Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.1.1.3
      1  1.1.1.2  fvdl /*-
      2  1.1.1.2  fvdl  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      3  1.1.1.2  fvdl  *	The Regents of the University of California.  All rights reserved.
      4  1.1.1.2  fvdl  * (c) UNIX System Laboratories, Inc.
      5  1.1.1.2  fvdl  * All or some portions of this file are derived from material licensed
      6  1.1.1.2  fvdl  * to the University of California by American Telephone and Telegraph
      7  1.1.1.2  fvdl  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
      8  1.1.1.2  fvdl  * the permission of UNIX System Laboratories, Inc.
      9  1.1.1.2  fvdl  *
     10  1.1.1.2  fvdl  * Redistribution and use in source and binary forms, with or without
     11  1.1.1.2  fvdl  * modification, are permitted provided that the following conditions
     12  1.1.1.2  fvdl  * are met:
     13  1.1.1.2  fvdl  * 1. Redistributions of source code must retain the above copyright
     14  1.1.1.2  fvdl  *    notice, this list of conditions and the following disclaimer.
     15  1.1.1.2  fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1.1.2  fvdl  *    notice, this list of conditions and the following disclaimer in the
     17  1.1.1.2  fvdl  *    documentation and/or other materials provided with the distribution.
     18  1.1.1.2  fvdl  * 3. All advertising materials mentioning features or use of this software
     19  1.1.1.2  fvdl  *    must display the following acknowledgement:
     20  1.1.1.2  fvdl  *	This product includes software developed by the University of
     21  1.1.1.2  fvdl  *	California, Berkeley and its contributors.
     22  1.1.1.2  fvdl  * 4. Neither the name of the University nor the names of its contributors
     23  1.1.1.2  fvdl  *    may be used to endorse or promote products derived from this software
     24  1.1.1.2  fvdl  *    without specific prior written permission.
     25  1.1.1.2  fvdl  *
     26  1.1.1.2  fvdl  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1.1.2  fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1.1.2  fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1.1.2  fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1.1.2  fvdl  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1.1.2  fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1.1.2  fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1.1.2  fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1.1.2  fvdl  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1.1.2  fvdl  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1.1.2  fvdl  * SUCH DAMAGE.
     37  1.1.1.2  fvdl  *
     38  1.1.1.3  fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     39  1.1.1.2  fvdl  */
     40  1.1.1.2  fvdl 
     41  1.1.1.2  fvdl #include <sys/param.h>
     42  1.1.1.2  fvdl #include <sys/systm.h>
     43  1.1.1.2  fvdl #include <sys/proc.h>
     44  1.1.1.2  fvdl #include <sys/kernel.h>
     45  1.1.1.2  fvdl #include <sys/buf.h>
     46  1.1.1.2  fvdl #include <sys/signalvar.h>
     47  1.1.1.2  fvdl #include <sys/resourcevar.h>
     48  1.1.1.2  fvdl #include <sys/vmmeter.h>
     49  1.1.1.2  fvdl #ifdef KTRACE
     50  1.1.1.2  fvdl #include <sys/ktrace.h>
     51  1.1.1.2  fvdl #endif
     52  1.1.1.2  fvdl 
     53  1.1.1.2  fvdl #include <machine/cpu.h>
     54  1.1.1.2  fvdl 
     55  1.1.1.2  fvdl u_char	curpriority;		/* usrpri of curproc */
     56  1.1.1.2  fvdl int	lbolt;			/* once a second sleep address */
     57  1.1.1.2  fvdl 
     58  1.1.1.2  fvdl /*
     59  1.1.1.2  fvdl  * Force switch among equal priority processes every 100ms.
     60  1.1.1.2  fvdl  */
     61  1.1.1.2  fvdl /* ARGSUSED */
     62  1.1.1.2  fvdl void
     63  1.1.1.2  fvdl roundrobin(arg)
     64  1.1.1.2  fvdl 	void *arg;
     65  1.1.1.2  fvdl {
     66  1.1.1.2  fvdl 
     67  1.1.1.2  fvdl 	need_resched();
     68  1.1.1.2  fvdl 	timeout(roundrobin, NULL, hz / 10);
     69  1.1.1.2  fvdl }
     70  1.1.1.2  fvdl 
     71  1.1.1.2  fvdl /*
     72  1.1.1.2  fvdl  * Constants for digital decay and forget:
     73  1.1.1.2  fvdl  *	90% of (p_estcpu) usage in 5 * loadav time
     74  1.1.1.2  fvdl  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     75  1.1.1.2  fvdl  *          Note that, as ps(1) mentions, this can let percentages
     76  1.1.1.2  fvdl  *          total over 100% (I've seen 137.9% for 3 processes).
     77  1.1.1.2  fvdl  *
     78  1.1.1.2  fvdl  * Note that hardclock updates p_estcpu and p_cpticks independently.
     79  1.1.1.2  fvdl  *
     80  1.1.1.2  fvdl  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     81  1.1.1.2  fvdl  * That is, the system wants to compute a value of decay such
     82  1.1.1.2  fvdl  * that the following for loop:
     83  1.1.1.2  fvdl  * 	for (i = 0; i < (5 * loadavg); i++)
     84  1.1.1.2  fvdl  * 		p_estcpu *= decay;
     85  1.1.1.2  fvdl  * will compute
     86  1.1.1.2  fvdl  * 	p_estcpu *= 0.1;
     87  1.1.1.2  fvdl  * for all values of loadavg:
     88  1.1.1.2  fvdl  *
     89  1.1.1.2  fvdl  * Mathematically this loop can be expressed by saying:
     90  1.1.1.2  fvdl  * 	decay ** (5 * loadavg) ~= .1
     91  1.1.1.2  fvdl  *
     92  1.1.1.2  fvdl  * The system computes decay as:
     93  1.1.1.2  fvdl  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
     94  1.1.1.2  fvdl  *
     95  1.1.1.2  fvdl  * We wish to prove that the system's computation of decay
     96  1.1.1.2  fvdl  * will always fulfill the equation:
     97  1.1.1.2  fvdl  * 	decay ** (5 * loadavg) ~= .1
     98  1.1.1.2  fvdl  *
     99  1.1.1.2  fvdl  * If we compute b as:
    100  1.1.1.2  fvdl  * 	b = 2 * loadavg
    101  1.1.1.2  fvdl  * then
    102  1.1.1.2  fvdl  * 	decay = b / (b + 1)
    103  1.1.1.2  fvdl  *
    104  1.1.1.2  fvdl  * We now need to prove two things:
    105  1.1.1.2  fvdl  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    106  1.1.1.2  fvdl  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    107  1.1.1.2  fvdl  *
    108  1.1.1.2  fvdl  * Facts:
    109  1.1.1.2  fvdl  *         For x close to zero, exp(x) =~ 1 + x, since
    110  1.1.1.2  fvdl  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    111  1.1.1.2  fvdl  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    112  1.1.1.2  fvdl  *         For x close to zero, ln(1+x) =~ x, since
    113  1.1.1.2  fvdl  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    114  1.1.1.2  fvdl  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    115  1.1.1.2  fvdl  *         ln(.1) =~ -2.30
    116  1.1.1.2  fvdl  *
    117  1.1.1.2  fvdl  * Proof of (1):
    118  1.1.1.2  fvdl  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    119  1.1.1.2  fvdl  *	solving for factor,
    120  1.1.1.2  fvdl  *      ln(factor) =~ (-2.30/5*loadav), or
    121  1.1.1.2  fvdl  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    122  1.1.1.2  fvdl  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    123  1.1.1.2  fvdl  *
    124  1.1.1.2  fvdl  * Proof of (2):
    125  1.1.1.2  fvdl  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    126  1.1.1.2  fvdl  *	solving for power,
    127  1.1.1.2  fvdl  *      power*ln(b/(b+1)) =~ -2.30, or
    128  1.1.1.2  fvdl  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    129  1.1.1.2  fvdl  *
    130  1.1.1.2  fvdl  * Actual power values for the implemented algorithm are as follows:
    131  1.1.1.2  fvdl  *      loadav: 1       2       3       4
    132  1.1.1.2  fvdl  *      power:  5.68    10.32   14.94   19.55
    133  1.1.1.2  fvdl  */
    134  1.1.1.2  fvdl 
    135  1.1.1.2  fvdl /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    136  1.1.1.2  fvdl #define	loadfactor(loadav)	(2 * (loadav))
    137  1.1.1.2  fvdl #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    138  1.1.1.2  fvdl 
    139  1.1.1.2  fvdl /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    140  1.1.1.2  fvdl fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    141  1.1.1.2  fvdl 
    142  1.1.1.2  fvdl /*
    143  1.1.1.2  fvdl  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    144  1.1.1.2  fvdl  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    145  1.1.1.2  fvdl  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    146  1.1.1.2  fvdl  *
    147  1.1.1.2  fvdl  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    148  1.1.1.2  fvdl  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    149  1.1.1.2  fvdl  *
    150  1.1.1.2  fvdl  * If you dont want to bother with the faster/more-accurate formula, you
    151  1.1.1.2  fvdl  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    152  1.1.1.2  fvdl  * (more general) method of calculating the %age of CPU used by a process.
    153  1.1.1.2  fvdl  */
    154  1.1.1.2  fvdl #define	CCPU_SHIFT	11
    155  1.1.1.2  fvdl 
    156  1.1.1.2  fvdl /*
    157  1.1.1.2  fvdl  * Recompute process priorities, every hz ticks.
    158  1.1.1.2  fvdl  */
    159  1.1.1.2  fvdl /* ARGSUSED */
    160  1.1.1.2  fvdl void
    161  1.1.1.2  fvdl schedcpu(arg)
    162  1.1.1.2  fvdl 	void *arg;
    163  1.1.1.2  fvdl {
    164  1.1.1.2  fvdl 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    165  1.1.1.2  fvdl 	register struct proc *p;
    166  1.1.1.2  fvdl 	register int s;
    167  1.1.1.2  fvdl 	register unsigned int newcpu;
    168  1.1.1.2  fvdl 
    169  1.1.1.2  fvdl 	wakeup((caddr_t)&lbolt);
    170  1.1.1.3  fvdl 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    171  1.1.1.2  fvdl 		/*
    172  1.1.1.2  fvdl 		 * Increment time in/out of memory and sleep time
    173  1.1.1.2  fvdl 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    174  1.1.1.2  fvdl 		 * (remember them?) overflow takes 45 days.
    175  1.1.1.2  fvdl 		 */
    176  1.1.1.2  fvdl 		p->p_swtime++;
    177  1.1.1.2  fvdl 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    178  1.1.1.2  fvdl 			p->p_slptime++;
    179  1.1.1.2  fvdl 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    180  1.1.1.2  fvdl 		/*
    181  1.1.1.2  fvdl 		 * If the process has slept the entire second,
    182  1.1.1.2  fvdl 		 * stop recalculating its priority until it wakes up.
    183  1.1.1.2  fvdl 		 */
    184  1.1.1.2  fvdl 		if (p->p_slptime > 1)
    185  1.1.1.2  fvdl 			continue;
    186  1.1.1.2  fvdl 		s = splstatclock();	/* prevent state changes */
    187  1.1.1.2  fvdl 		/*
    188  1.1.1.2  fvdl 		 * p_pctcpu is only for ps.
    189  1.1.1.2  fvdl 		 */
    190  1.1.1.2  fvdl #if	(FSHIFT >= CCPU_SHIFT)
    191  1.1.1.2  fvdl 		p->p_pctcpu += (hz == 100)?
    192  1.1.1.2  fvdl 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    193  1.1.1.2  fvdl                 	100 * (((fixpt_t) p->p_cpticks)
    194  1.1.1.2  fvdl 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    195  1.1.1.2  fvdl #else
    196  1.1.1.2  fvdl 		p->p_pctcpu += ((FSCALE - ccpu) *
    197  1.1.1.2  fvdl 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    198  1.1.1.2  fvdl #endif
    199  1.1.1.2  fvdl 		p->p_cpticks = 0;
    200  1.1.1.2  fvdl 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
    201  1.1.1.2  fvdl 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    202  1.1.1.2  fvdl 		resetpriority(p);
    203  1.1.1.2  fvdl 		if (p->p_priority >= PUSER) {
    204  1.1.1.2  fvdl #define	PPQ	(128 / NQS)		/* priorities per queue */
    205  1.1.1.2  fvdl 			if ((p != curproc) &&
    206  1.1.1.2  fvdl 			    p->p_stat == SRUN &&
    207  1.1.1.2  fvdl 			    (p->p_flag & P_INMEM) &&
    208  1.1.1.2  fvdl 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    209  1.1.1.2  fvdl 				remrq(p);
    210  1.1.1.2  fvdl 				p->p_priority = p->p_usrpri;
    211  1.1.1.2  fvdl 				setrunqueue(p);
    212  1.1.1.2  fvdl 			} else
    213  1.1.1.2  fvdl 				p->p_priority = p->p_usrpri;
    214  1.1.1.2  fvdl 		}
    215  1.1.1.2  fvdl 		splx(s);
    216  1.1.1.2  fvdl 	}
    217  1.1.1.2  fvdl 	vmmeter();
    218  1.1.1.2  fvdl 	if (bclnlist != NULL)
    219  1.1.1.2  fvdl 		wakeup((caddr_t)pageproc);
    220  1.1.1.2  fvdl 	timeout(schedcpu, (void *)0, hz);
    221  1.1.1.2  fvdl }
    222  1.1.1.2  fvdl 
    223  1.1.1.2  fvdl /*
    224  1.1.1.2  fvdl  * Recalculate the priority of a process after it has slept for a while.
    225  1.1.1.2  fvdl  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    226  1.1.1.2  fvdl  * least six times the loadfactor will decay p_estcpu to zero.
    227  1.1.1.2  fvdl  */
    228  1.1.1.2  fvdl void
    229  1.1.1.2  fvdl updatepri(p)
    230  1.1.1.2  fvdl 	register struct proc *p;
    231  1.1.1.2  fvdl {
    232  1.1.1.2  fvdl 	register unsigned int newcpu = p->p_estcpu;
    233  1.1.1.2  fvdl 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    234  1.1.1.2  fvdl 
    235  1.1.1.2  fvdl 	if (p->p_slptime > 5 * loadfac)
    236  1.1.1.2  fvdl 		p->p_estcpu = 0;
    237  1.1.1.2  fvdl 	else {
    238  1.1.1.2  fvdl 		p->p_slptime--;	/* the first time was done in schedcpu */
    239  1.1.1.2  fvdl 		while (newcpu && --p->p_slptime)
    240  1.1.1.2  fvdl 			newcpu = (int) decay_cpu(loadfac, newcpu);
    241  1.1.1.2  fvdl 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    242  1.1.1.2  fvdl 	}
    243  1.1.1.2  fvdl 	resetpriority(p);
    244  1.1.1.2  fvdl }
    245  1.1.1.2  fvdl 
    246  1.1.1.2  fvdl /*
    247  1.1.1.2  fvdl  * We're only looking at 7 bits of the address; everything is
    248  1.1.1.2  fvdl  * aligned to 4, lots of things are aligned to greater powers
    249  1.1.1.2  fvdl  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    250  1.1.1.2  fvdl  */
    251  1.1.1.2  fvdl #define TABLESIZE	128
    252  1.1.1.3  fvdl #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    253  1.1.1.2  fvdl struct slpque {
    254  1.1.1.2  fvdl 	struct proc *sq_head;
    255  1.1.1.2  fvdl 	struct proc **sq_tailp;
    256  1.1.1.2  fvdl } slpque[TABLESIZE];
    257  1.1.1.2  fvdl 
    258  1.1.1.2  fvdl /*
    259  1.1.1.2  fvdl  * During autoconfiguration or after a panic, a sleep will simply
    260  1.1.1.2  fvdl  * lower the priority briefly to allow interrupts, then return.
    261  1.1.1.2  fvdl  * The priority to be used (safepri) is machine-dependent, thus this
    262  1.1.1.2  fvdl  * value is initialized and maintained in the machine-dependent layers.
    263  1.1.1.2  fvdl  * This priority will typically be 0, or the lowest priority
    264  1.1.1.2  fvdl  * that is safe for use on the interrupt stack; it can be made
    265  1.1.1.2  fvdl  * higher to block network software interrupts after panics.
    266  1.1.1.2  fvdl  */
    267  1.1.1.2  fvdl int safepri;
    268  1.1.1.2  fvdl 
    269  1.1.1.2  fvdl /*
    270  1.1.1.2  fvdl  * General sleep call.  Suspends the current process until a wakeup is
    271  1.1.1.2  fvdl  * performed on the specified identifier.  The process will then be made
    272  1.1.1.2  fvdl  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    273  1.1.1.2  fvdl  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    274  1.1.1.2  fvdl  * before and after sleeping, else signals are not checked.  Returns 0 if
    275  1.1.1.2  fvdl  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    276  1.1.1.2  fvdl  * signal needs to be delivered, ERESTART is returned if the current system
    277  1.1.1.2  fvdl  * call should be restarted if possible, and EINTR is returned if the system
    278  1.1.1.2  fvdl  * call should be interrupted by the signal (return EINTR).
    279  1.1.1.2  fvdl  */
    280  1.1.1.2  fvdl int
    281  1.1.1.2  fvdl tsleep(ident, priority, wmesg, timo)
    282  1.1.1.2  fvdl 	void *ident;
    283  1.1.1.2  fvdl 	int priority, timo;
    284  1.1.1.2  fvdl 	char *wmesg;
    285  1.1.1.2  fvdl {
    286  1.1.1.2  fvdl 	register struct proc *p = curproc;
    287  1.1.1.2  fvdl 	register struct slpque *qp;
    288  1.1.1.2  fvdl 	register s;
    289  1.1.1.2  fvdl 	int sig, catch = priority & PCATCH;
    290  1.1.1.2  fvdl 	extern int cold;
    291  1.1.1.2  fvdl 	void endtsleep __P((void *));
    292  1.1.1.2  fvdl 
    293  1.1.1.2  fvdl #ifdef KTRACE
    294  1.1.1.2  fvdl 	if (KTRPOINT(p, KTR_CSW))
    295  1.1.1.2  fvdl 		ktrcsw(p->p_tracep, 1, 0);
    296  1.1.1.2  fvdl #endif
    297  1.1.1.2  fvdl 	s = splhigh();
    298  1.1.1.2  fvdl 	if (cold || panicstr) {
    299  1.1.1.2  fvdl 		/*
    300  1.1.1.2  fvdl 		 * After a panic, or during autoconfiguration,
    301  1.1.1.2  fvdl 		 * just give interrupts a chance, then just return;
    302  1.1.1.2  fvdl 		 * don't run any other procs or panic below,
    303  1.1.1.2  fvdl 		 * in case this is the idle process and already asleep.
    304  1.1.1.2  fvdl 		 */
    305  1.1.1.2  fvdl 		splx(safepri);
    306  1.1.1.2  fvdl 		splx(s);
    307  1.1.1.2  fvdl 		return (0);
    308  1.1.1.2  fvdl 	}
    309  1.1.1.2  fvdl #ifdef DIAGNOSTIC
    310  1.1.1.2  fvdl 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    311  1.1.1.2  fvdl 		panic("tsleep");
    312  1.1.1.2  fvdl #endif
    313  1.1.1.2  fvdl 	p->p_wchan = ident;
    314  1.1.1.2  fvdl 	p->p_wmesg = wmesg;
    315  1.1.1.2  fvdl 	p->p_slptime = 0;
    316  1.1.1.2  fvdl 	p->p_priority = priority & PRIMASK;
    317  1.1.1.2  fvdl 	qp = &slpque[LOOKUP(ident)];
    318  1.1.1.2  fvdl 	if (qp->sq_head == 0)
    319  1.1.1.2  fvdl 		qp->sq_head = p;
    320  1.1.1.2  fvdl 	else
    321  1.1.1.2  fvdl 		*qp->sq_tailp = p;
    322  1.1.1.2  fvdl 	*(qp->sq_tailp = &p->p_forw) = 0;
    323  1.1.1.2  fvdl 	if (timo)
    324  1.1.1.2  fvdl 		timeout(endtsleep, (void *)p, timo);
    325  1.1.1.2  fvdl 	/*
    326  1.1.1.2  fvdl 	 * We put ourselves on the sleep queue and start our timeout
    327  1.1.1.2  fvdl 	 * before calling CURSIG, as we could stop there, and a wakeup
    328  1.1.1.2  fvdl 	 * or a SIGCONT (or both) could occur while we were stopped.
    329  1.1.1.2  fvdl 	 * A SIGCONT would cause us to be marked as SSLEEP
    330  1.1.1.2  fvdl 	 * without resuming us, thus we must be ready for sleep
    331  1.1.1.2  fvdl 	 * when CURSIG is called.  If the wakeup happens while we're
    332  1.1.1.2  fvdl 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    333  1.1.1.2  fvdl 	 */
    334  1.1.1.2  fvdl 	if (catch) {
    335  1.1.1.2  fvdl 		p->p_flag |= P_SINTR;
    336  1.1.1.2  fvdl 		if (sig = CURSIG(p)) {
    337  1.1.1.2  fvdl 			if (p->p_wchan)
    338  1.1.1.2  fvdl 				unsleep(p);
    339  1.1.1.2  fvdl 			p->p_stat = SRUN;
    340  1.1.1.2  fvdl 			goto resume;
    341  1.1.1.2  fvdl 		}
    342  1.1.1.2  fvdl 		if (p->p_wchan == 0) {
    343  1.1.1.2  fvdl 			catch = 0;
    344  1.1.1.2  fvdl 			goto resume;
    345  1.1.1.2  fvdl 		}
    346  1.1.1.2  fvdl 	} else
    347  1.1.1.2  fvdl 		sig = 0;
    348  1.1.1.2  fvdl 	p->p_stat = SSLEEP;
    349  1.1.1.2  fvdl 	p->p_stats->p_ru.ru_nvcsw++;
    350  1.1.1.2  fvdl 	mi_switch();
    351  1.1.1.2  fvdl resume:
    352  1.1.1.2  fvdl 	curpriority = p->p_usrpri;
    353  1.1.1.2  fvdl 	splx(s);
    354  1.1.1.2  fvdl 	p->p_flag &= ~P_SINTR;
    355  1.1.1.2  fvdl 	if (p->p_flag & P_TIMEOUT) {
    356  1.1.1.2  fvdl 		p->p_flag &= ~P_TIMEOUT;
    357  1.1.1.2  fvdl 		if (sig == 0) {
    358  1.1.1.2  fvdl #ifdef KTRACE
    359  1.1.1.2  fvdl 			if (KTRPOINT(p, KTR_CSW))
    360  1.1.1.2  fvdl 				ktrcsw(p->p_tracep, 0, 0);
    361  1.1.1.2  fvdl #endif
    362  1.1.1.2  fvdl 			return (EWOULDBLOCK);
    363  1.1.1.2  fvdl 		}
    364  1.1.1.2  fvdl 	} else if (timo)
    365  1.1.1.2  fvdl 		untimeout(endtsleep, (void *)p);
    366  1.1.1.2  fvdl 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
    367  1.1.1.2  fvdl #ifdef KTRACE
    368  1.1.1.2  fvdl 		if (KTRPOINT(p, KTR_CSW))
    369  1.1.1.2  fvdl 			ktrcsw(p->p_tracep, 0, 0);
    370  1.1.1.2  fvdl #endif
    371  1.1.1.2  fvdl 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    372  1.1.1.2  fvdl 			return (EINTR);
    373  1.1.1.2  fvdl 		return (ERESTART);
    374  1.1.1.2  fvdl 	}
    375  1.1.1.2  fvdl #ifdef KTRACE
    376  1.1.1.2  fvdl 	if (KTRPOINT(p, KTR_CSW))
    377  1.1.1.2  fvdl 		ktrcsw(p->p_tracep, 0, 0);
    378  1.1.1.2  fvdl #endif
    379  1.1.1.2  fvdl 	return (0);
    380  1.1.1.2  fvdl }
    381  1.1.1.2  fvdl 
    382  1.1.1.2  fvdl /*
    383  1.1.1.2  fvdl  * Implement timeout for tsleep.
    384  1.1.1.2  fvdl  * If process hasn't been awakened (wchan non-zero),
    385  1.1.1.2  fvdl  * set timeout flag and undo the sleep.  If proc
    386  1.1.1.2  fvdl  * is stopped, just unsleep so it will remain stopped.
    387  1.1.1.2  fvdl  */
    388  1.1.1.2  fvdl void
    389  1.1.1.2  fvdl endtsleep(arg)
    390  1.1.1.2  fvdl 	void *arg;
    391  1.1.1.2  fvdl {
    392  1.1.1.2  fvdl 	register struct proc *p;
    393  1.1.1.2  fvdl 	int s;
    394  1.1.1.2  fvdl 
    395  1.1.1.2  fvdl 	p = (struct proc *)arg;
    396  1.1.1.2  fvdl 	s = splhigh();
    397  1.1.1.2  fvdl 	if (p->p_wchan) {
    398  1.1.1.2  fvdl 		if (p->p_stat == SSLEEP)
    399  1.1.1.2  fvdl 			setrunnable(p);
    400  1.1.1.2  fvdl 		else
    401  1.1.1.2  fvdl 			unsleep(p);
    402  1.1.1.2  fvdl 		p->p_flag |= P_TIMEOUT;
    403  1.1.1.2  fvdl 	}
    404  1.1.1.2  fvdl 	splx(s);
    405  1.1.1.2  fvdl }
    406  1.1.1.2  fvdl 
    407  1.1.1.2  fvdl /*
    408  1.1.1.2  fvdl  * Short-term, non-interruptable sleep.
    409  1.1.1.2  fvdl  */
    410  1.1.1.2  fvdl void
    411  1.1.1.2  fvdl sleep(ident, priority)
    412  1.1.1.2  fvdl 	void *ident;
    413  1.1.1.2  fvdl 	int priority;
    414  1.1.1.2  fvdl {
    415  1.1.1.2  fvdl 	register struct proc *p = curproc;
    416  1.1.1.2  fvdl 	register struct slpque *qp;
    417  1.1.1.2  fvdl 	register s;
    418  1.1.1.2  fvdl 	extern int cold;
    419  1.1.1.2  fvdl 
    420  1.1.1.2  fvdl #ifdef DIAGNOSTIC
    421  1.1.1.2  fvdl 	if (priority > PZERO) {
    422  1.1.1.2  fvdl 		printf("sleep called with priority %d > PZERO, wchan: %x\n",
    423  1.1.1.2  fvdl 		    priority, ident);
    424  1.1.1.2  fvdl 		panic("old sleep");
    425  1.1.1.2  fvdl 	}
    426  1.1.1.2  fvdl #endif
    427  1.1.1.2  fvdl 	s = splhigh();
    428  1.1.1.2  fvdl 	if (cold || panicstr) {
    429  1.1.1.2  fvdl 		/*
    430  1.1.1.2  fvdl 		 * After a panic, or during autoconfiguration,
    431  1.1.1.2  fvdl 		 * just give interrupts a chance, then just return;
    432  1.1.1.2  fvdl 		 * don't run any other procs or panic below,
    433  1.1.1.2  fvdl 		 * in case this is the idle process and already asleep.
    434  1.1.1.2  fvdl 		 */
    435  1.1.1.2  fvdl 		splx(safepri);
    436  1.1.1.2  fvdl 		splx(s);
    437  1.1.1.2  fvdl 		return;
    438  1.1.1.2  fvdl 	}
    439  1.1.1.2  fvdl #ifdef DIAGNOSTIC
    440  1.1.1.2  fvdl 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    441  1.1.1.2  fvdl 		panic("sleep");
    442  1.1.1.2  fvdl #endif
    443  1.1.1.2  fvdl 	p->p_wchan = ident;
    444  1.1.1.2  fvdl 	p->p_wmesg = NULL;
    445  1.1.1.2  fvdl 	p->p_slptime = 0;
    446  1.1.1.2  fvdl 	p->p_priority = priority;
    447  1.1.1.2  fvdl 	qp = &slpque[LOOKUP(ident)];
    448  1.1.1.2  fvdl 	if (qp->sq_head == 0)
    449  1.1.1.2  fvdl 		qp->sq_head = p;
    450  1.1.1.2  fvdl 	else
    451  1.1.1.2  fvdl 		*qp->sq_tailp = p;
    452  1.1.1.2  fvdl 	*(qp->sq_tailp = &p->p_forw) = 0;
    453  1.1.1.2  fvdl 	p->p_stat = SSLEEP;
    454  1.1.1.2  fvdl 	p->p_stats->p_ru.ru_nvcsw++;
    455  1.1.1.2  fvdl #ifdef KTRACE
    456  1.1.1.2  fvdl 	if (KTRPOINT(p, KTR_CSW))
    457  1.1.1.2  fvdl 		ktrcsw(p->p_tracep, 1, 0);
    458  1.1.1.2  fvdl #endif
    459  1.1.1.2  fvdl 	mi_switch();
    460  1.1.1.2  fvdl #ifdef KTRACE
    461  1.1.1.2  fvdl 	if (KTRPOINT(p, KTR_CSW))
    462  1.1.1.2  fvdl 		ktrcsw(p->p_tracep, 0, 0);
    463  1.1.1.2  fvdl #endif
    464  1.1.1.2  fvdl 	curpriority = p->p_usrpri;
    465  1.1.1.2  fvdl 	splx(s);
    466  1.1.1.2  fvdl }
    467  1.1.1.2  fvdl 
    468  1.1.1.2  fvdl /*
    469  1.1.1.2  fvdl  * Remove a process from its wait queue
    470  1.1.1.2  fvdl  */
    471  1.1.1.2  fvdl void
    472  1.1.1.2  fvdl unsleep(p)
    473  1.1.1.2  fvdl 	register struct proc *p;
    474  1.1.1.2  fvdl {
    475  1.1.1.2  fvdl 	register struct slpque *qp;
    476  1.1.1.2  fvdl 	register struct proc **hp;
    477  1.1.1.2  fvdl 	int s;
    478  1.1.1.2  fvdl 
    479  1.1.1.2  fvdl 	s = splhigh();
    480  1.1.1.2  fvdl 	if (p->p_wchan) {
    481  1.1.1.2  fvdl 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    482  1.1.1.2  fvdl 		while (*hp != p)
    483  1.1.1.2  fvdl 			hp = &(*hp)->p_forw;
    484  1.1.1.2  fvdl 		*hp = p->p_forw;
    485  1.1.1.2  fvdl 		if (qp->sq_tailp == &p->p_forw)
    486  1.1.1.2  fvdl 			qp->sq_tailp = hp;
    487  1.1.1.2  fvdl 		p->p_wchan = 0;
    488  1.1.1.2  fvdl 	}
    489  1.1.1.2  fvdl 	splx(s);
    490  1.1.1.2  fvdl }
    491  1.1.1.2  fvdl 
    492  1.1.1.2  fvdl /*
    493  1.1.1.2  fvdl  * Make all processes sleeping on the specified identifier runnable.
    494  1.1.1.2  fvdl  */
    495  1.1.1.2  fvdl void
    496  1.1.1.2  fvdl wakeup(ident)
    497  1.1.1.2  fvdl 	register void *ident;
    498  1.1.1.2  fvdl {
    499  1.1.1.2  fvdl 	register struct slpque *qp;
    500  1.1.1.2  fvdl 	register struct proc *p, **q;
    501  1.1.1.2  fvdl 	int s;
    502  1.1.1.2  fvdl 
    503  1.1.1.2  fvdl 	s = splhigh();
    504  1.1.1.2  fvdl 	qp = &slpque[LOOKUP(ident)];
    505  1.1.1.2  fvdl restart:
    506  1.1.1.2  fvdl 	for (q = &qp->sq_head; p = *q; ) {
    507  1.1.1.2  fvdl #ifdef DIAGNOSTIC
    508  1.1.1.2  fvdl 		if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP)
    509  1.1.1.2  fvdl 			panic("wakeup");
    510  1.1.1.2  fvdl #endif
    511  1.1.1.2  fvdl 		if (p->p_wchan == ident) {
    512  1.1.1.2  fvdl 			p->p_wchan = 0;
    513  1.1.1.2  fvdl 			*q = p->p_forw;
    514  1.1.1.2  fvdl 			if (qp->sq_tailp == &p->p_forw)
    515  1.1.1.2  fvdl 				qp->sq_tailp = q;
    516  1.1.1.2  fvdl 			if (p->p_stat == SSLEEP) {
    517  1.1.1.2  fvdl 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    518  1.1.1.2  fvdl 				if (p->p_slptime > 1)
    519  1.1.1.2  fvdl 					updatepri(p);
    520  1.1.1.2  fvdl 				p->p_slptime = 0;
    521  1.1.1.2  fvdl 				p->p_stat = SRUN;
    522  1.1.1.2  fvdl 				if (p->p_flag & P_INMEM)
    523  1.1.1.2  fvdl 					setrunqueue(p);
    524  1.1.1.2  fvdl 				/*
    525  1.1.1.2  fvdl 				 * Since curpriority is a user priority,
    526  1.1.1.2  fvdl 				 * p->p_priority is always better than
    527  1.1.1.2  fvdl 				 * curpriority.
    528  1.1.1.2  fvdl 				 */
    529  1.1.1.2  fvdl 				if ((p->p_flag & P_INMEM) == 0)
    530  1.1.1.2  fvdl 					wakeup((caddr_t)&proc0);
    531  1.1.1.2  fvdl 				else
    532  1.1.1.2  fvdl 					need_resched();
    533  1.1.1.2  fvdl 				/* END INLINE EXPANSION */
    534  1.1.1.2  fvdl 				goto restart;
    535  1.1.1.2  fvdl 			}
    536  1.1.1.2  fvdl 		} else
    537  1.1.1.2  fvdl 			q = &p->p_forw;
    538  1.1.1.2  fvdl 	}
    539  1.1.1.2  fvdl 	splx(s);
    540  1.1.1.2  fvdl }
    541  1.1.1.2  fvdl 
    542  1.1.1.2  fvdl /*
    543  1.1.1.2  fvdl  * The machine independent parts of mi_switch().
    544  1.1.1.2  fvdl  * Must be called at splstatclock() or higher.
    545  1.1.1.2  fvdl  */
    546  1.1.1.2  fvdl void
    547  1.1.1.2  fvdl mi_switch()
    548  1.1.1.2  fvdl {
    549  1.1.1.2  fvdl 	register struct proc *p = curproc;	/* XXX */
    550  1.1.1.2  fvdl 	register struct rlimit *rlim;
    551  1.1.1.2  fvdl 	register long s, u;
    552  1.1.1.2  fvdl 	struct timeval tv;
    553  1.1.1.2  fvdl 
    554  1.1.1.3  fvdl #ifdef DEBUG
    555  1.1.1.3  fvdl 	if (p->p_simple_locks)
    556  1.1.1.3  fvdl 		panic("sleep: holding simple lock");
    557  1.1.1.3  fvdl #endif
    558  1.1.1.2  fvdl 	/*
    559  1.1.1.2  fvdl 	 * Compute the amount of time during which the current
    560  1.1.1.2  fvdl 	 * process was running, and add that to its total so far.
    561  1.1.1.2  fvdl 	 */
    562  1.1.1.2  fvdl 	microtime(&tv);
    563  1.1.1.2  fvdl 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    564  1.1.1.2  fvdl 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    565  1.1.1.2  fvdl 	if (u < 0) {
    566  1.1.1.2  fvdl 		u += 1000000;
    567  1.1.1.2  fvdl 		s--;
    568  1.1.1.2  fvdl 	} else if (u >= 1000000) {
    569  1.1.1.2  fvdl 		u -= 1000000;
    570  1.1.1.2  fvdl 		s++;
    571  1.1.1.2  fvdl 	}
    572  1.1.1.2  fvdl 	p->p_rtime.tv_usec = u;
    573  1.1.1.2  fvdl 	p->p_rtime.tv_sec = s;
    574  1.1.1.2  fvdl 
    575  1.1.1.2  fvdl 	/*
    576  1.1.1.2  fvdl 	 * Check if the process exceeds its cpu resource allocation.
    577  1.1.1.2  fvdl 	 * If over max, kill it.  In any case, if it has run for more
    578  1.1.1.2  fvdl 	 * than 10 minutes, reduce priority to give others a chance.
    579  1.1.1.2  fvdl 	 */
    580  1.1.1.2  fvdl 	rlim = &p->p_rlimit[RLIMIT_CPU];
    581  1.1.1.2  fvdl 	if (s >= rlim->rlim_cur) {
    582  1.1.1.2  fvdl 		if (s >= rlim->rlim_max)
    583  1.1.1.2  fvdl 			psignal(p, SIGKILL);
    584  1.1.1.2  fvdl 		else {
    585  1.1.1.2  fvdl 			psignal(p, SIGXCPU);
    586  1.1.1.2  fvdl 			if (rlim->rlim_cur < rlim->rlim_max)
    587  1.1.1.2  fvdl 				rlim->rlim_cur += 5;
    588  1.1.1.2  fvdl 		}
    589  1.1.1.2  fvdl 	}
    590  1.1.1.2  fvdl 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    591  1.1.1.2  fvdl 		p->p_nice = NZERO + 4;
    592  1.1.1.2  fvdl 		resetpriority(p);
    593  1.1.1.2  fvdl 	}
    594  1.1.1.2  fvdl 
    595  1.1.1.2  fvdl 	/*
    596  1.1.1.2  fvdl 	 * Pick a new current process and record its start time.
    597  1.1.1.2  fvdl 	 */
    598  1.1.1.2  fvdl 	cnt.v_swtch++;
    599  1.1.1.2  fvdl 	cpu_switch(p);
    600  1.1.1.2  fvdl 	microtime(&runtime);
    601  1.1.1.2  fvdl }
    602  1.1.1.2  fvdl 
    603  1.1.1.2  fvdl /*
    604  1.1.1.2  fvdl  * Initialize the (doubly-linked) run queues
    605  1.1.1.2  fvdl  * to be empty.
    606  1.1.1.2  fvdl  */
    607  1.1.1.3  fvdl void
    608  1.1.1.2  fvdl rqinit()
    609  1.1.1.2  fvdl {
    610  1.1.1.2  fvdl 	register int i;
    611  1.1.1.2  fvdl 
    612  1.1.1.2  fvdl 	for (i = 0; i < NQS; i++)
    613  1.1.1.2  fvdl 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    614  1.1.1.2  fvdl }
    615  1.1.1.2  fvdl 
    616  1.1.1.2  fvdl /*
    617  1.1.1.2  fvdl  * Change process state to be runnable,
    618  1.1.1.2  fvdl  * placing it on the run queue if it is in memory,
    619  1.1.1.2  fvdl  * and awakening the swapper if it isn't in memory.
    620  1.1.1.2  fvdl  */
    621  1.1.1.2  fvdl void
    622  1.1.1.2  fvdl setrunnable(p)
    623  1.1.1.2  fvdl 	register struct proc *p;
    624  1.1.1.2  fvdl {
    625  1.1.1.2  fvdl 	register int s;
    626  1.1.1.2  fvdl 
    627  1.1.1.2  fvdl 	s = splhigh();
    628  1.1.1.2  fvdl 	switch (p->p_stat) {
    629  1.1.1.2  fvdl 	case 0:
    630  1.1.1.2  fvdl 	case SRUN:
    631  1.1.1.2  fvdl 	case SZOMB:
    632  1.1.1.2  fvdl 	default:
    633  1.1.1.2  fvdl 		panic("setrunnable");
    634  1.1.1.2  fvdl 	case SSTOP:
    635  1.1.1.2  fvdl 	case SSLEEP:
    636  1.1.1.2  fvdl 		unsleep(p);		/* e.g. when sending signals */
    637  1.1.1.2  fvdl 		break;
    638  1.1.1.2  fvdl 
    639  1.1.1.2  fvdl 	case SIDL:
    640  1.1.1.2  fvdl 		break;
    641  1.1.1.2  fvdl 	}
    642  1.1.1.2  fvdl 	p->p_stat = SRUN;
    643  1.1.1.2  fvdl 	if (p->p_flag & P_INMEM)
    644  1.1.1.2  fvdl 		setrunqueue(p);
    645  1.1.1.2  fvdl 	splx(s);
    646  1.1.1.2  fvdl 	if (p->p_slptime > 1)
    647  1.1.1.2  fvdl 		updatepri(p);
    648  1.1.1.2  fvdl 	p->p_slptime = 0;
    649  1.1.1.2  fvdl 	if ((p->p_flag & P_INMEM) == 0)
    650  1.1.1.2  fvdl 		wakeup((caddr_t)&proc0);
    651  1.1.1.2  fvdl 	else if (p->p_priority < curpriority)
    652  1.1.1.2  fvdl 		need_resched();
    653  1.1.1.2  fvdl }
    654  1.1.1.2  fvdl 
    655  1.1.1.2  fvdl /*
    656  1.1.1.2  fvdl  * Compute the priority of a process when running in user mode.
    657  1.1.1.2  fvdl  * Arrange to reschedule if the resulting priority is better
    658  1.1.1.2  fvdl  * than that of the current process.
    659  1.1.1.2  fvdl  */
    660  1.1.1.2  fvdl void
    661  1.1.1.2  fvdl resetpriority(p)
    662  1.1.1.2  fvdl 	register struct proc *p;
    663  1.1.1.2  fvdl {
    664  1.1.1.2  fvdl 	register unsigned int newpriority;
    665  1.1.1.2  fvdl 
    666  1.1.1.2  fvdl 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
    667  1.1.1.2  fvdl 	newpriority = min(newpriority, MAXPRI);
    668  1.1.1.2  fvdl 	p->p_usrpri = newpriority;
    669  1.1.1.2  fvdl 	if (newpriority < curpriority)
    670  1.1.1.2  fvdl 		need_resched();
    671  1.1.1.2  fvdl }
    672