Home | History | Annotate | Line # | Download | only in kern
kern_subr.c revision 1.200
      1 /*	$NetBSD: kern_subr.c,v 1.200 2009/09/25 19:21:09 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Luke Mewburn.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Copyright (c) 1992, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * This software was developed by the Computer Systems Engineering group
     46  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     47  * contributed to Berkeley.
     48  *
     49  * All advertising materials mentioning features or use of this software
     50  * must display the following acknowledgement:
     51  *	This product includes software developed by the University of
     52  *	California, Lawrence Berkeley Laboratory.
     53  *
     54  * Redistribution and use in source and binary forms, with or without
     55  * modification, are permitted provided that the following conditions
     56  * are met:
     57  * 1. Redistributions of source code must retain the above copyright
     58  *    notice, this list of conditions and the following disclaimer.
     59  * 2. Redistributions in binary form must reproduce the above copyright
     60  *    notice, this list of conditions and the following disclaimer in the
     61  *    documentation and/or other materials provided with the distribution.
     62  * 3. Neither the name of the University nor the names of its contributors
     63  *    may be used to endorse or promote products derived from this software
     64  *    without specific prior written permission.
     65  *
     66  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     76  * SUCH DAMAGE.
     77  *
     78  *	@(#)kern_subr.c	8.4 (Berkeley) 2/14/95
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.200 2009/09/25 19:21:09 dyoung Exp $");
     83 
     84 #include "opt_ddb.h"
     85 #include "opt_md.h"
     86 #include "opt_syscall_debug.h"
     87 #include "opt_ktrace.h"
     88 #include "opt_ptrace.h"
     89 #include "opt_powerhook.h"
     90 #include "opt_tftproot.h"
     91 
     92 #include <sys/param.h>
     93 #include <sys/systm.h>
     94 #include <sys/proc.h>
     95 #include <sys/malloc.h>
     96 #include <sys/mount.h>
     97 #include <sys/device.h>
     98 #include <sys/reboot.h>
     99 #include <sys/conf.h>
    100 #include <sys/disk.h>
    101 #include <sys/disklabel.h>
    102 #include <sys/queue.h>
    103 #include <sys/ktrace.h>
    104 #include <sys/ptrace.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/kauth.h>
    107 #include <sys/vnode.h>
    108 #include <sys/syscallvar.h>
    109 #include <sys/xcall.h>
    110 #include <sys/module.h>
    111 
    112 #include <uvm/uvm_extern.h>
    113 
    114 #include <dev/cons.h>
    115 
    116 #include <net/if.h>
    117 
    118 /* XXX these should eventually move to subr_autoconf.c */
    119 static device_t finddevice(const char *);
    120 static device_t getdisk(char *, int, int, dev_t *, int);
    121 static device_t parsedisk(char *, int, int, dev_t *);
    122 static const char *getwedgename(const char *, int);
    123 
    124 /*
    125  * A generic linear hook.
    126  */
    127 struct hook_desc {
    128 	LIST_ENTRY(hook_desc) hk_list;
    129 	void	(*hk_fn)(void *);
    130 	void	*hk_arg;
    131 };
    132 typedef LIST_HEAD(, hook_desc) hook_list_t;
    133 
    134 #ifdef TFTPROOT
    135 int tftproot_dhcpboot(device_t);
    136 #endif
    137 
    138 dev_t	dumpcdev;	/* for savecore */
    139 
    140 void
    141 uio_setup_sysspace(struct uio *uio)
    142 {
    143 
    144 	uio->uio_vmspace = vmspace_kernel();
    145 }
    146 
    147 int
    148 uiomove(void *buf, size_t n, struct uio *uio)
    149 {
    150 	struct vmspace *vm = uio->uio_vmspace;
    151 	struct iovec *iov;
    152 	size_t cnt;
    153 	int error = 0;
    154 	char *cp = buf;
    155 
    156 	ASSERT_SLEEPABLE();
    157 
    158 #ifdef DIAGNOSTIC
    159 	if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
    160 		panic("uiomove: mode");
    161 #endif
    162 	while (n > 0 && uio->uio_resid) {
    163 		iov = uio->uio_iov;
    164 		cnt = iov->iov_len;
    165 		if (cnt == 0) {
    166 			KASSERT(uio->uio_iovcnt > 0);
    167 			uio->uio_iov++;
    168 			uio->uio_iovcnt--;
    169 			continue;
    170 		}
    171 		if (cnt > n)
    172 			cnt = n;
    173 		if (!VMSPACE_IS_KERNEL_P(vm)) {
    174 			if (curcpu()->ci_schedstate.spc_flags &
    175 			    SPCF_SHOULDYIELD)
    176 				preempt();
    177 		}
    178 
    179 		if (uio->uio_rw == UIO_READ) {
    180 			error = copyout_vmspace(vm, cp, iov->iov_base,
    181 			    cnt);
    182 		} else {
    183 			error = copyin_vmspace(vm, iov->iov_base, cp,
    184 			    cnt);
    185 		}
    186 		if (error) {
    187 			break;
    188 		}
    189 		iov->iov_base = (char *)iov->iov_base + cnt;
    190 		iov->iov_len -= cnt;
    191 		uio->uio_resid -= cnt;
    192 		uio->uio_offset += cnt;
    193 		cp += cnt;
    194 		KDASSERT(cnt <= n);
    195 		n -= cnt;
    196 	}
    197 
    198 	return (error);
    199 }
    200 
    201 /*
    202  * Wrapper for uiomove() that validates the arguments against a known-good
    203  * kernel buffer.
    204  */
    205 int
    206 uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
    207 {
    208 	size_t offset;
    209 
    210 	if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
    211 	    (offset = uio->uio_offset) != uio->uio_offset)
    212 		return (EINVAL);
    213 	if (offset >= buflen)
    214 		return (0);
    215 	return (uiomove((char *)buf + offset, buflen - offset, uio));
    216 }
    217 
    218 /*
    219  * Give next character to user as result of read.
    220  */
    221 int
    222 ureadc(int c, struct uio *uio)
    223 {
    224 	struct iovec *iov;
    225 
    226 	if (uio->uio_resid <= 0)
    227 		panic("ureadc: non-positive resid");
    228 again:
    229 	if (uio->uio_iovcnt <= 0)
    230 		panic("ureadc: non-positive iovcnt");
    231 	iov = uio->uio_iov;
    232 	if (iov->iov_len <= 0) {
    233 		uio->uio_iovcnt--;
    234 		uio->uio_iov++;
    235 		goto again;
    236 	}
    237 	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
    238 		if (subyte(iov->iov_base, c) < 0)
    239 			return (EFAULT);
    240 	} else {
    241 		*(char *)iov->iov_base = c;
    242 	}
    243 	iov->iov_base = (char *)iov->iov_base + 1;
    244 	iov->iov_len--;
    245 	uio->uio_resid--;
    246 	uio->uio_offset++;
    247 	return (0);
    248 }
    249 
    250 /*
    251  * Like copyin(), but operates on an arbitrary vmspace.
    252  */
    253 int
    254 copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
    255 {
    256 	struct iovec iov;
    257 	struct uio uio;
    258 	int error;
    259 
    260 	if (len == 0)
    261 		return (0);
    262 
    263 	if (VMSPACE_IS_KERNEL_P(vm)) {
    264 		return kcopy(uaddr, kaddr, len);
    265 	}
    266 	if (__predict_true(vm == curproc->p_vmspace)) {
    267 		return copyin(uaddr, kaddr, len);
    268 	}
    269 
    270 	iov.iov_base = kaddr;
    271 	iov.iov_len = len;
    272 	uio.uio_iov = &iov;
    273 	uio.uio_iovcnt = 1;
    274 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
    275 	uio.uio_resid = len;
    276 	uio.uio_rw = UIO_READ;
    277 	UIO_SETUP_SYSSPACE(&uio);
    278 	error = uvm_io(&vm->vm_map, &uio);
    279 
    280 	return (error);
    281 }
    282 
    283 /*
    284  * Like copyout(), but operates on an arbitrary vmspace.
    285  */
    286 int
    287 copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
    288 {
    289 	struct iovec iov;
    290 	struct uio uio;
    291 	int error;
    292 
    293 	if (len == 0)
    294 		return (0);
    295 
    296 	if (VMSPACE_IS_KERNEL_P(vm)) {
    297 		return kcopy(kaddr, uaddr, len);
    298 	}
    299 	if (__predict_true(vm == curproc->p_vmspace)) {
    300 		return copyout(kaddr, uaddr, len);
    301 	}
    302 
    303 	iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
    304 	iov.iov_len = len;
    305 	uio.uio_iov = &iov;
    306 	uio.uio_iovcnt = 1;
    307 	uio.uio_offset = (off_t)(uintptr_t)uaddr;
    308 	uio.uio_resid = len;
    309 	uio.uio_rw = UIO_WRITE;
    310 	UIO_SETUP_SYSSPACE(&uio);
    311 	error = uvm_io(&vm->vm_map, &uio);
    312 
    313 	return (error);
    314 }
    315 
    316 /*
    317  * Like copyin(), but operates on an arbitrary process.
    318  */
    319 int
    320 copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
    321 {
    322 	struct vmspace *vm;
    323 	int error;
    324 
    325 	error = proc_vmspace_getref(p, &vm);
    326 	if (error) {
    327 		return error;
    328 	}
    329 	error = copyin_vmspace(vm, uaddr, kaddr, len);
    330 	uvmspace_free(vm);
    331 
    332 	return error;
    333 }
    334 
    335 /*
    336  * Like copyout(), but operates on an arbitrary process.
    337  */
    338 int
    339 copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
    340 {
    341 	struct vmspace *vm;
    342 	int error;
    343 
    344 	error = proc_vmspace_getref(p, &vm);
    345 	if (error) {
    346 		return error;
    347 	}
    348 	error = copyout_vmspace(vm, kaddr, uaddr, len);
    349 	uvmspace_free(vm);
    350 
    351 	return error;
    352 }
    353 
    354 /*
    355  * Like copyin(), except it operates on kernel addresses when the FKIOCTL
    356  * flag is passed in `ioctlflags' from the ioctl call.
    357  */
    358 int
    359 ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
    360 {
    361 	if (ioctlflags & FKIOCTL)
    362 		return kcopy(src, dst, len);
    363 	return copyin(src, dst, len);
    364 }
    365 
    366 /*
    367  * Like copyout(), except it operates on kernel addresses when the FKIOCTL
    368  * flag is passed in `ioctlflags' from the ioctl call.
    369  */
    370 int
    371 ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
    372 {
    373 	if (ioctlflags & FKIOCTL)
    374 		return kcopy(src, dst, len);
    375 	return copyout(src, dst, len);
    376 }
    377 
    378 static void *
    379 hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
    380 {
    381 	struct hook_desc *hd;
    382 
    383 	hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
    384 	if (hd == NULL)
    385 		return (NULL);
    386 
    387 	hd->hk_fn = fn;
    388 	hd->hk_arg = arg;
    389 	LIST_INSERT_HEAD(list, hd, hk_list);
    390 
    391 	return (hd);
    392 }
    393 
    394 static void
    395 hook_disestablish(hook_list_t *list, void *vhook)
    396 {
    397 #ifdef DIAGNOSTIC
    398 	struct hook_desc *hd;
    399 
    400 	LIST_FOREACH(hd, list, hk_list) {
    401                 if (hd == vhook)
    402 			break;
    403 	}
    404 
    405 	if (hd == NULL)
    406 		panic("hook_disestablish: hook %p not established", vhook);
    407 #endif
    408 	LIST_REMOVE((struct hook_desc *)vhook, hk_list);
    409 	free(vhook, M_DEVBUF);
    410 }
    411 
    412 static void
    413 hook_destroy(hook_list_t *list)
    414 {
    415 	struct hook_desc *hd;
    416 
    417 	while ((hd = LIST_FIRST(list)) != NULL) {
    418 		LIST_REMOVE(hd, hk_list);
    419 		free(hd, M_DEVBUF);
    420 	}
    421 }
    422 
    423 static void
    424 hook_proc_run(hook_list_t *list, struct proc *p)
    425 {
    426 	struct hook_desc *hd;
    427 
    428 	LIST_FOREACH(hd, list, hk_list)
    429 		((void (*)(struct proc *, void *))*hd->hk_fn)(p, hd->hk_arg);
    430 }
    431 
    432 /*
    433  * "Shutdown hook" types, functions, and variables.
    434  *
    435  * Should be invoked immediately before the
    436  * system is halted or rebooted, i.e. after file systems unmounted,
    437  * after crash dump done, etc.
    438  *
    439  * Each shutdown hook is removed from the list before it's run, so that
    440  * it won't be run again.
    441  */
    442 
    443 static hook_list_t shutdownhook_list;
    444 
    445 void *
    446 shutdownhook_establish(void (*fn)(void *), void *arg)
    447 {
    448 	return hook_establish(&shutdownhook_list, fn, arg);
    449 }
    450 
    451 void
    452 shutdownhook_disestablish(void *vhook)
    453 {
    454 	hook_disestablish(&shutdownhook_list, vhook);
    455 }
    456 
    457 /*
    458  * Run shutdown hooks.  Should be invoked immediately before the
    459  * system is halted or rebooted, i.e. after file systems unmounted,
    460  * after crash dump done, etc.
    461  *
    462  * Each shutdown hook is removed from the list before it's run, so that
    463  * it won't be run again.
    464  */
    465 void
    466 doshutdownhooks(void)
    467 {
    468 	struct hook_desc *dp;
    469 
    470 	while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
    471 		LIST_REMOVE(dp, hk_list);
    472 		(*dp->hk_fn)(dp->hk_arg);
    473 #if 0
    474 		/*
    475 		 * Don't bother freeing the hook structure,, since we may
    476 		 * be rebooting because of a memory corruption problem,
    477 		 * and this might only make things worse.  It doesn't
    478 		 * matter, anyway, since the system is just about to
    479 		 * reboot.
    480 		 */
    481 		free(dp, M_DEVBUF);
    482 #endif
    483 	}
    484 }
    485 
    486 /*
    487  * "Mountroot hook" types, functions, and variables.
    488  */
    489 
    490 static hook_list_t mountroothook_list;
    491 
    492 void *
    493 mountroothook_establish(void (*fn)(device_t), device_t dev)
    494 {
    495 	return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
    496 }
    497 
    498 void
    499 mountroothook_disestablish(void *vhook)
    500 {
    501 	hook_disestablish(&mountroothook_list, vhook);
    502 }
    503 
    504 void
    505 mountroothook_destroy(void)
    506 {
    507 	hook_destroy(&mountroothook_list);
    508 }
    509 
    510 void
    511 domountroothook(void)
    512 {
    513 	struct hook_desc *hd;
    514 
    515 	LIST_FOREACH(hd, &mountroothook_list, hk_list) {
    516 		if (hd->hk_arg == (void *)root_device) {
    517 			(*hd->hk_fn)(hd->hk_arg);
    518 			return;
    519 		}
    520 	}
    521 }
    522 
    523 static hook_list_t exechook_list;
    524 
    525 void *
    526 exechook_establish(void (*fn)(struct proc *, void *), void *arg)
    527 {
    528 	return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
    529 }
    530 
    531 void
    532 exechook_disestablish(void *vhook)
    533 {
    534 	hook_disestablish(&exechook_list, vhook);
    535 }
    536 
    537 /*
    538  * Run exec hooks.
    539  */
    540 void
    541 doexechooks(struct proc *p)
    542 {
    543 	hook_proc_run(&exechook_list, p);
    544 }
    545 
    546 static hook_list_t exithook_list;
    547 extern krwlock_t exec_lock;
    548 
    549 void *
    550 exithook_establish(void (*fn)(struct proc *, void *), void *arg)
    551 {
    552 	void *rv;
    553 
    554 	rw_enter(&exec_lock, RW_WRITER);
    555 	rv = hook_establish(&exithook_list, (void (*)(void *))fn, arg);
    556 	rw_exit(&exec_lock);
    557 	return rv;
    558 }
    559 
    560 void
    561 exithook_disestablish(void *vhook)
    562 {
    563 
    564 	rw_enter(&exec_lock, RW_WRITER);
    565 	hook_disestablish(&exithook_list, vhook);
    566 	rw_exit(&exec_lock);
    567 }
    568 
    569 /*
    570  * Run exit hooks.
    571  */
    572 void
    573 doexithooks(struct proc *p)
    574 {
    575 	hook_proc_run(&exithook_list, p);
    576 }
    577 
    578 static hook_list_t forkhook_list;
    579 
    580 void *
    581 forkhook_establish(void (*fn)(struct proc *, struct proc *))
    582 {
    583 	return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
    584 }
    585 
    586 void
    587 forkhook_disestablish(void *vhook)
    588 {
    589 	hook_disestablish(&forkhook_list, vhook);
    590 }
    591 
    592 /*
    593  * Run fork hooks.
    594  */
    595 void
    596 doforkhooks(struct proc *p2, struct proc *p1)
    597 {
    598 	struct hook_desc *hd;
    599 
    600 	LIST_FOREACH(hd, &forkhook_list, hk_list) {
    601 		((void (*)(struct proc *, struct proc *))*hd->hk_fn)
    602 		    (p2, p1);
    603 	}
    604 }
    605 
    606 /*
    607  * "Power hook" types, functions, and variables.
    608  * The list of power hooks is kept ordered with the last registered hook
    609  * first.
    610  * When running the hooks on power down the hooks are called in reverse
    611  * registration order, when powering up in registration order.
    612  */
    613 struct powerhook_desc {
    614 	CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
    615 	void	(*sfd_fn)(int, void *);
    616 	void	*sfd_arg;
    617 	char	sfd_name[16];
    618 };
    619 
    620 static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
    621     CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
    622 
    623 void *
    624 powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
    625 {
    626 	struct powerhook_desc *ndp;
    627 
    628 	ndp = (struct powerhook_desc *)
    629 	    malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
    630 	if (ndp == NULL)
    631 		return (NULL);
    632 
    633 	ndp->sfd_fn = fn;
    634 	ndp->sfd_arg = arg;
    635 	strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
    636 	CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
    637 
    638 	aprint_error("%s: WARNING: powerhook_establish is deprecated\n", name);
    639 	return (ndp);
    640 }
    641 
    642 void
    643 powerhook_disestablish(void *vhook)
    644 {
    645 #ifdef DIAGNOSTIC
    646 	struct powerhook_desc *dp;
    647 
    648 	CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
    649                 if (dp == vhook)
    650 			goto found;
    651 	panic("powerhook_disestablish: hook %p not established", vhook);
    652  found:
    653 #endif
    654 
    655 	CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
    656 	    sfd_list);
    657 	free(vhook, M_DEVBUF);
    658 }
    659 
    660 /*
    661  * Run power hooks.
    662  */
    663 void
    664 dopowerhooks(int why)
    665 {
    666 	struct powerhook_desc *dp;
    667 
    668 #ifdef POWERHOOK_DEBUG
    669 	const char *why_name;
    670 	static const char * pwr_names[] = {PWR_NAMES};
    671 	why_name = why < __arraycount(pwr_names) ? pwr_names[why] : "???";
    672 #endif
    673 
    674 	if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
    675 		CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
    676 #ifdef POWERHOOK_DEBUG
    677 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
    678 #endif
    679 			(*dp->sfd_fn)(why, dp->sfd_arg);
    680 		}
    681 	} else {
    682 		CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
    683 #ifdef POWERHOOK_DEBUG
    684 			printf("dopowerhooks %s: %s (%p)\n", why_name, dp->sfd_name, dp);
    685 #endif
    686 			(*dp->sfd_fn)(why, dp->sfd_arg);
    687 		}
    688 	}
    689 
    690 #ifdef POWERHOOK_DEBUG
    691 	printf("dopowerhooks: %s done\n", why_name);
    692 #endif
    693 }
    694 
    695 static int
    696 isswap(device_t dv)
    697 {
    698 	struct dkwedge_info wi;
    699 	struct vnode *vn;
    700 	int error;
    701 
    702 	if (device_class(dv) != DV_DISK || !device_is_a(dv, "dk"))
    703 		return 0;
    704 
    705 	if ((vn = opendisk(dv)) == NULL)
    706 		return 0;
    707 
    708 	error = VOP_IOCTL(vn, DIOCGWEDGEINFO, &wi, FREAD, NOCRED);
    709 	VOP_CLOSE(vn, FREAD, NOCRED);
    710 	vput(vn);
    711 	if (error) {
    712 #ifdef DEBUG_WEDGE
    713 		printf("%s: Get wedge info returned %d\n", device_xname(dv), error);
    714 #endif
    715 		return 0;
    716 	}
    717 	return strcmp(wi.dkw_ptype, DKW_PTYPE_SWAP) == 0;
    718 }
    719 
    720 /*
    721  * Determine the root device and, if instructed to, the root file system.
    722  */
    723 
    724 #include "md.h"
    725 
    726 #if NMD > 0
    727 extern struct cfdriver md_cd;
    728 #ifdef MEMORY_DISK_IS_ROOT
    729 int md_is_root = 1;
    730 #else
    731 int md_is_root = 0;
    732 #endif
    733 #endif
    734 
    735 /*
    736  * The device and wedge that we booted from.  If booted_wedge is NULL,
    737  * the we might consult booted_partition.
    738  */
    739 device_t booted_device;
    740 device_t booted_wedge;
    741 int booted_partition;
    742 
    743 /*
    744  * Use partition letters if it's a disk class but not a wedge.
    745  * XXX Check for wedge is kinda gross.
    746  */
    747 #define	DEV_USES_PARTITIONS(dv)						\
    748 	(device_class((dv)) == DV_DISK &&				\
    749 	 !device_is_a((dv), "dk"))
    750 
    751 void
    752 setroot(device_t bootdv, int bootpartition)
    753 {
    754 	device_t dv;
    755 	int len, majdev;
    756 	dev_t nrootdev;
    757 	dev_t ndumpdev = NODEV;
    758 	char buf[128];
    759 	const char *rootdevname;
    760 	const char *dumpdevname;
    761 	device_t rootdv = NULL;		/* XXX gcc -Wuninitialized */
    762 	device_t dumpdv = NULL;
    763 	struct ifnet *ifp;
    764 	const char *deffsname;
    765 	struct vfsops *vops;
    766 
    767 #ifdef TFTPROOT
    768 	if (tftproot_dhcpboot(bootdv) != 0)
    769 		boothowto |= RB_ASKNAME;
    770 #endif
    771 
    772 #if NMD > 0
    773 	if (md_is_root) {
    774 		/*
    775 		 * XXX there should be "root on md0" in the config file,
    776 		 * but it isn't always
    777 		 */
    778 		bootdv = md_cd.cd_devs[0];
    779 		bootpartition = 0;
    780 	}
    781 #endif
    782 
    783 	/*
    784 	 * If NFS is specified as the file system, and we found
    785 	 * a DV_DISK boot device (or no boot device at all), then
    786 	 * find a reasonable network interface for "rootspec".
    787 	 */
    788 	vops = vfs_getopsbyname(MOUNT_NFS);
    789 	if (vops != NULL && strcmp(rootfstype, MOUNT_NFS) == 0 &&
    790 	    rootspec == NULL &&
    791 	    (bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
    792 		IFNET_FOREACH(ifp) {
    793 			if ((ifp->if_flags &
    794 			     (IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
    795 				break;
    796 		}
    797 		if (ifp == NULL) {
    798 			/*
    799 			 * Can't find a suitable interface; ask the
    800 			 * user.
    801 			 */
    802 			boothowto |= RB_ASKNAME;
    803 		} else {
    804 			/*
    805 			 * Have a suitable interface; behave as if
    806 			 * the user specified this interface.
    807 			 */
    808 			rootspec = (const char *)ifp->if_xname;
    809 		}
    810 	}
    811 	if (vops != NULL)
    812 		vfs_delref(vops);
    813 
    814 	/*
    815 	 * If wildcarded root and we the boot device wasn't determined,
    816 	 * ask the user.
    817 	 */
    818 	if (rootspec == NULL && bootdv == NULL)
    819 		boothowto |= RB_ASKNAME;
    820 
    821  top:
    822 	if (boothowto & RB_ASKNAME) {
    823 		device_t defdumpdv;
    824 
    825 		for (;;) {
    826 			printf("root device");
    827 			if (bootdv != NULL) {
    828 				printf(" (default %s", device_xname(bootdv));
    829 				if (DEV_USES_PARTITIONS(bootdv))
    830 					printf("%c", bootpartition + 'a');
    831 				printf(")");
    832 			}
    833 			printf(": ");
    834 			len = cngetsn(buf, sizeof(buf));
    835 			if (len == 0 && bootdv != NULL) {
    836 				strlcpy(buf, device_xname(bootdv), sizeof(buf));
    837 				len = strlen(buf);
    838 			}
    839 			if (len > 0 && buf[len - 1] == '*') {
    840 				buf[--len] = '\0';
    841 				dv = getdisk(buf, len, 1, &nrootdev, 0);
    842 				if (dv != NULL) {
    843 					rootdv = dv;
    844 					break;
    845 				}
    846 			}
    847 			dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
    848 			if (dv != NULL) {
    849 				rootdv = dv;
    850 				break;
    851 			}
    852 		}
    853 
    854 		/*
    855 		 * Set up the default dump device.  If root is on
    856 		 * a network device, there is no default dump
    857 		 * device, since we don't support dumps to the
    858 		 * network.
    859 		 */
    860 		if (DEV_USES_PARTITIONS(rootdv) == 0)
    861 			defdumpdv = NULL;
    862 		else
    863 			defdumpdv = rootdv;
    864 
    865 		for (;;) {
    866 			printf("dump device");
    867 			if (defdumpdv != NULL) {
    868 				/*
    869 				 * Note, we know it's a disk if we get here.
    870 				 */
    871 				printf(" (default %sb)", device_xname(defdumpdv));
    872 			}
    873 			printf(": ");
    874 			len = cngetsn(buf, sizeof(buf));
    875 			if (len == 0) {
    876 				if (defdumpdv != NULL) {
    877 					ndumpdev = MAKEDISKDEV(major(nrootdev),
    878 					    DISKUNIT(nrootdev), 1);
    879 				}
    880 				dumpdv = defdumpdv;
    881 				break;
    882 			}
    883 			if (len == 4 && strcmp(buf, "none") == 0) {
    884 				dumpdv = NULL;
    885 				break;
    886 			}
    887 			dv = getdisk(buf, len, 1, &ndumpdev, 1);
    888 			if (dv != NULL) {
    889 				dumpdv = dv;
    890 				break;
    891 			}
    892 		}
    893 
    894 		rootdev = nrootdev;
    895 		dumpdev = ndumpdev;
    896 
    897 		for (vops = LIST_FIRST(&vfs_list); vops != NULL;
    898 		     vops = LIST_NEXT(vops, vfs_list)) {
    899 			if (vops->vfs_mountroot != NULL &&
    900 			    strcmp(rootfstype, vops->vfs_name) == 0)
    901 			break;
    902 		}
    903 
    904 		if (vops == NULL) {
    905 			deffsname = "generic";
    906 		} else
    907 			deffsname = vops->vfs_name;
    908 
    909 		for (;;) {
    910 			printf("file system (default %s): ", deffsname);
    911 			len = cngetsn(buf, sizeof(buf));
    912 			if (len == 0) {
    913 				if (strcmp(deffsname, "generic") == 0)
    914 					rootfstype = ROOT_FSTYPE_ANY;
    915 				break;
    916 			}
    917 			if (len == 4 && strcmp(buf, "halt") == 0)
    918 				cpu_reboot(RB_HALT, NULL);
    919 			else if (len == 6 && strcmp(buf, "reboot") == 0)
    920 				cpu_reboot(0, NULL);
    921 #if defined(DDB)
    922 			else if (len == 3 && strcmp(buf, "ddb") == 0) {
    923 				console_debugger();
    924 			}
    925 #endif
    926 			else if (len == 7 && strcmp(buf, "generic") == 0) {
    927 				rootfstype = ROOT_FSTYPE_ANY;
    928 				break;
    929 			}
    930 			vops = vfs_getopsbyname(buf);
    931 			if (vops == NULL || vops->vfs_mountroot == NULL) {
    932 				printf("use one of: generic");
    933 				for (vops = LIST_FIRST(&vfs_list);
    934 				     vops != NULL;
    935 				     vops = LIST_NEXT(vops, vfs_list)) {
    936 					if (vops->vfs_mountroot != NULL)
    937 						printf(" %s", vops->vfs_name);
    938 				}
    939 				if (vops != NULL)
    940 					vfs_delref(vops);
    941 #if defined(DDB)
    942 				printf(" ddb");
    943 #endif
    944 				printf(" halt reboot\n");
    945 			} else {
    946 				/*
    947 				 * XXX If *vops gets freed between here and
    948 				 * the call to mountroot(), rootfstype will
    949 				 * point to something unexpected.  But in
    950 				 * this case the system will fail anyway.
    951 				 */
    952 				rootfstype = vops->vfs_name;
    953 				vfs_delref(vops);
    954 				break;
    955 			}
    956 		}
    957 
    958 	} else if (rootspec == NULL) {
    959 		/*
    960 		 * Wildcarded root; use the boot device.
    961 		 */
    962 		rootdv = bootdv;
    963 
    964 		if (bootdv)
    965 			majdev = devsw_name2blk(device_xname(bootdv), NULL, 0);
    966 		else
    967 			majdev = -1;
    968 		if (majdev >= 0) {
    969 			/*
    970 			 * Root is on a disk.  `bootpartition' is root,
    971 			 * unless the device does not use partitions.
    972 			 */
    973 			if (DEV_USES_PARTITIONS(bootdv))
    974 				rootdev = MAKEDISKDEV(majdev,
    975 						      device_unit(bootdv),
    976 						      bootpartition);
    977 			else
    978 				rootdev = makedev(majdev, device_unit(bootdv));
    979 		}
    980 	} else {
    981 
    982 		/*
    983 		 * `root on <dev> ...'
    984 		 */
    985 
    986 		/*
    987 		 * If it's a network interface, we can bail out
    988 		 * early.
    989 		 */
    990 		dv = finddevice(rootspec);
    991 		if (dv != NULL && device_class(dv) == DV_IFNET) {
    992 			rootdv = dv;
    993 			goto haveroot;
    994 		}
    995 
    996 		if (rootdev == NODEV &&
    997 		    device_class(dv) == DV_DISK && device_is_a(dv, "dk") &&
    998 		    (majdev = devsw_name2blk(device_xname(dv), NULL, 0)) >= 0)
    999 			rootdev = makedev(majdev, device_unit(dv));
   1000 
   1001 		rootdevname = devsw_blk2name(major(rootdev));
   1002 		if (rootdevname == NULL) {
   1003 			printf("unknown device major 0x%llx\n",
   1004 			    (unsigned long long)rootdev);
   1005 			boothowto |= RB_ASKNAME;
   1006 			goto top;
   1007 		}
   1008 		memset(buf, 0, sizeof(buf));
   1009 		snprintf(buf, sizeof(buf), "%s%llu", rootdevname,
   1010 		    (unsigned long long)DISKUNIT(rootdev));
   1011 
   1012 		rootdv = finddevice(buf);
   1013 		if (rootdv == NULL) {
   1014 			printf("device %s (0x%llx) not configured\n",
   1015 			    buf, (unsigned long long)rootdev);
   1016 			boothowto |= RB_ASKNAME;
   1017 			goto top;
   1018 		}
   1019 	}
   1020 
   1021  haveroot:
   1022 
   1023 	root_device = rootdv;
   1024 
   1025 	switch (device_class(rootdv)) {
   1026 	case DV_IFNET:
   1027 	case DV_DISK:
   1028 		aprint_normal("root on %s", device_xname(rootdv));
   1029 		if (DEV_USES_PARTITIONS(rootdv))
   1030 			aprint_normal("%c", (int)DISKPART(rootdev) + 'a');
   1031 		break;
   1032 
   1033 	default:
   1034 		printf("can't determine root device\n");
   1035 		boothowto |= RB_ASKNAME;
   1036 		goto top;
   1037 	}
   1038 
   1039 	/*
   1040 	 * Now configure the dump device.
   1041 	 *
   1042 	 * If we haven't figured out the dump device, do so, with
   1043 	 * the following rules:
   1044 	 *
   1045 	 *	(a) We already know dumpdv in the RB_ASKNAME case.
   1046 	 *
   1047 	 *	(b) If dumpspec is set, try to use it.  If the device
   1048 	 *	    is not available, punt.
   1049 	 *
   1050 	 *	(c) If dumpspec is not set, the dump device is
   1051 	 *	    wildcarded or unspecified.  If the root device
   1052 	 *	    is DV_IFNET, punt.  Otherwise, use partition b
   1053 	 *	    of the root device.
   1054 	 */
   1055 
   1056 	if (boothowto & RB_ASKNAME) {		/* (a) */
   1057 		if (dumpdv == NULL)
   1058 			goto nodumpdev;
   1059 	} else if (dumpspec != NULL) {		/* (b) */
   1060 		if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
   1061 			/*
   1062 			 * Operator doesn't want a dump device.
   1063 			 * Or looks like they tried to pick a network
   1064 			 * device.  Oops.
   1065 			 */
   1066 			goto nodumpdev;
   1067 		}
   1068 
   1069 		dumpdevname = devsw_blk2name(major(dumpdev));
   1070 		if (dumpdevname == NULL)
   1071 			goto nodumpdev;
   1072 		memset(buf, 0, sizeof(buf));
   1073 		snprintf(buf, sizeof(buf), "%s%llu", dumpdevname,
   1074 		    (unsigned long long)DISKUNIT(dumpdev));
   1075 
   1076 		dumpdv = finddevice(buf);
   1077 		if (dumpdv == NULL) {
   1078 			/*
   1079 			 * Device not configured.
   1080 			 */
   1081 			goto nodumpdev;
   1082 		}
   1083 	} else {				/* (c) */
   1084 		if (DEV_USES_PARTITIONS(rootdv) == 0) {
   1085 			for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
   1086 			    dv = TAILQ_NEXT(dv, dv_list))
   1087 				if (isswap(dv))
   1088 					break;
   1089 			if (dv == NULL)
   1090 				goto nodumpdev;
   1091 
   1092 			majdev = devsw_name2blk(device_xname(dv), NULL, 0);
   1093 			if (majdev < 0)
   1094 				goto nodumpdev;
   1095 			dumpdv = dv;
   1096 			dumpdev = makedev(majdev, device_unit(dumpdv));
   1097 		} else {
   1098 			dumpdv = rootdv;
   1099 			dumpdev = MAKEDISKDEV(major(rootdev),
   1100 			    device_unit(dumpdv), 1);
   1101 		}
   1102 	}
   1103 
   1104 	dumpcdev = devsw_blk2chr(dumpdev);
   1105 	aprint_normal(" dumps on %s", device_xname(dumpdv));
   1106 	if (DEV_USES_PARTITIONS(dumpdv))
   1107 		aprint_normal("%c", (int)DISKPART(dumpdev) + 'a');
   1108 	aprint_normal("\n");
   1109 	return;
   1110 
   1111  nodumpdev:
   1112 	dumpdev = NODEV;
   1113 	dumpcdev = NODEV;
   1114 	aprint_normal("\n");
   1115 }
   1116 
   1117 static device_t
   1118 finddevice(const char *name)
   1119 {
   1120 	const char *wname;
   1121 
   1122 	if ((wname = getwedgename(name, strlen(name))) != NULL)
   1123 		return dkwedge_find_by_wname(wname);
   1124 
   1125 	return device_find_by_xname(name);
   1126 }
   1127 
   1128 static device_t
   1129 getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
   1130 {
   1131 	device_t dv;
   1132 
   1133 	if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
   1134 		printf("use one of:");
   1135 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1136 			if (DEV_USES_PARTITIONS(dv))
   1137 				printf(" %s[a-%c]", device_xname(dv),
   1138 				    'a' + MAXPARTITIONS - 1);
   1139 			else if (device_class(dv) == DV_DISK)
   1140 				printf(" %s", device_xname(dv));
   1141 			if (isdump == 0 && device_class(dv) == DV_IFNET)
   1142 				printf(" %s", device_xname(dv));
   1143 		}
   1144 		dkwedge_print_wnames();
   1145 		if (isdump)
   1146 			printf(" none");
   1147 #if defined(DDB)
   1148 		printf(" ddb");
   1149 #endif
   1150 		printf(" halt reboot\n");
   1151 	}
   1152 	return dv;
   1153 }
   1154 
   1155 static const char *
   1156 getwedgename(const char *name, int namelen)
   1157 {
   1158 	const char *wpfx = "wedge:";
   1159 	const int wpfxlen = strlen(wpfx);
   1160 
   1161 	if (namelen < wpfxlen || strncmp(name, wpfx, wpfxlen) != 0)
   1162 		return NULL;
   1163 
   1164 	return name + wpfxlen;
   1165 }
   1166 
   1167 static device_t
   1168 parsedisk(char *str, int len, int defpart, dev_t *devp)
   1169 {
   1170 	device_t dv;
   1171 	const char *wname;
   1172 	char *cp, c;
   1173 	int majdev, part;
   1174 	if (len == 0)
   1175 		return (NULL);
   1176 
   1177 	if (len == 4 && strcmp(str, "halt") == 0)
   1178 		cpu_reboot(RB_HALT, NULL);
   1179 	else if (len == 6 && strcmp(str, "reboot") == 0)
   1180 		cpu_reboot(0, NULL);
   1181 #if defined(DDB)
   1182 	else if (len == 3 && strcmp(str, "ddb") == 0)
   1183 		console_debugger();
   1184 #endif
   1185 
   1186 	cp = str + len - 1;
   1187 	c = *cp;
   1188 
   1189 	if ((wname = getwedgename(str, len)) != NULL) {
   1190 		if ((dv = dkwedge_find_by_wname(wname)) == NULL)
   1191 			return NULL;
   1192 		part = defpart;
   1193 		goto gotdisk;
   1194 	} else if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
   1195 		part = c - 'a';
   1196 		*cp = '\0';
   1197 	} else
   1198 		part = defpart;
   1199 
   1200 	dv = finddevice(str);
   1201 	if (dv != NULL) {
   1202 		if (device_class(dv) == DV_DISK) {
   1203  gotdisk:
   1204 			majdev = devsw_name2blk(device_xname(dv), NULL, 0);
   1205 			if (majdev < 0)
   1206 				panic("parsedisk");
   1207 			if (DEV_USES_PARTITIONS(dv))
   1208 				*devp = MAKEDISKDEV(majdev, device_unit(dv),
   1209 						    part);
   1210 			else
   1211 				*devp = makedev(majdev, device_unit(dv));
   1212 		}
   1213 
   1214 		if (device_class(dv) == DV_IFNET)
   1215 			*devp = NODEV;
   1216 	}
   1217 
   1218 	*cp = c;
   1219 	return (dv);
   1220 }
   1221 
   1222 /*
   1223  * snprintf() `bytes' into `buf', reformatting it so that the number,
   1224  * plus a possible `x' + suffix extension) fits into len bytes (including
   1225  * the terminating NUL).
   1226  * Returns the number of bytes stored in buf, or -1 if there was a problem.
   1227  * E.g, given a len of 9 and a suffix of `B':
   1228  *	bytes		result
   1229  *	-----		------
   1230  *	99999		`99999 B'
   1231  *	100000		`97 kB'
   1232  *	66715648	`65152 kB'
   1233  *	252215296	`240 MB'
   1234  */
   1235 int
   1236 humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
   1237     int divisor)
   1238 {
   1239        	/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
   1240 	const char *prefixes;
   1241 	int		r;
   1242 	uint64_t	umax;
   1243 	size_t		i, suffixlen;
   1244 
   1245 	if (buf == NULL || suffix == NULL)
   1246 		return (-1);
   1247 	if (len > 0)
   1248 		buf[0] = '\0';
   1249 	suffixlen = strlen(suffix);
   1250 	/* check if enough room for `x y' + suffix + `\0' */
   1251 	if (len < 4 + suffixlen)
   1252 		return (-1);
   1253 
   1254 	if (divisor == 1024) {
   1255 		/*
   1256 		 * binary multiplies
   1257 		 * XXX IEC 60027-2 recommends Ki, Mi, Gi...
   1258 		 */
   1259 		prefixes = " KMGTPE";
   1260 	} else
   1261 		prefixes = " kMGTPE"; /* SI for decimal multiplies */
   1262 
   1263 	umax = 1;
   1264 	for (i = 0; i < len - suffixlen - 3; i++) {
   1265 		umax *= 10;
   1266 		if (umax > bytes)
   1267 			break;
   1268 	}
   1269 	for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
   1270 		bytes /= divisor;
   1271 
   1272 	r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
   1273 	    i == 0 ? "" : " ", prefixes[i], suffix);
   1274 
   1275 	return (r);
   1276 }
   1277 
   1278 int
   1279 format_bytes(char *buf, size_t len, uint64_t bytes)
   1280 {
   1281 	int	rv;
   1282 	size_t	nlen;
   1283 
   1284 	rv = humanize_number(buf, len, bytes, "B", 1024);
   1285 	if (rv != -1) {
   1286 			/* nuke the trailing ` B' if it exists */
   1287 		nlen = strlen(buf) - 2;
   1288 		if (strcmp(&buf[nlen], " B") == 0)
   1289 			buf[nlen] = '\0';
   1290 	}
   1291 	return (rv);
   1292 }
   1293 
   1294 /*
   1295  * Return true if system call tracing is enabled for the specified process.
   1296  */
   1297 bool
   1298 trace_is_enabled(struct proc *p)
   1299 {
   1300 #ifdef SYSCALL_DEBUG
   1301 	return (true);
   1302 #endif
   1303 #ifdef KTRACE
   1304 	if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
   1305 		return (true);
   1306 #endif
   1307 #ifdef PTRACE
   1308 	if (ISSET(p->p_slflag, PSL_SYSCALL))
   1309 		return (true);
   1310 #endif
   1311 
   1312 	return (false);
   1313 }
   1314 
   1315 /*
   1316  * Start trace of particular system call. If process is being traced,
   1317  * this routine is called by MD syscall dispatch code just before
   1318  * a system call is actually executed.
   1319  */
   1320 int
   1321 trace_enter(register_t code, const register_t *args, int narg)
   1322 {
   1323 #ifdef SYSCALL_DEBUG
   1324 	scdebug_call(code, args);
   1325 #endif /* SYSCALL_DEBUG */
   1326 
   1327 	ktrsyscall(code, args, narg);
   1328 
   1329 #ifdef PTRACE
   1330 	if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1331 	    (PSL_SYSCALL|PSL_TRACED))
   1332 		process_stoptrace();
   1333 #endif
   1334 	return 0;
   1335 }
   1336 
   1337 /*
   1338  * End trace of particular system call. If process is being traced,
   1339  * this routine is called by MD syscall dispatch code just after
   1340  * a system call finishes.
   1341  * MD caller guarantees the passed 'code' is within the supported
   1342  * system call number range for emulation the process runs under.
   1343  */
   1344 void
   1345 trace_exit(register_t code, register_t rval[], int error)
   1346 {
   1347 #ifdef SYSCALL_DEBUG
   1348 	scdebug_ret(code, error, rval);
   1349 #endif /* SYSCALL_DEBUG */
   1350 
   1351 	ktrsysret(code, error, rval);
   1352 
   1353 #ifdef PTRACE
   1354 	if ((curlwp->l_proc->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
   1355 	    (PSL_SYSCALL|PSL_TRACED))
   1356 		process_stoptrace();
   1357 #endif
   1358 }
   1359 
   1360 int
   1361 syscall_establish(const struct emul *em, const struct syscall_package *sp)
   1362 {
   1363 	struct sysent *sy;
   1364 	int i;
   1365 
   1366 	KASSERT(mutex_owned(&module_lock));
   1367 
   1368 	if (em == NULL) {
   1369 		em = &emul_netbsd;
   1370 	}
   1371 	sy = em->e_sysent;
   1372 
   1373 	/*
   1374 	 * Ensure that all preconditions are valid, since this is
   1375 	 * an all or nothing deal.  Once a system call is entered,
   1376 	 * it can become busy and we could be unable to remove it
   1377 	 * on error.
   1378 	 */
   1379 	for (i = 0; sp[i].sp_call != NULL; i++) {
   1380 		if (sy[sp[i].sp_code].sy_call != sys_nomodule) {
   1381 #ifdef DIAGNOSTIC
   1382 			printf("syscall %d is busy\n", sp[i].sp_code);
   1383 #endif
   1384 			return EBUSY;
   1385 		}
   1386 	}
   1387 	/* Everything looks good, patch them in. */
   1388 	for (i = 0; sp[i].sp_call != NULL; i++) {
   1389 		sy[sp[i].sp_code].sy_call = sp[i].sp_call;
   1390 	}
   1391 
   1392 	return 0;
   1393 }
   1394 
   1395 int
   1396 syscall_disestablish(const struct emul *em, const struct syscall_package *sp)
   1397 {
   1398 	struct sysent *sy;
   1399 	uint64_t where;
   1400 	lwp_t *l;
   1401 	int i;
   1402 
   1403 	KASSERT(mutex_owned(&module_lock));
   1404 
   1405 	if (em == NULL) {
   1406 		em = &emul_netbsd;
   1407 	}
   1408 	sy = em->e_sysent;
   1409 
   1410 	/*
   1411 	 * First, patch the system calls to sys_nomodule to gate further
   1412 	 * activity.
   1413 	 */
   1414 	for (i = 0; sp[i].sp_call != NULL; i++) {
   1415 		KASSERT(sy[sp[i].sp_code].sy_call == sp[i].sp_call);
   1416 		sy[sp[i].sp_code].sy_call = sys_nomodule;
   1417 	}
   1418 
   1419 	/*
   1420 	 * Run a cross call to cycle through all CPUs.  This does two
   1421 	 * things: lock activity provides a barrier and makes our update
   1422 	 * of sy_call visible to all CPUs, and upon return we can be sure
   1423 	 * that we see pertinent values of l_sysent posted by remote CPUs.
   1424 	 */
   1425 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1426 	xc_wait(where);
   1427 
   1428 	/*
   1429 	 * Now it's safe to check l_sysent.  Run through all LWPs and see
   1430 	 * if anyone is still using the system call.
   1431 	 */
   1432 	for (i = 0; sp[i].sp_call != NULL; i++) {
   1433 		mutex_enter(proc_lock);
   1434 		LIST_FOREACH(l, &alllwp, l_list) {
   1435 			if (l->l_sysent == &sy[sp[i].sp_code]) {
   1436 				break;
   1437 			}
   1438 		}
   1439 		mutex_exit(proc_lock);
   1440 		if (l == NULL) {
   1441 			continue;
   1442 		}
   1443 		/*
   1444 		 * We lose: one or more calls are still in use.  Put back
   1445 		 * the old entrypoints and act like nothing happened.
   1446 		 * When we drop module_lock, any system calls held in
   1447 		 * sys_nomodule() will be restarted.
   1448 		 */
   1449 		for (i = 0; sp[i].sp_call != NULL; i++) {
   1450 			sy[sp[i].sp_code].sy_call = sp[i].sp_call;
   1451 		}
   1452 		return EBUSY;
   1453 	}
   1454 
   1455 	return 0;
   1456 }
   1457