kern_synch.c revision 1.101.2.12 1 1.101.2.12 nathanw /* $NetBSD: kern_synch.c,v 1.101.2.12 2002/04/02 00:16:00 nathanw Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.101.2.7 nathanw
80 1.101.2.7 nathanw #include <sys/cdefs.h>
81 1.101.2.12 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.12 2002/04/02 00:16:00 nathanw Exp $");
82 1.48 mrg
83 1.52 jonathan #include "opt_ddb.h"
84 1.51 thorpej #include "opt_ktrace.h"
85 1.82 thorpej #include "opt_lockdebug.h"
86 1.83 thorpej #include "opt_multiprocessor.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.101.2.1 nathanw #include <sys/lwp.h>
93 1.26 cgd #include <sys/kernel.h>
94 1.26 cgd #include <sys/buf.h>
95 1.26 cgd #include <sys/signalvar.h>
96 1.26 cgd #include <sys/resourcevar.h>
97 1.55 ross #include <sys/sched.h>
98 1.101.2.1 nathanw #include <sys/sa.h>
99 1.101.2.1 nathanw #include <sys/savar.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.26 cgd #ifdef KTRACE
104 1.26 cgd #include <sys/ktrace.h>
105 1.26 cgd #endif
106 1.26 cgd
107 1.26 cgd #include <machine/cpu.h>
108 1.34 christos
109 1.26 cgd int lbolt; /* once a second sleep address */
110 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
111 1.26 cgd
112 1.73 thorpej /*
113 1.73 thorpej * The global scheduler state.
114 1.73 thorpej */
115 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118 1.73 thorpej
119 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120 1.84 thorpej #if defined(MULTIPROCESSOR)
121 1.84 thorpej struct lock kernel_lock;
122 1.84 thorpej #endif
123 1.83 thorpej
124 1.77 thorpej void schedcpu(void *);
125 1.101.2.1 nathanw void updatepri(struct lwp *);
126 1.77 thorpej void endtsleep(void *);
127 1.34 christos
128 1.101.2.1 nathanw __inline void awaken(struct lwp *);
129 1.63 thorpej
130 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
131 1.68 thorpej
132 1.101.2.1 nathanw
133 1.101.2.1 nathanw
134 1.26 cgd /*
135 1.26 cgd * Force switch among equal priority processes every 100ms.
136 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
137 1.26 cgd */
138 1.26 cgd /* ARGSUSED */
139 1.26 cgd void
140 1.89 sommerfe roundrobin(struct cpu_info *ci)
141 1.26 cgd {
142 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
143 1.26 cgd
144 1.88 sommerfe spc->spc_rrticks = rrticks;
145 1.88 sommerfe
146 1.69 thorpej if (curproc != NULL) {
147 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
148 1.69 thorpej /*
149 1.69 thorpej * The process has already been through a roundrobin
150 1.69 thorpej * without switching and may be hogging the CPU.
151 1.69 thorpej * Indicate that the process should yield.
152 1.69 thorpej */
153 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
154 1.69 thorpej } else
155 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
156 1.69 thorpej }
157 1.87 thorpej need_resched(curcpu());
158 1.26 cgd }
159 1.26 cgd
160 1.26 cgd /*
161 1.26 cgd * Constants for digital decay and forget:
162 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
163 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
164 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
165 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
166 1.26 cgd *
167 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
168 1.26 cgd *
169 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
170 1.26 cgd * That is, the system wants to compute a value of decay such
171 1.26 cgd * that the following for loop:
172 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
173 1.26 cgd * p_estcpu *= decay;
174 1.26 cgd * will compute
175 1.26 cgd * p_estcpu *= 0.1;
176 1.26 cgd * for all values of loadavg:
177 1.26 cgd *
178 1.26 cgd * Mathematically this loop can be expressed by saying:
179 1.26 cgd * decay ** (5 * loadavg) ~= .1
180 1.26 cgd *
181 1.26 cgd * The system computes decay as:
182 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
183 1.26 cgd *
184 1.26 cgd * We wish to prove that the system's computation of decay
185 1.26 cgd * will always fulfill the equation:
186 1.26 cgd * decay ** (5 * loadavg) ~= .1
187 1.26 cgd *
188 1.26 cgd * If we compute b as:
189 1.26 cgd * b = 2 * loadavg
190 1.26 cgd * then
191 1.26 cgd * decay = b / (b + 1)
192 1.26 cgd *
193 1.26 cgd * We now need to prove two things:
194 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
195 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
196 1.26 cgd *
197 1.26 cgd * Facts:
198 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
199 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
200 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
201 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
202 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
203 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
204 1.26 cgd * ln(.1) =~ -2.30
205 1.26 cgd *
206 1.26 cgd * Proof of (1):
207 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
208 1.26 cgd * solving for factor,
209 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
210 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
211 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
212 1.26 cgd *
213 1.26 cgd * Proof of (2):
214 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
215 1.26 cgd * solving for power,
216 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
217 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
218 1.26 cgd *
219 1.26 cgd * Actual power values for the implemented algorithm are as follows:
220 1.26 cgd * loadav: 1 2 3 4
221 1.26 cgd * power: 5.68 10.32 14.94 19.55
222 1.26 cgd */
223 1.26 cgd
224 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
225 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
226 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
227 1.26 cgd
228 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
229 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
230 1.26 cgd
231 1.26 cgd /*
232 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
233 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
234 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
235 1.26 cgd *
236 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
237 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
238 1.26 cgd *
239 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
240 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
241 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
242 1.26 cgd */
243 1.26 cgd #define CCPU_SHIFT 11
244 1.26 cgd
245 1.26 cgd /*
246 1.26 cgd * Recompute process priorities, every hz ticks.
247 1.26 cgd */
248 1.26 cgd /* ARGSUSED */
249 1.26 cgd void
250 1.77 thorpej schedcpu(void *arg)
251 1.26 cgd {
252 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
253 1.101.2.1 nathanw struct lwp *l;
254 1.71 augustss struct proc *p;
255 1.83 thorpej int s, s1;
256 1.71 augustss unsigned int newcpu;
257 1.66 ross int clkhz;
258 1.26 cgd
259 1.62 thorpej proclist_lock_read();
260 1.101.2.1 nathanw for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
261 1.26 cgd /*
262 1.26 cgd * Increment time in/out of memory and sleep time
263 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
264 1.26 cgd * (remember them?) overflow takes 45 days.
265 1.26 cgd */
266 1.101.2.1 nathanw p = l->l_proc;
267 1.101.2.1 nathanw l->l_swtime++;
268 1.101.2.1 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
269 1.101.2.1 nathanw l->l_stat == LSSUSPENDED)
270 1.101.2.1 nathanw l->l_slptime++;
271 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
272 1.26 cgd /*
273 1.26 cgd * If the process has slept the entire second,
274 1.26 cgd * stop recalculating its priority until it wakes up.
275 1.26 cgd */
276 1.101.2.1 nathanw if (l->l_slptime > 1)
277 1.26 cgd continue;
278 1.26 cgd s = splstatclock(); /* prevent state changes */
279 1.26 cgd /*
280 1.26 cgd * p_pctcpu is only for ps.
281 1.26 cgd */
282 1.66 ross clkhz = stathz != 0 ? stathz : hz;
283 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
284 1.66 ross p->p_pctcpu += (clkhz == 100)?
285 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
286 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
287 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
288 1.26 cgd #else
289 1.101.2.1 nathanw l->l_pctcpu += ((FSCALE - ccpu) *
290 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
291 1.26 cgd #endif
292 1.26 cgd p->p_cpticks = 0;
293 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
294 1.55 ross p->p_estcpu = newcpu;
295 1.83 thorpej SCHED_LOCK(s1);
296 1.101.2.1 nathanw resetpriority(l);
297 1.101.2.1 nathanw if (l->l_priority >= PUSER) {
298 1.101.2.1 nathanw if (l->l_stat == LSRUN &&
299 1.101.2.1 nathanw (l->l_flag & L_INMEM) &&
300 1.101.2.1 nathanw (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
301 1.101.2.1 nathanw remrunqueue(l);
302 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
303 1.101.2.1 nathanw setrunqueue(l);
304 1.26 cgd } else
305 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
306 1.26 cgd }
307 1.83 thorpej SCHED_UNLOCK(s1);
308 1.26 cgd splx(s);
309 1.26 cgd }
310 1.61 thorpej proclist_unlock_read();
311 1.47 mrg uvm_meter();
312 1.67 fvdl wakeup((caddr_t)&lbolt);
313 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
314 1.26 cgd }
315 1.26 cgd
316 1.26 cgd /*
317 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
318 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
319 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
320 1.26 cgd */
321 1.26 cgd void
322 1.101.2.1 nathanw updatepri(struct lwp *l)
323 1.26 cgd {
324 1.101.2.1 nathanw struct proc *p = l->l_proc;
325 1.83 thorpej unsigned int newcpu;
326 1.83 thorpej fixpt_t loadfac;
327 1.83 thorpej
328 1.83 thorpej SCHED_ASSERT_LOCKED();
329 1.83 thorpej
330 1.83 thorpej newcpu = p->p_estcpu;
331 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
332 1.26 cgd
333 1.101.2.1 nathanw if (l->l_slptime > 5 * loadfac)
334 1.101.2.1 nathanw p->p_estcpu = 0; /* XXX NJWLWP */
335 1.26 cgd else {
336 1.101.2.1 nathanw l->l_slptime--; /* the first time was done in schedcpu */
337 1.101.2.1 nathanw while (newcpu && --l->l_slptime)
338 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
339 1.55 ross p->p_estcpu = newcpu;
340 1.26 cgd }
341 1.101.2.1 nathanw resetpriority(l);
342 1.26 cgd }
343 1.26 cgd
344 1.26 cgd /*
345 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
346 1.26 cgd * lower the priority briefly to allow interrupts, then return.
347 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
348 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
349 1.26 cgd * This priority will typically be 0, or the lowest priority
350 1.26 cgd * that is safe for use on the interrupt stack; it can be made
351 1.26 cgd * higher to block network software interrupts after panics.
352 1.26 cgd */
353 1.26 cgd int safepri;
354 1.26 cgd
355 1.26 cgd /*
356 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
357 1.26 cgd * performed on the specified identifier. The process will then be made
358 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
359 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
360 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
361 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
362 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
363 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
364 1.26 cgd * call should be interrupted by the signal (return EINTR).
365 1.77 thorpej *
366 1.101.2.3 nathanw * The interlock is held until the scheduler_slock is acquired. The
367 1.77 thorpej * interlock will be locked before returning back to the caller
368 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
369 1.77 thorpej * interlock will always be unlocked upon return.
370 1.26 cgd */
371 1.26 cgd int
372 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
373 1.77 thorpej __volatile struct simplelock *interlock)
374 1.26 cgd {
375 1.101.2.1 nathanw struct lwp *l = curproc;
376 1.101.2.1 nathanw struct proc *p = l->l_proc;
377 1.71 augustss struct slpque *qp;
378 1.77 thorpej int sig, s;
379 1.77 thorpej int catch = priority & PCATCH;
380 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
381 1.101.2.1 nathanw int exiterr = (priority & PNOEXITERR) == 0;
382 1.26 cgd
383 1.77 thorpej /*
384 1.77 thorpej * XXXSMP
385 1.77 thorpej * This is probably bogus. Figure out what the right
386 1.77 thorpej * thing to do here really is.
387 1.78 sommerfe * Note that not sleeping if ltsleep is called with curproc == NULL
388 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
389 1.78 sommerfe * how shutdown (barely) works.
390 1.77 thorpej */
391 1.101.2.1 nathanw if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
392 1.26 cgd /*
393 1.26 cgd * After a panic, or during autoconfiguration,
394 1.26 cgd * just give interrupts a chance, then just return;
395 1.26 cgd * don't run any other procs or panic below,
396 1.26 cgd * in case this is the idle process and already asleep.
397 1.26 cgd */
398 1.42 cgd s = splhigh();
399 1.26 cgd splx(safepri);
400 1.26 cgd splx(s);
401 1.77 thorpej if (interlock != NULL && relock == 0)
402 1.77 thorpej simple_unlock(interlock);
403 1.26 cgd return (0);
404 1.26 cgd }
405 1.78 sommerfe
406 1.101.2.3 nathanw KASSERT(p != NULL);
407 1.101.2.6 nathanw LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
408 1.42 cgd
409 1.42 cgd #ifdef KTRACE
410 1.42 cgd if (KTRPOINT(p, KTR_CSW))
411 1.74 sommerfe ktrcsw(p, 1, 0);
412 1.42 cgd #endif
413 1.77 thorpej
414 1.83 thorpej SCHED_LOCK(s);
415 1.42 cgd
416 1.26 cgd #ifdef DIAGNOSTIC
417 1.64 thorpej if (ident == NULL)
418 1.77 thorpej panic("ltsleep: ident == NULL");
419 1.101.2.1 nathanw if (l->l_stat != LSONPROC)
420 1.101.2.1 nathanw panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
421 1.101.2.1 nathanw if (l->l_back != NULL)
422 1.77 thorpej panic("ltsleep: p_back != NULL");
423 1.26 cgd #endif
424 1.77 thorpej
425 1.101.2.1 nathanw l->l_wchan = ident;
426 1.101.2.1 nathanw l->l_wmesg = wmesg;
427 1.101.2.1 nathanw l->l_slptime = 0;
428 1.101.2.1 nathanw l->l_priority = priority & PRIMASK;
429 1.77 thorpej
430 1.73 thorpej qp = SLPQUE(ident);
431 1.26 cgd if (qp->sq_head == 0)
432 1.101.2.1 nathanw qp->sq_head = l;
433 1.101.2.1 nathanw else {
434 1.101.2.1 nathanw *qp->sq_tailp = l;
435 1.101.2.1 nathanw }
436 1.101.2.1 nathanw *(qp->sq_tailp = &l->l_forw) = 0;
437 1.77 thorpej
438 1.26 cgd if (timo)
439 1.101.2.1 nathanw callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
440 1.77 thorpej
441 1.77 thorpej /*
442 1.77 thorpej * We can now release the interlock; the scheduler_slock
443 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
444 1.77 thorpej * we do the switch.
445 1.77 thorpej *
446 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
447 1.77 thorpej * on the sleep queue, because we might want a more clever
448 1.77 thorpej * data structure for the sleep queues at some point.
449 1.77 thorpej */
450 1.77 thorpej if (interlock != NULL)
451 1.77 thorpej simple_unlock(interlock);
452 1.77 thorpej
453 1.26 cgd /*
454 1.26 cgd * We put ourselves on the sleep queue and start our timeout
455 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
456 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
457 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
458 1.26 cgd * without resuming us, thus we must be ready for sleep
459 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
460 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
461 1.26 cgd */
462 1.26 cgd if (catch) {
463 1.101.2.1 nathanw l->l_flag |= L_SINTR;
464 1.101.2.1 nathanw if ((sig = CURSIG(l)) != 0) {
465 1.101.2.1 nathanw if (l->l_wchan != NULL)
466 1.101.2.1 nathanw unsleep(l);
467 1.101.2.1 nathanw l->l_stat = LSONPROC;
468 1.83 thorpej SCHED_UNLOCK(s);
469 1.26 cgd goto resume;
470 1.26 cgd }
471 1.101.2.1 nathanw if (l->l_wchan == NULL) {
472 1.26 cgd catch = 0;
473 1.83 thorpej SCHED_UNLOCK(s);
474 1.26 cgd goto resume;
475 1.26 cgd }
476 1.26 cgd } else
477 1.26 cgd sig = 0;
478 1.101.2.1 nathanw l->l_stat = LSSLEEP;
479 1.101.2.1 nathanw p->p_nrlwps--;
480 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
481 1.83 thorpej SCHED_ASSERT_LOCKED();
482 1.101.2.1 nathanw if (l->l_flag & L_SA)
483 1.101.2.1 nathanw sa_switch(l, SA_UPCALL_BLOCKED);
484 1.101.2.1 nathanw else
485 1.101.2.1 nathanw mi_switch(l, NULL);
486 1.83 thorpej
487 1.101.2.3 nathanw #if defined(DDB) && !defined(GPROF)
488 1.26 cgd /* handy breakpoint location after process "wakes" */
489 1.101.2.10 nathanw __asm(".globl bpendtsleep ; bpendtsleep:");
490 1.26 cgd #endif
491 1.101.2.12 nathanw /* p->p_nrlwps is incremented by whoever made us runnable again,
492 1.101.2.12 nathanw * either setrunnable() or awaken().
493 1.101.2.12 nathanw */
494 1.77 thorpej
495 1.83 thorpej SCHED_ASSERT_UNLOCKED();
496 1.83 thorpej splx(s);
497 1.83 thorpej
498 1.77 thorpej resume:
499 1.101.2.1 nathanw KDASSERT(l->l_cpu != NULL);
500 1.101.2.1 nathanw KDASSERT(l->l_cpu == curcpu());
501 1.101.2.1 nathanw l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
502 1.101.2.1 nathanw
503 1.101.2.1 nathanw l->l_flag &= ~L_SINTR;
504 1.101.2.1 nathanw if (l->l_flag & L_TIMEOUT) {
505 1.101.2.1 nathanw l->l_flag &= ~L_TIMEOUT;
506 1.26 cgd if (sig == 0) {
507 1.26 cgd #ifdef KTRACE
508 1.26 cgd if (KTRPOINT(p, KTR_CSW))
509 1.74 sommerfe ktrcsw(p, 0, 0);
510 1.26 cgd #endif
511 1.77 thorpej if (relock && interlock != NULL)
512 1.77 thorpej simple_lock(interlock);
513 1.26 cgd return (EWOULDBLOCK);
514 1.26 cgd }
515 1.26 cgd } else if (timo)
516 1.101.2.1 nathanw callout_stop(&l->l_tsleep_ch);
517 1.101.2.1 nathanw if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
518 1.26 cgd #ifdef KTRACE
519 1.26 cgd if (KTRPOINT(p, KTR_CSW))
520 1.74 sommerfe ktrcsw(p, 0, 0);
521 1.26 cgd #endif
522 1.77 thorpej if (relock && interlock != NULL)
523 1.77 thorpej simple_lock(interlock);
524 1.98 jdolecek if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
525 1.26 cgd return (EINTR);
526 1.26 cgd return (ERESTART);
527 1.26 cgd }
528 1.101.2.1 nathanw /* XXXNJW this is very much a kluge.
529 1.101.2.1 nathanw * revisit. a better way of preventing looping/hanging syscalls like
530 1.101.2.1 nathanw * wait4() and _lwp_wait() from wedging an exiting process
531 1.101.2.1 nathanw * would be preferred.
532 1.101.2.1 nathanw */
533 1.101.2.1 nathanw if (catch && ((p->p_flag & P_WEXIT) && exiterr))
534 1.101.2.1 nathanw return (EINTR);
535 1.26 cgd #ifdef KTRACE
536 1.26 cgd if (KTRPOINT(p, KTR_CSW))
537 1.74 sommerfe ktrcsw(p, 0, 0);
538 1.26 cgd #endif
539 1.77 thorpej if (relock && interlock != NULL)
540 1.77 thorpej simple_lock(interlock);
541 1.26 cgd return (0);
542 1.26 cgd }
543 1.26 cgd
544 1.26 cgd /*
545 1.26 cgd * Implement timeout for tsleep.
546 1.26 cgd * If process hasn't been awakened (wchan non-zero),
547 1.26 cgd * set timeout flag and undo the sleep. If proc
548 1.26 cgd * is stopped, just unsleep so it will remain stopped.
549 1.26 cgd */
550 1.26 cgd void
551 1.77 thorpej endtsleep(void *arg)
552 1.26 cgd {
553 1.101.2.1 nathanw struct lwp *l;
554 1.26 cgd int s;
555 1.26 cgd
556 1.101.2.1 nathanw l = (struct lwp *)arg;
557 1.83 thorpej SCHED_LOCK(s);
558 1.101.2.1 nathanw if (l->l_wchan) {
559 1.101.2.1 nathanw if (l->l_stat == LSSLEEP)
560 1.101.2.1 nathanw setrunnable(l);
561 1.26 cgd else
562 1.101.2.1 nathanw unsleep(l);
563 1.101.2.1 nathanw l->l_flag |= L_TIMEOUT;
564 1.26 cgd }
565 1.83 thorpej SCHED_UNLOCK(s);
566 1.26 cgd }
567 1.26 cgd
568 1.26 cgd /*
569 1.26 cgd * Remove a process from its wait queue
570 1.26 cgd */
571 1.26 cgd void
572 1.101.2.1 nathanw unsleep(struct lwp *l)
573 1.26 cgd {
574 1.71 augustss struct slpque *qp;
575 1.101.2.1 nathanw struct lwp **hp;
576 1.26 cgd
577 1.83 thorpej SCHED_ASSERT_LOCKED();
578 1.83 thorpej
579 1.101.2.1 nathanw if (l->l_wchan) {
580 1.101.2.1 nathanw hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
581 1.101.2.1 nathanw while (*hp != l)
582 1.101.2.1 nathanw hp = &(*hp)->l_forw;
583 1.101.2.1 nathanw *hp = l->l_forw;
584 1.101.2.1 nathanw if (qp->sq_tailp == &l->l_forw)
585 1.26 cgd qp->sq_tailp = hp;
586 1.101.2.1 nathanw l->l_wchan = 0;
587 1.26 cgd }
588 1.26 cgd }
589 1.26 cgd
590 1.26 cgd /*
591 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
592 1.63 thorpej */
593 1.63 thorpej __inline void
594 1.101.2.1 nathanw awaken(struct lwp *l)
595 1.63 thorpej {
596 1.63 thorpej
597 1.83 thorpej SCHED_ASSERT_LOCKED();
598 1.101.2.1 nathanw
599 1.101.2.1 nathanw if (l->l_slptime > 1)
600 1.101.2.1 nathanw updatepri(l);
601 1.101.2.1 nathanw l->l_slptime = 0;
602 1.101.2.1 nathanw l->l_stat = LSRUN;
603 1.101.2.12 nathanw l->l_proc->p_nrlwps++;
604 1.93 bouyer /*
605 1.93 bouyer * Since curpriority is a user priority, p->p_priority
606 1.93 bouyer * is always better than curpriority.
607 1.93 bouyer */
608 1.101.2.1 nathanw if (l->l_flag & L_INMEM) {
609 1.101.2.1 nathanw setrunqueue(l);
610 1.101.2.1 nathanw KASSERT(l->l_cpu != NULL);
611 1.101.2.1 nathanw need_resched(l->l_cpu);
612 1.93 bouyer } else
613 1.93 bouyer sched_wakeup(&proc0);
614 1.83 thorpej }
615 1.83 thorpej
616 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
617 1.83 thorpej void
618 1.83 thorpej sched_unlock_idle(void)
619 1.83 thorpej {
620 1.83 thorpej
621 1.83 thorpej simple_unlock(&sched_lock);
622 1.63 thorpej }
623 1.63 thorpej
624 1.83 thorpej void
625 1.83 thorpej sched_lock_idle(void)
626 1.83 thorpej {
627 1.83 thorpej
628 1.83 thorpej simple_lock(&sched_lock);
629 1.83 thorpej }
630 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
631 1.83 thorpej
632 1.63 thorpej /*
633 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
634 1.26 cgd */
635 1.83 thorpej
636 1.26 cgd void
637 1.77 thorpej wakeup(void *ident)
638 1.26 cgd {
639 1.83 thorpej int s;
640 1.83 thorpej
641 1.83 thorpej SCHED_ASSERT_UNLOCKED();
642 1.83 thorpej
643 1.83 thorpej SCHED_LOCK(s);
644 1.83 thorpej sched_wakeup(ident);
645 1.83 thorpej SCHED_UNLOCK(s);
646 1.83 thorpej }
647 1.83 thorpej
648 1.83 thorpej void
649 1.83 thorpej sched_wakeup(void *ident)
650 1.83 thorpej {
651 1.71 augustss struct slpque *qp;
652 1.101.2.1 nathanw struct lwp *l, **q;
653 1.26 cgd
654 1.83 thorpej SCHED_ASSERT_LOCKED();
655 1.77 thorpej
656 1.73 thorpej qp = SLPQUE(ident);
657 1.77 thorpej restart:
658 1.101.2.1 nathanw for (q = &qp->sq_head; (l = *q) != NULL; ) {
659 1.26 cgd #ifdef DIAGNOSTIC
660 1.101.2.1 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
661 1.101.2.1 nathanw l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
662 1.26 cgd panic("wakeup");
663 1.26 cgd #endif
664 1.101.2.1 nathanw if (l->l_wchan == ident) {
665 1.101.2.1 nathanw l->l_wchan = 0;
666 1.101.2.1 nathanw *q = l->l_forw;
667 1.101.2.1 nathanw if (qp->sq_tailp == &l->l_forw)
668 1.26 cgd qp->sq_tailp = q;
669 1.101.2.1 nathanw if (l->l_stat == LSSLEEP) {
670 1.101.2.1 nathanw awaken(l);
671 1.26 cgd goto restart;
672 1.26 cgd }
673 1.26 cgd } else
674 1.101.2.1 nathanw q = &l->l_forw;
675 1.63 thorpej }
676 1.63 thorpej }
677 1.63 thorpej
678 1.63 thorpej /*
679 1.63 thorpej * Make the highest priority process first in line on the specified
680 1.63 thorpej * identifier runnable.
681 1.63 thorpej */
682 1.63 thorpej void
683 1.77 thorpej wakeup_one(void *ident)
684 1.63 thorpej {
685 1.63 thorpej struct slpque *qp;
686 1.101.2.1 nathanw struct lwp *l, **q;
687 1.101.2.1 nathanw struct lwp *best_sleepp, **best_sleepq;
688 1.101.2.1 nathanw struct lwp *best_stopp, **best_stopq;
689 1.63 thorpej int s;
690 1.63 thorpej
691 1.63 thorpej best_sleepp = best_stopp = NULL;
692 1.63 thorpej best_sleepq = best_stopq = NULL;
693 1.63 thorpej
694 1.83 thorpej SCHED_LOCK(s);
695 1.77 thorpej
696 1.73 thorpej qp = SLPQUE(ident);
697 1.77 thorpej
698 1.101.2.1 nathanw for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
699 1.63 thorpej #ifdef DIAGNOSTIC
700 1.101.2.1 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
701 1.101.2.1 nathanw l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
702 1.63 thorpej panic("wakeup_one");
703 1.63 thorpej #endif
704 1.101.2.1 nathanw if (l->l_wchan == ident) {
705 1.101.2.1 nathanw if (l->l_stat == LSSLEEP) {
706 1.63 thorpej if (best_sleepp == NULL ||
707 1.101.2.1 nathanw l->l_priority < best_sleepp->l_priority) {
708 1.101.2.1 nathanw best_sleepp = l;
709 1.63 thorpej best_sleepq = q;
710 1.63 thorpej }
711 1.63 thorpej } else {
712 1.63 thorpej if (best_stopp == NULL ||
713 1.101.2.1 nathanw l->l_priority < best_stopp->l_priority) {
714 1.101.2.1 nathanw best_stopp = l;
715 1.63 thorpej best_stopq = q;
716 1.63 thorpej }
717 1.63 thorpej }
718 1.63 thorpej }
719 1.63 thorpej }
720 1.63 thorpej
721 1.63 thorpej /*
722 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
723 1.63 thorpej * process.
724 1.63 thorpej */
725 1.63 thorpej if (best_sleepp != NULL) {
726 1.101.2.1 nathanw l = best_sleepp;
727 1.63 thorpej q = best_sleepq;
728 1.63 thorpej } else {
729 1.101.2.1 nathanw l = best_stopp;
730 1.63 thorpej q = best_stopq;
731 1.63 thorpej }
732 1.63 thorpej
733 1.101.2.1 nathanw if (l != NULL) {
734 1.101.2.1 nathanw l->l_wchan = NULL;
735 1.101.2.1 nathanw *q = l->l_forw;
736 1.101.2.1 nathanw if (qp->sq_tailp == &l->l_forw)
737 1.63 thorpej qp->sq_tailp = q;
738 1.101.2.1 nathanw if (l->l_stat == LSSLEEP)
739 1.101.2.1 nathanw awaken(l);
740 1.26 cgd }
741 1.83 thorpej SCHED_UNLOCK(s);
742 1.26 cgd }
743 1.26 cgd
744 1.26 cgd /*
745 1.69 thorpej * General yield call. Puts the current process back on its run queue and
746 1.69 thorpej * performs a voluntary context switch.
747 1.69 thorpej */
748 1.69 thorpej void
749 1.77 thorpej yield(void)
750 1.69 thorpej {
751 1.101.2.1 nathanw struct lwp *l = curproc;
752 1.69 thorpej int s;
753 1.69 thorpej
754 1.83 thorpej SCHED_LOCK(s);
755 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
756 1.101.2.1 nathanw l->l_stat = LSRUN;
757 1.101.2.1 nathanw setrunqueue(l);
758 1.101.2.1 nathanw l->l_proc->p_stats->p_ru.ru_nvcsw++;
759 1.101.2.1 nathanw mi_switch(l, NULL);
760 1.83 thorpej SCHED_ASSERT_UNLOCKED();
761 1.69 thorpej splx(s);
762 1.69 thorpej }
763 1.69 thorpej
764 1.69 thorpej /*
765 1.69 thorpej * General preemption call. Puts the current process back on its run queue
766 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
767 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
768 1.69 thorpej * criteria.
769 1.69 thorpej */
770 1.101.2.1 nathanw
771 1.69 thorpej void
772 1.101.2.1 nathanw preempt(struct lwp *newl)
773 1.69 thorpej {
774 1.101.2.1 nathanw struct lwp *l = curproc;
775 1.101.2.2 nathanw int r, s;
776 1.69 thorpej
777 1.101.2.9 nathanw if (l->l_flag & L_SA) {
778 1.101.2.9 nathanw SCHED_LOCK(s);
779 1.101.2.9 nathanw l->l_priority = l->l_usrpri;
780 1.101.2.9 nathanw l->l_stat = LSRUN;
781 1.101.2.9 nathanw setrunqueue(l);
782 1.101.2.9 nathanw l->l_proc->p_stats->p_ru.ru_nivcsw++;
783 1.101.2.9 nathanw r = mi_switch(l, newl);
784 1.101.2.9 nathanw SCHED_ASSERT_UNLOCKED();
785 1.101.2.9 nathanw splx(s);
786 1.101.2.9 nathanw if (r != 0)
787 1.101.2.9 nathanw sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, NULL);
788 1.101.2.9 nathanw } else {
789 1.101.2.9 nathanw SCHED_LOCK(s);
790 1.101.2.9 nathanw l->l_priority = l->l_usrpri;
791 1.101.2.9 nathanw l->l_stat = LSRUN;
792 1.101.2.9 nathanw setrunqueue(l);
793 1.101.2.9 nathanw l->l_proc->p_stats->p_ru.ru_nivcsw++;
794 1.101.2.9 nathanw mi_switch(l, newl);
795 1.101.2.9 nathanw SCHED_ASSERT_UNLOCKED();
796 1.101.2.9 nathanw splx(s);
797 1.101.2.9 nathanw }
798 1.101.2.9 nathanw
799 1.69 thorpej }
800 1.69 thorpej
801 1.69 thorpej /*
802 1.72 thorpej * The machine independent parts of context switch.
803 1.86 thorpej * Must be called at splsched() (no higher!) and with
804 1.86 thorpej * the sched_lock held.
805 1.101.2.1 nathanw * Switch to "new" if non-NULL, otherwise let cpu_switch choose
806 1.101.2.1 nathanw * the next lwp.
807 1.101.2.2 nathanw *
808 1.101.2.2 nathanw * Returns 1 if another process was actually run.
809 1.26 cgd */
810 1.101.2.2 nathanw int
811 1.101.2.1 nathanw mi_switch(struct lwp *l, struct lwp *new)
812 1.26 cgd {
813 1.76 thorpej struct schedstate_percpu *spc;
814 1.71 augustss struct rlimit *rlim;
815 1.71 augustss long s, u;
816 1.26 cgd struct timeval tv;
817 1.85 sommerfe #if defined(MULTIPROCESSOR)
818 1.85 sommerfe int hold_count;
819 1.85 sommerfe #endif
820 1.101.2.1 nathanw struct proc *p = l->l_proc;
821 1.101.2.2 nathanw int retval;
822 1.26 cgd
823 1.83 thorpej SCHED_ASSERT_LOCKED();
824 1.83 thorpej
825 1.85 sommerfe #if defined(MULTIPROCESSOR)
826 1.90 sommerfe /*
827 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
828 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
829 1.90 sommerfe * selects a new process and removes it from the run queue.
830 1.90 sommerfe */
831 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
832 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
833 1.85 sommerfe #endif
834 1.85 sommerfe
835 1.101.2.1 nathanw KDASSERT(l->l_cpu != NULL);
836 1.101.2.1 nathanw KDASSERT(l->l_cpu == curcpu());
837 1.76 thorpej
838 1.101.2.1 nathanw spc = &l->l_cpu->ci_schedstate;
839 1.76 thorpej
840 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
841 1.82 thorpej spinlock_switchcheck();
842 1.82 thorpej #endif
843 1.54 chs #ifdef LOCKDEBUG
844 1.81 thorpej simple_lock_switchcheck();
845 1.50 fvdl #endif
846 1.81 thorpej
847 1.26 cgd /*
848 1.26 cgd * Compute the amount of time during which the current
849 1.26 cgd * process was running, and add that to its total so far.
850 1.26 cgd */
851 1.26 cgd microtime(&tv);
852 1.101.2.1 nathanw u = p->p_rtime.tv_usec +
853 1.101.2.1 nathanw (tv.tv_usec - spc->spc_runtime.tv_usec);
854 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
855 1.26 cgd if (u < 0) {
856 1.26 cgd u += 1000000;
857 1.26 cgd s--;
858 1.26 cgd } else if (u >= 1000000) {
859 1.26 cgd u -= 1000000;
860 1.26 cgd s++;
861 1.26 cgd }
862 1.26 cgd p->p_rtime.tv_usec = u;
863 1.26 cgd p->p_rtime.tv_sec = s;
864 1.26 cgd
865 1.26 cgd /*
866 1.26 cgd * Check if the process exceeds its cpu resource allocation.
867 1.26 cgd * If over max, kill it. In any case, if it has run for more
868 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
869 1.26 cgd */
870 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
871 1.26 cgd if (s >= rlim->rlim_cur) {
872 1.100 sommerfe /*
873 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
874 1.100 sommerfe * use sched_psignal.
875 1.100 sommerfe */
876 1.26 cgd if (s >= rlim->rlim_max)
877 1.100 sommerfe sched_psignal(p, SIGKILL);
878 1.26 cgd else {
879 1.100 sommerfe sched_psignal(p, SIGXCPU);
880 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
881 1.26 cgd rlim->rlim_cur += 5;
882 1.26 cgd }
883 1.26 cgd }
884 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
885 1.77 thorpej p->p_nice == NZERO) {
886 1.39 ws p->p_nice = autoniceval + NZERO;
887 1.101.2.1 nathanw resetpriority(l);
888 1.26 cgd }
889 1.69 thorpej
890 1.69 thorpej /*
891 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
892 1.69 thorpej * scheduling flags.
893 1.69 thorpej */
894 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
895 1.26 cgd
896 1.26 cgd /*
897 1.76 thorpej * Pick a new current process and switch to it. When we
898 1.76 thorpej * run again, we'll return back here.
899 1.26 cgd */
900 1.47 mrg uvmexp.swtch++;
901 1.101.2.2 nathanw if (new == NULL) {
902 1.101.2.2 nathanw retval = cpu_switch(l);
903 1.101.2.2 nathanw } else {
904 1.101.2.1 nathanw cpu_preempt(l, new);
905 1.101.2.2 nathanw retval = 0;
906 1.101.2.2 nathanw }
907 1.76 thorpej
908 1.76 thorpej /*
909 1.83 thorpej * Make sure that MD code released the scheduler lock before
910 1.83 thorpej * resuming us.
911 1.83 thorpej */
912 1.83 thorpej SCHED_ASSERT_UNLOCKED();
913 1.83 thorpej
914 1.83 thorpej /*
915 1.76 thorpej * We're running again; record our new start time. We might
916 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
917 1.76 thorpej * schedstate_percpu pointer.
918 1.76 thorpej */
919 1.101.2.1 nathanw KDASSERT(l->l_cpu != NULL);
920 1.101.2.1 nathanw KDASSERT(l->l_cpu == curcpu());
921 1.101.2.1 nathanw microtime(&l->l_cpu->ci_schedstate.spc_runtime);
922 1.85 sommerfe
923 1.85 sommerfe #if defined(MULTIPROCESSOR)
924 1.90 sommerfe /*
925 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
926 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
927 1.90 sommerfe * we reacquire the interlock.
928 1.90 sommerfe */
929 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
930 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
931 1.85 sommerfe #endif
932 1.101.2.2 nathanw
933 1.101.2.2 nathanw return retval;
934 1.26 cgd }
935 1.26 cgd
936 1.26 cgd /*
937 1.26 cgd * Initialize the (doubly-linked) run queues
938 1.26 cgd * to be empty.
939 1.26 cgd */
940 1.26 cgd void
941 1.26 cgd rqinit()
942 1.26 cgd {
943 1.71 augustss int i;
944 1.26 cgd
945 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
946 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
947 1.101.2.1 nathanw (struct lwp *)&sched_qs[i];
948 1.26 cgd }
949 1.26 cgd
950 1.26 cgd /*
951 1.26 cgd * Change process state to be runnable,
952 1.26 cgd * placing it on the run queue if it is in memory,
953 1.26 cgd * and awakening the swapper if it isn't in memory.
954 1.26 cgd */
955 1.26 cgd void
956 1.101.2.1 nathanw setrunnable(struct lwp *l)
957 1.26 cgd {
958 1.101.2.1 nathanw struct proc *p = l->l_proc;
959 1.26 cgd
960 1.83 thorpej SCHED_ASSERT_LOCKED();
961 1.83 thorpej
962 1.101.2.1 nathanw switch (l->l_stat) {
963 1.26 cgd case 0:
964 1.101.2.1 nathanw case LSRUN:
965 1.101.2.1 nathanw case LSONPROC:
966 1.101.2.1 nathanw case LSZOMB:
967 1.101.2.1 nathanw case LSDEAD:
968 1.26 cgd default:
969 1.26 cgd panic("setrunnable");
970 1.101.2.1 nathanw case LSSTOP:
971 1.33 mycroft /*
972 1.33 mycroft * If we're being traced (possibly because someone attached us
973 1.33 mycroft * while we were stopped), check for a signal from the debugger.
974 1.33 mycroft */
975 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
976 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
977 1.101 thorpej CHECKSIGS(p);
978 1.53 mycroft }
979 1.101.2.1 nathanw case LSSLEEP:
980 1.101.2.1 nathanw unsleep(l); /* e.g. when sending signals */
981 1.26 cgd break;
982 1.26 cgd
983 1.101.2.1 nathanw case LSIDL:
984 1.101.2.1 nathanw break;
985 1.101.2.1 nathanw case LSSUSPENDED:
986 1.26 cgd break;
987 1.26 cgd }
988 1.101.2.1 nathanw l->l_stat = LSRUN;
989 1.101.2.12 nathanw p->p_nrlwps++;
990 1.101.2.12 nathanw
991 1.101.2.1 nathanw if (l->l_flag & L_INMEM)
992 1.101.2.1 nathanw setrunqueue(l);
993 1.101.2.1 nathanw
994 1.101.2.1 nathanw if (l->l_slptime > 1)
995 1.101.2.1 nathanw updatepri(l);
996 1.101.2.1 nathanw l->l_slptime = 0;
997 1.101.2.1 nathanw if ((l->l_flag & L_INMEM) == 0)
998 1.101.2.1 nathanw wakeup((caddr_t)&proc0);
999 1.101.2.1 nathanw else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
1000 1.76 thorpej /*
1001 1.76 thorpej * XXXSMP
1002 1.87 thorpej * This is not exactly right. Since p->p_cpu persists
1003 1.87 thorpej * across a context switch, this gives us some sort
1004 1.87 thorpej * of processor affinity. But we need to figure out
1005 1.87 thorpej * at what point it's better to reschedule on a different
1006 1.87 thorpej * CPU than the last one.
1007 1.76 thorpej */
1008 1.101.2.5 nathanw need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1009 1.76 thorpej }
1010 1.26 cgd }
1011 1.26 cgd
1012 1.26 cgd /*
1013 1.26 cgd * Compute the priority of a process when running in user mode.
1014 1.26 cgd * Arrange to reschedule if the resulting priority is better
1015 1.26 cgd * than that of the current process.
1016 1.26 cgd */
1017 1.26 cgd void
1018 1.101.2.1 nathanw resetpriority(struct lwp *l)
1019 1.26 cgd {
1020 1.71 augustss unsigned int newpriority;
1021 1.101.2.1 nathanw struct proc *p = l->l_proc;
1022 1.26 cgd
1023 1.83 thorpej SCHED_ASSERT_LOCKED();
1024 1.83 thorpej
1025 1.101.2.1 nathanw newpriority = PUSER + p->p_estcpu +
1026 1.101.2.1 nathanw NICE_WEIGHT * (p->p_nice - NZERO);
1027 1.26 cgd newpriority = min(newpriority, MAXPRI);
1028 1.101.2.1 nathanw l->l_usrpri = newpriority;
1029 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1030 1.76 thorpej /*
1031 1.76 thorpej * XXXSMP
1032 1.76 thorpej * Same applies as in setrunnable() above.
1033 1.76 thorpej */
1034 1.101.2.5 nathanw need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1035 1.76 thorpej }
1036 1.55 ross }
1037 1.55 ross
1038 1.101.2.1 nathanw /*
1039 1.101.2.1 nathanw * Recompute priority for all LWPs in a process.
1040 1.101.2.1 nathanw */
1041 1.101.2.1 nathanw void
1042 1.101.2.1 nathanw resetprocpriority(struct proc *p)
1043 1.101.2.1 nathanw {
1044 1.101.2.1 nathanw struct lwp *l;
1045 1.101.2.1 nathanw
1046 1.101.2.1 nathanw LIST_FOREACH(l, &p->p_lwps, l_list)
1047 1.101.2.1 nathanw resetpriority(l);
1048 1.101.2.1 nathanw }
1049 1.101.2.1 nathanw
1050 1.55 ross /*
1051 1.56 ross * We adjust the priority of the current process. The priority of a process
1052 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1053 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1054 1.56 ross * will compute a different value each time p_estcpu increases. This can
1055 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1056 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
1057 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1058 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1059 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1060 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1061 1.56 ross * processes which haven't run much recently, and to round-robin among other
1062 1.56 ross * processes.
1063 1.55 ross */
1064 1.55 ross
1065 1.55 ross void
1066 1.101.2.1 nathanw schedclock(struct lwp *l)
1067 1.55 ross {
1068 1.101.2.1 nathanw struct proc *p = l->l_proc;
1069 1.83 thorpej int s;
1070 1.77 thorpej
1071 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1072 1.83 thorpej SCHED_LOCK(s);
1073 1.101.2.1 nathanw resetpriority(l);
1074 1.83 thorpej SCHED_UNLOCK(s);
1075 1.101.2.1 nathanw
1076 1.101.2.1 nathanw if (l->l_priority >= PUSER)
1077 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
1078 1.26 cgd }
1079 1.94 bouyer
1080 1.94 bouyer void
1081 1.94 bouyer suspendsched()
1082 1.94 bouyer {
1083 1.101.2.1 nathanw struct lwp *l;
1084 1.97 enami int s;
1085 1.94 bouyer
1086 1.94 bouyer /*
1087 1.101.2.1 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1088 1.101.2.1 nathanw * LSSUSPENDED.
1089 1.94 bouyer */
1090 1.95 thorpej proclist_lock_read();
1091 1.95 thorpej SCHED_LOCK(s);
1092 1.101.2.1 nathanw for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1093 1.101.2.1 nathanw if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1094 1.94 bouyer continue;
1095 1.101.2.1 nathanw
1096 1.101.2.1 nathanw switch (l->l_stat) {
1097 1.101.2.1 nathanw case LSRUN:
1098 1.101.2.12 nathanw l->l_proc->p_nrlwps--;
1099 1.101.2.1 nathanw if ((l->l_flag & L_INMEM) != 0)
1100 1.101.2.1 nathanw remrunqueue(l);
1101 1.97 enami /* FALLTHROUGH */
1102 1.101.2.1 nathanw case LSSLEEP:
1103 1.101.2.1 nathanw l->l_stat = LSSUSPENDED;
1104 1.97 enami break;
1105 1.101.2.1 nathanw case LSONPROC:
1106 1.97 enami /*
1107 1.97 enami * XXX SMP: we need to deal with processes on
1108 1.97 enami * others CPU !
1109 1.97 enami */
1110 1.97 enami break;
1111 1.97 enami default:
1112 1.97 enami break;
1113 1.94 bouyer }
1114 1.94 bouyer }
1115 1.94 bouyer SCHED_UNLOCK(s);
1116 1.97 enami proclist_unlock_read();
1117 1.94 bouyer }
1118 1.101.2.1 nathanw
1119 1.101.2.1 nathanw
1120