/malloc.h>
96 #include <sys/mount.h>
97 #include <sys/device.h>
98 #include <sys/reboot.h>
99 #include <sys/conf.h>
100 #include <sys/disk.h>
101 #include <sys/disklabel.h>
102 #include <sys/queue.h>
103 #include <sys/ktrace.h>
104 #include <sys/ptrace.h>
105 #include <sys/fcntl.h>
106 #include <sys/kauth.h>
107 #include <sys/vnode.h>
108 #include <sys/syscallvar.h>
109 #include <sys/xcall.h>
110 #include <sys/module.h>
111
112 #include <uvm/uvm_extern.h>
113
114 #include <dev/cons.h>
115
116 #include <net/if.h>
117
118 /* XXX these should eventually move to subr_autoconf.c */
119 static device_t finddevice(const char *);
120 static device_t getdisk(char *, int, int, dev_t *, int);
121 static device_t parsedisk(char *, int, int, dev_t *);
122 static const char *getwedgename(const char *, int);
123
124 /*
125 * A generic linear hook.
126 */
127 struct hook_desc {
128 LIST_ENTRY(hook_desc) hk_list;
129 void (*hk_fn)(void *);
130 void *hk_arg;
131 };
132 typedef LIST_HEAD(, hook_desc) hook_list_t;
133
134 #ifdef TFTPROOT
135 int tftproot_dhcpboot(device_t);
136 #endif
137
138 dev_t dumpcdev; /* for savecore */
139
140 void
141 uio_setup_sysspace(struct uio *uio)
142 {
143
144 uio->uio_vmspace = vmspace_kernel();
145 }
146
147 int
148 uiomove(void *buf, size_t n, struct uio *uio)
149 {
150 struct vmspace *vm = uio->uio_vmspace;
151 struct iovec *iov;
152 size_t cnt;
153 int error = 0;
154 char *cp = buf;
155
156 ASSERT_SLEEPABLE();
157
158 #ifdef DIAGNOSTIC
159 if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
160 panic("uiomove: mode");
161 #endif
162 while (n > 0 && uio->uio_resid) {
163 iov = uio->uio_iov;
164 cnt = iov->iov_len;
165 if (cnt == 0) {
166 KASSERT(uio->uio_iovcnt > 0);
167 uio->uio_iov++;
168 uio->uio_iovcnt--;
169 continue;
170 }
171 if (cnt > n)
172 cnt = n;
173 if (!VMSPACE_IS_KERNEL_P(vm)) {
174 if (curcpu()->ci_schedstate.spc_flags &
175 SPCF_SHOULDYIELD)
176 preempt();
177 }
178
179 if (uio->uio_rw == UIO_READ) {
180 error = copyout_vmspace(vm, cp, iov->iov_base,
181 cnt);
182 } else {
183 error = copyin_vmspace(vm, iov->iov_base, cp,
184 cnt);
185 }
186 if (error) {
187 break;
188 }
189 iov->iov_base = (char *)iov->iov_base + cnt;
190 iov->iov_len -= cnt;
191 uio->uio_resid -= cnt;
192 uio->uio_offset += cnt;
193 cp += cnt;
194 KDASSERT(cnt <= n);
195 n -= cnt;
196 }
197
198 return (error);
199 }
200
201 /*
202 * Wrapper for uiomove() that validates the arguments against a known-good
203 * kernel buffer.
204 */
205 int
206 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
207 {
208 size_t offset;
209
210 if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
211 (offset = uio->uio_offset) != uio->uio_offset)
212 return (EINVAL);
213 if (offset >= buflen)
214 return (0);
215 return (uiomove((char *)buf + offset, buflen - offset, uio));
216 }
217
218 /*
219 * Give next character to user as result of read.
220 */
221 int
222 ureadc(int c, struct uio *uio)
223 {
224 struct iovec *iov;
225
226 if (uio->uio_resid <= 0)
227 panic("ureadc: non-positive resid");
228 again:
229 if (uio->uio_iovcnt <= 0)
230 panic("ureadc: non-positive iovcnt");
231 iov = uio->uio_iov;
232 if (iov->iov_len <= 0) {
233 uio->uio_iovcnt--;
234 uio->uio_iov++;
235 goto again;
236 }
237 if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
238 if (subyte(iov->iov_base, c) < 0)
239 return (EFAULT);
240 } else {
241 *(char *)iov->iov_base = c;
242 }
243 iov->iov_base = (char *)iov->iov_base + 1;
244 iov->iov_len--;
245 uio->uio_resid--;
246 uio->uio_offset++;
247 return (0);
248 }
249
250 /*
251 * Like copyin(), but operates on an arbitrary vmspace.
252 */
253 int
254 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
255 {
256 struct iovec iov;
257 struct uio uio;
258 int error;
259
260 if (len == 0)
261 return (0);
262
263 if (VMSPACE_IS_KERNEL_P(vm)) {
264 return kcopy(uaddr, kaddr, len);
265 }
266 if (__predict_true(vm == curproc->p_vmspace)) {
267 return copyin(uaddr, kaddr, len);
268 }
269
270 iov.iov_base = kaddr;
271 iov.iov_len = len;
272 uio.uio_iov = &iov;
273 uio.uio_iovcnt = 1;
274 uio.uio_offset = (off_t)(uintptr_t)uaddr;
275 uio.uio_resid = len;
276 uio.uio_rw = UIO_READ;
277 UIO_SETUP_SYSSPACE(&uio);
278 error = uvm_io(&vm->vm_map, &uio);
279
280 return (error);
281 }
282
283 /*
284 * Like copyout(), but operates on an arbitrary vmspace.
285 */
286 int
287 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
288 {
289 struct iovec iov;
290 struct uio uio;
291 int error;
292
293 if (len == 0)
294 return (0);
295
296 if (VMSPACE_IS_KERNEL_P(vm)) {
297 return kcopy(kaddr, uaddr, len);
298 }
299 if (__predict_true(vm == curproc->p_vmspace)) {
300 return copyout(kaddr, uaddr, len);
301 }
302
303 iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
304 iov.iov_len = len;
305 uio.uio_iov = &iov;
306 uio.uio_iovcnt = 1;
307 uio.uio_offset = (off_t)(uintptr_t)uaddr;
308 uio.uio_resid = len;
309 uio.uio_rw = UIO_WRITE;
310 UIO_SETUP_SYSSPACE(&uio);
311 error = uvm_io(&vm->vm_map, &uio);
312
313 return (error);
314 }
315
316 /*
317 * Like copyin(), but operates on an arbitrary process.
318 */
319 int
320 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
321 {
322 struct vmspace *vm;
323 int error;
324
325 error = proc_vmspace_getref(p, &vm);
326 if (error) {
327 return error;
328 }
329 error = copyin_vmspace(vm, uaddr, kaddr, len);
330 uvmspace_free(vm);
331
332 return error;
333 }
334
335 /*
336 * Like copyout(), but operates on an arbitrary process.
337 */
338 int
339 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
340 {
341 struct vmspace *vm;
342 int error;
343
344 error = proc_vmspace_getref(p, &vm);
345 if (error) {
346 return error;
347 }
348 error = copyout_vmspace(vm, kaddr, uaddr, len);
349 uvmspace_free(vm);
350
351 return error;
352 }
353
354 /*
355 * Like copyin(), except it operates on kernel addresses when the FKIOCTL
356 * flag is passed in `ioctlflags' from the ioctl call.
357 */
358 int
359 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
360 {
361 if (ioctlflags & FKIOCTL)
362 return kcopy(src, dst, len);
363 return copyin(src, dst, len);
364 }
365
366 /*
367 * Like copyout(), except it operates on kernel addresses when the FKIOCTL
368 * flag is passed in `ioctlflags' from the ioctl call.
369 */
370 int
371 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
372 {
373 if (ioctlflags & FKIOCTL)
374 return kcopy(src, dst, len);
375 return copyout(src, dst, len);
376 }
377
378 static void *
379 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
380 {
381 struct hook_desc *hd;
382
383 hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
384 if (hd == NULL)
385 return (NULL);
386
387 hd->hk_fn = fn;
388 hd->hk_arg = arg;
389 LIST_INSERT_HEAD(list, hd, hk_list);
390
391 return (hd);
392 }
393
394 static void
395 hook_disestablish(hook_list_t *list, void *vhook)
396 {
397 #ifdef DIAGNOSTIC
398 struct hook_desc *hd;
399
400 LIST_FOREACH(hd, list, hk_list) {
401 if (hd == vhook)
402 break;
403 }
404
405 if (hd == NULL)
406 panic("hook_disestablish: hook %p not established", vhook);
407 #endif
408 LIST_REMOVE((struct hook_desc *)vhook, hk_list);
409 free(vhook, M_DEVBUF);
410 }
411
412 static void
413 hook_destroy(hook_list_t *list)
414 {
415 struct hook_desc *hd;
416
417 while ((hd = LIST_FIRST(list)) != NULL) {
418 LIST_REMOVE(hd, hk_list);
419 free(hd, M_DEVBUF);
420 }
421 }
422
423 static void
424 hook_proc_run(hook_list_t *list, struct proc *p)
425 {
426 struct hook_desc *hd;
427
428 LIST_FOREACH(hd, list, hk_list)
429 ((void (*)(struct proc *, void *))*hd->hk_fn)(p, hd->hk_arg);
430 }
431
432 /*
433 * "Shutdown hook" types, functions, and variables.
434 *
435 * Should be invoked immediately before the
436 * system is halted or rebooted, i.e. after file systems unmounted,
437 * after crash dump done, etc.
438 *
439 * Each shutdown hook is removed from the list before it's run, so that
440 * it won't be run again.
441 */
442
443 static hook_list_t shutdownhook_list;
444
445 void *
446 shutdownhook_establish(void (*fn)(void *), void *arg)
447 {
448 return hook_establish(&shutdownhook_list, fn, arg);
449 }
450
451 void
452 shutdownhook_disestablish(void *vhook)
453 {
454 hook_disestablish(&shutdownhook_list, vhook);
455 }
456
457 /*
458 * Run shutdown hooks. Should be invoked immediately before the
459 * system is halted or rebooted, i.e. after file systems unmounted,
460 * after crash dump done, etc.
461 *
462 * Each shutdown hook is removed from the list before it's run, so that
463 * it won't be run again.
464 */
465 void
466 doshutdownhooks(void)
467 {
468 struct hook_desc *dp;
469
470 while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
471 LIST_REMOVE(dp, hk_list);
472 (*dp->hk_fn)(dp->hk_arg);
473 #if 0
474 /*
475 * Don't bother freeing the hook structure,, since we may
476 * be rebooting because of a memory corruption problem,
477 * and this might only make things worse. It doesn't
478 * matter, anyway, since the system is just about to
479 * reboot.
480 */
481 free(dp, M_DEVBUF);
482 #endif
483 }
484 }
485
486 /*
487 * "Mountroot hook" types, functions, and variables.
488 */
489
490 static hook_list_t mountroothook_list;
491
492 void *
493 mountroothook_establish(void (*fn)(device_t), device_t dev)
494 {
495 return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
496 }
497
498 void
499 mountroothook_disestablish(void *vhook)
500 {
501 hook_disestablish(&mountroothook_list, vhook);
502 }
503
504 void
505 mountroothook_destroy(void)
506 {
507 hook_destroy(&mountroothook_list);
508 }
509
510 void
511 domountroothook(void)
512 {
513 struct hook_desc *hd;
514
515 LIST_FOREACH(hd, &mountroothook_list, hk_list) {
516 if (hd->hk_arg == (void *)root_device) {
517 (*hd->hk_fn)(hd->hk_arg);
518 return;
519 }
520 }
521 }
522
523 static hook_list_t exechook_list;
524
525 void *
526 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
527 {
528 return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
529 }
530
531 void
532 exechook_disestablish(void *vhook)
533 {
534 hook_disestablish(&exechook_list, vhook);
535 }
536
537 /*
538 * Run exec hooks.
539 */
540 void
541 doexechooks(struct proc *p)
542 {
543 hook_proc_run(&exechook_list, p);
544 }
545
546 static hook_list_t exithook_list;
547 extern krwlock_t exec_lock;
548
549 void *
550 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
551 {
552 void *rv;
553
554 rw_enter(&exec_lock, RW_WRITER);
555 rv = hook_establish(&exithook_list, (void (*)(void *))fn, arg);
556 rw_exit(&exec_lock);
557 return rv;
558 }
559
560 void
561 exithook_disestablish(void *vhook)
562 {
563
564 rw_enter(&exec_lock, RW_WRITER);
565 hook_disestablish(&exithook_list, vhook);
566 rw_exit(&exec_lock);
567 }
568
569 /*
570 * Run exit hooks.
571 */
572 void
573 doexithooks(struct proc *p)
574 {
575 hook_proc_run(&exithook_list, p);
576 }
577
578 static hook_list_t forkhook_list;
579
580 void *
581 forkhook_establish(void (*fn)(struct proc *, struct proc *))
582 {
583 return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
584 }
585
586 void
587 forkhook_disestablish(void *vhook)
588 {
589 hook_disestablish(&forkhook_list, vhook);
590 }
591
592 /*
593 * Run fork hooks.
594 */
595 void
596 doforkhooks(struct proc *p2, struct proc *p1)
597 {
598 struct hook_desc *hd;
599
600 LIST_FOREACH(hd, &forkhook_list, hk_list) {
601 ((void (*)(struct proc *, struct proc *))*hd->hk_fn)
602 (p2, p1);
603 }
604 }
605
606 /*
607 * "Power hook" types, functions, and variables.
608 * The list of power hooks is kept ordered with the last registered hook
609 * first.
610 * When running the hooks on power down the hooks are called in reverse
611 * registration order, when powering up in registration order.
612 */
613 struct powerhook_desc {
614 CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
615 void (*sfd_fn)(int, void *);
616 void *sfd_arg;
617 char sfd_name[16];
618 };
619
620 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
621 CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
622
623 void *
624 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
625 {
626 struct powerhook_desc *ndp;
627
628 ndp = (struct powerhook_desc *)
629 malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
630 if (ndp == NULL)
631 return (NULL);
632
633 ndp->sfd_fn = fn;
634 ndp->sfd_arg = arg;
635 strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
636 CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
637
638 aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
639 return (ndp);
640 }
641
642 void
643 powerhook_disestablish(void *vhook)
644 {
645 #ifdef DIAGNOSTIC
646 struct powerhook_desc *dp;
647
648 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
649 if (dp == vhook)
650 goto found;
651 panic("powerhook_disestablish: hook %p not established", vhook);
652 found:
653 #endif
654
655 CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
656 sfd_list);
657 free(vhook, M_DEVBUF);
658 }
659
660 /*
661 * Run power hooks.
662 */
663 void
664 dopowerhooks(int why)
665 {
666 struct powerhook_desc *dp;
667
668 #ifdef POWERHOOK_DEBUG
669 const char *why_name;
670 static const char * pwr_names[] = {PWR_NAMES};
671 why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
672 #endif
673
674 if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
675 CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
676 #ifdef POWERHOOK_DEBUG
677 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
678 #endif
679 (*dp->sfd_fn)(why, dp->sfd_arg);
680 }
681 } else {
682 CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
683 #ifdef POWERHOOK_DEBUG
684 printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
685 #endif
686 (*dp->sfd_fn)(why, dp->sfd_arg);
687 }
688 }
689
690 #ifdef POWERHOOK_DEBUG
691 printf("dopowerhooks: %s done\n", why_name);
692 #endif
693 }
694
695 static int
696 isswap(device_t dv)
697 {
698 struct dkwedge_info wi;
699 struct vnode *vn;
700 int error;
701
702 if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
703 return 0;
704
705 if ((vn = opendisk(dv)) == NULL)
706 return 0;
707
708 error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
709 VOP_CLOSE(vn, FREAD, NOCRED);
710 vput(vn);
711 if (error) {
712 #ifdef DEBUG_WEDGE
713 printf("%s: Get wedge info returned %d\n", device_xname(dv), error);
714 #endif
715 return 0;
716 }
717 return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
718 }
719
720 /*
721 * Determine the root device and, if instructed to, the root file system.
722 */
723
724 #include "md.h"
725
726 #if NMD > 0
727 extern struct cfdriver md_cd;
728 #ifdef MEMORY_DISK_IS_ROOT
729 int md_is_root = 1;
730 #else
731 int md_is_root = 0;
732 #endif
733 #endif
734
735 /*
736 * The device and wedge that we booted from. If booted_wedge is NULL,
737 * the we might consult booted_partition.
738 */
739 device_t booted_device;
740 device_t booted_wedge;
741 int booted_partition;
742
743 /*
744 * Use partition letters if it's a disk class but not a wedge.
745 * XXX Check for wedge is kinda gross.
746 */
747 #define DEV_USES_PARTITIONS(dv) \
748 (device_class((dv)) == DV_DISK && \
749 !device_is_a((dv), "dk"))
750
751 void
752 setroot(device_t bootdv, int bootpartition)
753 {
754 device_t dv;
755 int len, majdev;
756 dev_t nrootdev;
757 dev_t ndumpdev = NODEV;
758 char buf[128];
759 const char *rootdevname;
760 const char *dumpdevname;
761 device_t rootdv = NULL; /* XXX gcc -Wuninitialized */
762 device_t dumpdv = NULL;
763 struct ifnet *ifp;
764 const char *deffsname;
765 struct vfsops *vops;
766
767 #ifdef TFTPROOT
768 if (tftproot_dhcpboot(bootdv) != 0)
769 boothowto |= RB_ASKNAME;
770 #endif
771
772 #if NMD > 0
773 if (md_is_root) {
774 /*
775 * XXX there should be "root on md0" in the config file,
776 * but it isn't always
777 */
778 bootdv = md_cd.cd_devs[0];
779 bootpartition = 0;
780 }
781 #endif
782
783 /*
784 * If NFS is specified as the file system, and we found
785 * a DV_DISK boot device (or no boot device at all), then
786 * find a reasonable network interface for "rootspec".
787 */
788 vops = vfs_getopsbyname(MOUNT_NFS);
789 if (vops != NULL && strcmp(rootfstype, MOUNT_NFS) == 0 &&
790 rootspec == NULL &&
791 (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
792 IFNET_FOREACH(ifp) {
793 if ((ifp->if_flags &
794 (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
795 break;
796 }
797 if (ifp == NULL) {
798 /*
799 * Can't find a suitable interface; ask the
800 * user.
801 */
802 boothowto |= RB_ASKNAME;
803 } else {
804 /*
805 * Have a suitable interface; behave as if
806 * the user specified this interface.
807 */
808 rootspec = (const char *)ifp->if_xname;
809 }
810 }
811 if (vops != NULL)
812 vfs_delref(vops);
813
814 /*
815 * If wildcarded root and we the boot device wasn't determined,
816 * ask the user.
817 */
818 if (rootspec == NULL && bootdv == NULL)
819 boothowto |= RB_ASKNAME;
820
821 top:
822 if (boothowto & RB_ASKNAME) {
823 device_t defdumpdv;
824
825 for (;;) {
826 printf("root device");
827 if (bootdv != NULL) {
828 printf(" (default %s", device_xname(bootdv));
829 if (DEV_USES_PARTITIONS(bootdv))
830 printf("%c", bootpartition + 'a');
831 printf(")");
832 }
833 printf(": ");
834 len = cngetsn(buf, sizeof(buf));
835 if (len == 0 && bootdv != NULL) {
836 strlcpy(buf, device_xname(bootdv), sizeof(buf));
837 len = strlen(buf);
838 }
839 if (len > 0 && buf[len - 1] == '*') {
840 buf[--len] = '\0';
841 dv = getdisk(buf, len, 1, &nrootdev, 0);
842 if (dv != NULL) {
843 rootdv = dv;
844 break;
845 }
846 }
847 dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
848 if (dv != NULL) {
849 rootdv = dv;
850 break;
851 }
852 }
853
854 /*
855 * Set up the default dump device. If root is on
856 * a network device, there is no default dump
857 * device, since we don't support dumps to the
858 * network.
859 */
860 if (DEV_USES_PARTITIONS(rootdv) == 0)
861 defdumpdv = NULL;
862 else
863 defdumpdv = rootdv;
864
865 for (;;) {
866 printf("dump device");
867 if (defdumpdv != NULL) {
868 /*
869 * Note, we know it's a disk if we get here.
870 */
871 printf(" (default %sb)", device_xname(defdumpdv));
872 }
873 printf(": ");
874 len = cngetsn(buf, sizeof(buf));
875 if (len == 0) {
876 if (defdumpdv != NULL) {
877 ndumpdev = MAKEDISKDEV(major(nrootdev),
878 DISKUNIT(nrootdev), 1);
879 }
880 dumpdv = defdumpdv;
881 break;
882 }
883 if (len == 4 && strcmp(buf, "none") == 0) {
884 dumpdv = NULL;
885 break;
886 }
887 dv = getdisk(buf, len, 1, &ndumpdev, 1);
888 if (dv != NULL) {
889 dumpdv = dv;
890 break;
891 }
892 }
893
894 rootdev = nrootdev;
895 dumpdev = ndumpdev;
896
897 for (vops = LIST_FIRST(&vfs_list); vops != NULL;
898 vops = LIST_NEXT(vops, vfs_list)) {
899 if (vops->vfs_mountroot != NULL &&
900 strcmp(rootfstype, vops->vfs_name) == 0)
901 break;
902 }
903
904 if (vops == NULL) {
905 deffsname = "generic";
906 } else
907 deffsname = vops->vfs_name;
908
909 for (;;) {
910 printf("file system (default %s): ", deffsname);
911 len = cngetsn(buf, sizeof(buf));
912 if (len == 0) {
913 if (strcmp(deffsname, "generic") == 0)
914 rootfstype = ROOT_FSTYPE_ANY;
915 break;
916 }
917 if (len == 4 && strcmp(buf, "halt") == 0)
918 cpu_reboot(RB_HALT, NULL);
919 else if (len == 6 && strcmp(buf, "reboot") == 0)
920 cpu_reboot(0, NULL);
921 #if defined(DDB)
922 else if (len == 3 && strcmp(buf, "ddb") == 0) {
923 console_debugger();
924 }
925 #endif
926 else if (len == 7 && strcmp(buf, "generic") == 0) {
927 rootfstype = ROOT_FSTYPE_ANY;
928 break;
929 }
930 vops = vfs_getopsbyname(buf);
931 if (vops == NULL || vops->vfs_mountroot == NULL) {
932 printf("use one of: generic");
933 for (vops = LIST_FIRST(&vfs_list);
934 vops != NULL;
935 vops = LIST_NEXT(vops, vfs_list)) {
936 if (vops->vfs_mountroot != NULL)
937 printf(" %s", vops->vfs_name);
938 }
939 if (vops != NULL)
940 vfs_delref(vops);
941 #if defined(DDB)
942 printf(" ddb");
943 #endif
944 printf(" halt reboot\n");
945 } else {
946 /*
947 * XXX If *vops gets freed between here and
948 * the call to mountroot(), rootfstype will
949 * point to something unexpected. But in
950 * this case the system will fail anyway.
951 */
952 rootfstype = vops->vfs_name;
953 vfs_delref(vops);
954 break;
955 }
956 }
957
958 } else if (rootspec == NULL) {
959 /*
960 * Wildcarded root; use the boot device.
961 */
962 rootdv = bootdv;
963
964 if (bootdv)
965 majdev = devsw_name2blk(device_xname(bootdv), NULL, 0);
966 else
967 majdev = -1;
968 if (majdev >= 0) {
969 /*
970 * Root is on a disk. `bootpartition' is root,
971 * unless the device does not use partitions.
972 */
973 if (DEV_USES_PARTITIONS(bootdv))
974 rootdev = MAKEDISKDEV(majdev,
975 device_unit(bootdv),
976 bootpartition);
977 else
978 rootdev = makedev(majdev, device_unit(bootdv));
979 }
980 } else {
981
982 /*
983 * `root on <dev> ...'
984 */
985
986 /*
987 * If it's a network interface, we can bail out
988 * early.
989 */
990 dv = finddevice(rootspec);
991 if (dv != NULL && device_class(dv) == DV_IFNET) {
992 rootdv = dv;
993 goto haveroot;
994 }
995
996 if (rootdev == NODEV &&
997 device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
998 (majdev = devsw_name2blk(device_xname(dv), NULL, 0)) >= 0)
999 rootdev = makedev(majdev, device_unit(dv));
1000
1001 rootdevname = devsw_blk2name(major(rootdev));
1002 if (rootdevname == NULL) {
1003 printf("unknown device major 0x%llx\n",
1004 (unsigned long long)rootdev);
1005 boothowto |= RB_ASKNAME;
1006 goto top;
1007 }
1008 memset(buf, 0, sizeof(buf));
1009 snprintf(buf, sizeof(buf), "%s%llu", rootdevname,
1010 (unsigned long long)DISKUNIT(rootdev));
1011
1012 rootdv = finddevice(buf);
1013 if (rootdv == NULL) {
1014 printf("device %s (0x%llx) not configured\n",
1015 buf, (unsigned long long)rootdev);
1016 boothowto |= RB_ASKNAME;
1017 goto top;
1018 }
1019 }
1020
1021 haveroot:
1022
1023 root_device = rootdv;
1024
1025 switch (device_class(rootdv)) {
1026 case DV_IFNET:
1027 case DV_DISK:
1028 aprint_normal("root on %s", device_xname(rootdv));
1029 if (DEV_USES_PARTITIONS(rootdv))
1030 aprint_normal("%c", (int)DISKPART(rootdev) + 'a');
1031 break;
1032
1033 default:
1034 printf("can't determine root device\n");
1035 boothowto |= RB_ASKNAME;
1036 goto top;
1037 }
1038
1039 /*
1040 * Now configure the dump device.
1041 *
1042 * If we haven't figured out the dump device, do so, with
1043 * the following rules:
1044 *
1045 * (a) We already know dumpdv in the RB_ASKNAME case.
1046 *
1047 * (b) If dumpspec is set, try to use it. If the device
1048 * is not available, punt.
1049 *
1050 * (c) If dumpspec is not set, the dump device is
1051 * wildcarded or unspecified. If the root device
1052 * is DV_IFNET, punt. Otherwise, use partition b
1053 * of the root device.
1054 */
1055
1056 if (boothowto & RB_ASKNAME) { /* (a) */
1057 if (dumpdv == NULL)
1058 goto nodumpdev;
1059 } else if (dumpspec != NULL) { /* (b) */
1060 if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
1061 /*
1062 * Operator doesn't want a dump device.
1063 * Or looks like they tried to pick a network
1064 * device. Oops.
1065 */
1066 goto nodumpdev;
1067 }
1068
1069 dumpdevname = devsw_blk2name(major(dumpdev));
1070 if (dumpdevname == NULL)
1071 goto nodumpdev;
1072 memset(buf, 0, sizeof(buf));
1073 snprintf(buf, sizeof(buf), "%s%llu", dumpdevname,
1074 (unsigned long long)DISKUNIT(dumpdev));
1075
1076 dumpdv = finddevice(buf);
1077 if (dumpdv == NULL) {
1078 /*
1079 * Device not configured.
1080 */
1081 goto nodumpdev;
1082 }
1083 } else { /* (c) */
1084 if (DEV_USES_PARTITIONS(rootdv) == 0) {
1085 for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
1086 dv = TAILQ_NEXT(dv, dv_list))
1087 if (isswap(dv))
1088 break;
1089 if (dv == NULL)
1090 goto nodumpdev;
1091
1092 majdev = devsw_name2blk(device_xname(dv), NULL, 0);
1093 if (majdev < 0)
1094 goto nodumpdev;
1095 dumpdv = dv;
1096 dumpdev = makedev(majdev, device_unit(dumpdv));
1097 } else {
1098 dumpdv = rootdv;
1099 dumpdev = MAKEDISKDEV(major(rootdev),
1100 device_unit(dumpdv), 1);
1101 }
1102 }
1103
1104 dumpcdev = devsw_blk2chr(dumpdev);
1105 aprint_normal(" dumps on %s", device_xname(dumpdv));
1106 if (DEV_USES_PARTITIONS(dumpdv))
1107 aprint_normal("%c", (int)DISKPART(dumpdev) + 'a');
1108 aprint_normal("\n");
1109 return;
1110
1111 nodumpdev:
1112 dumpdev = NODEV;
1113 dumpcdev = NODEV;
1114 aprint_normal("\n");
1115 }
1116
1117 static device_t
1118 finddevice(const char *name)
1119 {
1120 const char *wname;
1121
1122 if ((wname = getwedgename(name, strlen(name))) != NULL)
1123 return dkwedge_find_by_wname(wname);
1124
1125 return device_find_by_xname(name);
1126 }
1127
1128 static device_t
1129 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
1130 {
1131 device_t dv;
1132
1133 if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
1134 printf("use one of:");
1135 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1136 if (DEV_USES_PARTITIONS(dv))
1137 printf(" %s[a-%c]", device_xname(dv),
1138 'a' + MAXPARTITIONS - 1);
1139 else if (device_class(dv) == DV_DISK)
1140 printf(" %s", device_xname(dv));
1141 if (isdump == 0 && device_class(dv) == DV_IFNET)
1142 printf(" %s", device_xname(dv));
1143 }
1144 dkwedge_print_wnames();
1145 if (isdump)
1146 printf(" none");
1147 #if defined(DDB)
1148 printf(" ddb");
1149 #endif
1150 printf(" halt reboot\n");
1151 }
1152 return dv;
1153 }
1154
1155 static const char *
1156 getwedgename(const char *name, int namelen)
1157 {
1158 const char *wpfx = "wedge:";
1159 const int wpfxlen = strlen(wpfx);
1160
1161 if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
1162 return NULL;
1163
1164 return name + wpfxlen;
1165 }
1166
1167 static device_t
1168 parsedisk(char *str, int len, int defpart, dev_t *devp)
1169 {
1170 device_t dv;
1171 const char *wname;
1172 char *cp, c;
1173 int majdev, part;
1174 if (len == 0)
1175 return (NULL);
1176
1177 if (len == 4 && strcmp(str, "halt") == 0)
1178 cpu_reboot(RB_HALT, NULL);
1179 else if (len == 6 && strcmp(str, "reboot") == 0)
1180 cpu_reboot(0, NULL);
1181 #if defined(DDB)
1182 else if (len == 3 && strcmp(str, "ddb") == 0)
1183 console_debugger();
1184 #endif
1185
1186 cp = str + len - 1;
1187 c = *cp;
1188
1189 if ((wname = getwedgename(str, len)) != NULL) {
1190 if ((dv = dkwedge_find_by_wname(wname)) == NULL)
1191 return NULL;
1192 part = defpart;
1193 goto gotdisk;
1194 } else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
1195 part = c - 'a';
1196 *cp = '\0';
1197 } else
1198 part = defpart;
1199
1200 dv = finddevice(str);
1201 if (dv != NULL) {
1202 if (device_class(dv) == DV_DISK) {
1203 gotdisk:
1204 majdev = devsw_name2blk(device_xname(dv), NULL, 0);
1205 if (majdev < 0)
1206 panic("parsedisk");
1207 if (DEV_USES_PARTITIONS(dv))
1208 *devp = MAKEDISKDEV(majdev, device_unit(dv),
1209 part);
1210 else
1211 *devp = makedev(majdev, device_unit(dv));
1212 }
1213
1214 if (device_class(dv) == DV_IFNET)
1215 *devp = NODEV;
1216 }
1217
1218 *cp = c;
1219 return (dv);
1220 }
1221
1222 /*
1223 * snprintf() `bytes' into `buf', reformatting it so that the number,
1224 * plus a possible `x' + suffix extension) fits into len bytes (including
1225 * the terminating NUL).
1226 * Returns the number of bytes stored in buf, or -1 if there was a problem.
1227 * E.g, given a len of 9 and a suffix of `B':
1228 * bytes result
1229 * ----- ------
1230 * 99999 `99999 B'
1231 * 100000 `97 kB'
1232 * 66715648 `65152 kB'
1233 * 252215296 `240 MB'
1234 */
1235 int
1236 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
1237 int divisor)
1238 {
1239 /* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
1240 const char *prefixes;
1241 int r;
1242 uint64_t umax;
1243 size_t i, suffixlen;
1244
1245 if (buf == NULL || suffix == NULL)
1246 return (-1);
1247 if (len > 0)
1248 buf[0] = '\0';
1249 suffixlen = strlen(suffix);
1250 /* check if enough room for `x y' + suffix + `\0' */
1251 if (len < 4 + suffixlen)
1252 return (-1);
1253
1254 if (divisor == 1024) {
1255 /*
1256 * binary multiplies
1257 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
1258 */
1259 prefixes = " KMGTPE";
1260 } else
1261 prefixes = " kMGTPE"; /* SI for decimal multiplies */
1262
1263 umax = 1;
1264 for (i = 0; i < len - suffixlen - 3; i++) {
1265 umax *= 10;
1266 if (umax > bytes)
1267 break;
1268 }
1269 for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
1270 bytes /= divisor;
1271
1272 r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
1273 i == 0 ? "" : " ", prefixes[i], suffix);
1274
1275 return (r);
1276 }
1277
1278 int
1279 format_bytes(char *buf, size_t len, uint64_t bytes)
1280 {
1281 int rv;
1282 size_t nlen;
1283
1284 rv = humanize_number(buf, len, bytes, "B", 1024);
1285 if (rv != -1) {
1286 /* nuke the trailing ` B' if it exists */
1287 nlen = strlen(buf) - 2;
1288 if (strcmp(&buf[nlen], " B") == 0)
1289 buf[nlen] = '\0';
1290 }
1291 return (rv);
1292 }
1293
1294 /*
1295 * Return true if system call tracing is enabled for the specified process.
1296 */
1297 bool
1298 trace_is_enabled(struct proc *p)
1299 {
1300 #ifdef SYSCALL_DEBUG
1301 return (true);
1302 #endif
1303 #ifdef KTRACE
1304 if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
1305 return (true);
1306 #endif
1307 #ifdef PTRACE
1308 if (ISSET(p->p_slflag, PSL_SYSCALL))
1309 return (true);
1310 #endif
1311
1312 return (false);
1313 }
1314
1315 /*
1316 * Start trace of particular system call. If process is being traced,
1317 * this routine is called by MD syscall dispatch code just before
1318 * a system call is actually executed.
1319 */
1320 int
1321 trace_enter(register_t code, const register_t *args, int narg)
1322 {
1323 #ifdef SYSCALL_DEBUG
1324 scdebug_call(code, args);
1325 #endif /* SYSCALL_DEBUG */
1326
1327 ktrsyscall(code, args, narg);
1328
1329 #ifdef PTRACE
1330 if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1331 (PSL_SYSCALL|PSL_TRACED))
1332 process_stoptrace();
1333 #endif
1334 return 0;
1335 }
1336
1337 /*
1338 * End trace of particular system call. If process is being traced,
1339 * this routine is called by MD syscall dispatch code just after
1340 * a system call finishes.
1341 * MD caller guarantees the passed 'code' is within the supported
1342 * system call number range for emulation the process runs under.
1343 */
1344 void
1345 trace_exit(register_t code, register_t rval[], int error)
1346 {
1347 #ifdef SYSCALL_DEBUG
1348 scdebug_ret(code, error, rval);
1349 #endif /* SYSCALL_DEBUG */
1350
1351 ktrsysret(code, error, rval);
1352
1353 #ifdef PTRACE
1354 if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
1355 (PSL_SYSCALL|PSL_TRACED))
1356 process_stoptrace();
1357 #endif
1358 }
1359
1360 int
1361 syscall_establish(const struct emul *em, const struct syscall_package *sp)
1362 {
1363 struct sysent *sy;
1364 int i;
1365
1366 KASSERT(mutex_owned(&module_lock));
1367
1368 if (em == NULL) {
1369 em = &emul_netbsd;
1370 }
1371 sy = em->e_sysent;
1372
1373 /*
1374 * Ensure that all preconditions are valid, since this is
1375 * an all or nothing deal. Once a system call is entered,
1376 * it can become busy and we could be unable to remove it
1377 * on error.
1378 */
1379 for (i = 0; sp[i].sp_call != NULL; i++) {
1380 if (sy[sp[i].sp_code].sy_call != sys_nomodule) {
1381 #ifdef DIAGNOSTIC
1382 printf("syscall %d is busy\n", sp[i].sp_code);
1383 #endif
1384 return EBUSY;
1385 }
1386 }
1387 /* Everything looks good, patch them in. */
1388 for (i = 0; sp[i].sp_call != NULL; i++) {
1389 sy[sp[i].sp_code].sy_call = sp[i].sp_call;
1390 }
1391
1392 return 0;
1393 }
1394
1395 int
1396 syscall_disestablish(const struct emul *em, const struct syscall_package *sp)
1397 {
1398 struct sysent *sy;
1399 uint64_t where;
1400 lwp_t *l;
1401 int i;
1402
1403 KASSERT(mutex_owned(&module_lock));
1404
1405 if (em == NULL) {
1406 em = &emul_netbsd;
1407 }
1408 sy = em->e_sysent;
1409
1410 /*
1411 * First, patch the system calls to sys_nomodule to gate further
1412 * activity.
1413 */
1414 for (i = 0; sp[i].sp_call != NULL; i++) {
1415 KASSERT(sy[sp[i].sp_code].sy_call == sp[i].sp_call);
1416 sy[sp[i].sp_code].sy_call = sys_nomodule;
1417 }
1418
1419 /*
1420 * Run a cross call to cycle through all CPUs. This does two
1421 * things: lock activity provides a barrier and makes our update
1422 * of sy_call visible to all CPUs, and upon return we can be sure
1423 * that we see pertinent values of l_sysent posted by remote CPUs.
1424 */
1425 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1426 xc_wait(where);
1427
1428 /*
1429 * Now it's safe to check l_sysent. Run through all LWPs and see
1430 * if anyone is still using the system call.
1431 */
1432 for (i = 0; sp[i].sp_call != NULL; i++) {
1433 mutex_enter(proc_lock);
1434 LIST_FOREACH(l, &alllwp, l_list) {
1435 if (l->l_sysent == &sy[sp[i].sp_code]) {
1436 break;
1437 }
1438 }
1439 mutex_exit(proc_lock);
1440 if (l == NULL) {
1441 continue;
1442 }
1443 /*
1444 * We lose: one or more calls are still in use. Put back
1445 * the old entrypoints and act like nothing happened.
1446 * When we drop module_lock, any system calls held in
1447 * sys_nomodule() will be restarted.
1448 */
1449 for (i = 0; sp[i].sp_call != NULL; i++) {
1450 sy[sp[i].sp_code].sy_call = sp[i].sp_call;
1451 }
1452 return EBUSY;
1453 }
1454
1455 return 0;
1456 }
1457