Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.101.2.13
      1  1.101.2.13   nathanw /*	$NetBSD: kern_synch.c,v 1.101.2.13 2002/06/20 03:47:16 nathanw Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4        1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.63   thorpej  * NASA Ames Research Center.
     10        1.63   thorpej  *
     11        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12        1.63   thorpej  * modification, are permitted provided that the following conditions
     13        1.63   thorpej  * are met:
     14        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20        1.63   thorpej  *    must display the following acknowledgement:
     21        1.63   thorpej  *	This product includes software developed by the NetBSD
     22        1.63   thorpej  *	Foundation, Inc. and its contributors.
     23        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25        1.63   thorpej  *    from this software without specific prior written permission.
     26        1.63   thorpej  *
     27        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38        1.63   thorpej  */
     39        1.26       cgd 
     40        1.26       cgd /*-
     41        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44        1.26       cgd  * All or some portions of this file are derived from material licensed
     45        1.26       cgd  * to the University of California by American Telephone and Telegraph
     46        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48        1.26       cgd  *
     49        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50        1.26       cgd  * modification, are permitted provided that the following conditions
     51        1.26       cgd  * are met:
     52        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57        1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58        1.26       cgd  *    must display the following acknowledgement:
     59        1.26       cgd  *	This product includes software developed by the University of
     60        1.26       cgd  *	California, Berkeley and its contributors.
     61        1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62        1.26       cgd  *    may be used to endorse or promote products derived from this software
     63        1.26       cgd  *    without specific prior written permission.
     64        1.26       cgd  *
     65        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75        1.26       cgd  * SUCH DAMAGE.
     76        1.26       cgd  *
     77        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78        1.26       cgd  */
     79   1.101.2.7   nathanw 
     80   1.101.2.7   nathanw #include <sys/cdefs.h>
     81  1.101.2.13   nathanw __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.13 2002/06/20 03:47:16 nathanw Exp $");
     82        1.48       mrg 
     83        1.52  jonathan #include "opt_ddb.h"
     84        1.51   thorpej #include "opt_ktrace.h"
     85        1.82   thorpej #include "opt_lockdebug.h"
     86        1.83   thorpej #include "opt_multiprocessor.h"
     87        1.26       cgd 
     88        1.26       cgd #include <sys/param.h>
     89        1.26       cgd #include <sys/systm.h>
     90        1.68   thorpej #include <sys/callout.h>
     91        1.26       cgd #include <sys/proc.h>
     92   1.101.2.1   nathanw #include <sys/lwp.h>
     93        1.26       cgd #include <sys/kernel.h>
     94        1.26       cgd #include <sys/buf.h>
     95        1.26       cgd #include <sys/signalvar.h>
     96        1.26       cgd #include <sys/resourcevar.h>
     97        1.55      ross #include <sys/sched.h>
     98   1.101.2.1   nathanw #include <sys/sa.h>
     99   1.101.2.1   nathanw #include <sys/savar.h>
    100        1.47       mrg 
    101        1.47       mrg #include <uvm/uvm_extern.h>
    102        1.47       mrg 
    103        1.26       cgd #ifdef KTRACE
    104        1.26       cgd #include <sys/ktrace.h>
    105        1.26       cgd #endif
    106        1.26       cgd 
    107        1.26       cgd #include <machine/cpu.h>
    108        1.34  christos 
    109        1.26       cgd int	lbolt;			/* once a second sleep address */
    110        1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111        1.26       cgd 
    112        1.73   thorpej /*
    113        1.73   thorpej  * The global scheduler state.
    114        1.73   thorpej  */
    115        1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    116        1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    117        1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    118        1.73   thorpej 
    119        1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    120        1.83   thorpej 
    121        1.77   thorpej void schedcpu(void *);
    122   1.101.2.1   nathanw void updatepri(struct lwp *);
    123        1.77   thorpej void endtsleep(void *);
    124        1.34  christos 
    125   1.101.2.1   nathanw __inline void awaken(struct lwp *);
    126        1.63   thorpej 
    127        1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    128        1.68   thorpej 
    129   1.101.2.1   nathanw 
    130   1.101.2.1   nathanw 
    131        1.26       cgd /*
    132        1.26       cgd  * Force switch among equal priority processes every 100ms.
    133        1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    134        1.26       cgd  */
    135        1.26       cgd /* ARGSUSED */
    136        1.26       cgd void
    137        1.89  sommerfe roundrobin(struct cpu_info *ci)
    138        1.26       cgd {
    139        1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    140        1.26       cgd 
    141        1.88  sommerfe 	spc->spc_rrticks = rrticks;
    142        1.88  sommerfe 
    143        1.69   thorpej 	if (curproc != NULL) {
    144        1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    145        1.69   thorpej 			/*
    146        1.69   thorpej 			 * The process has already been through a roundrobin
    147        1.69   thorpej 			 * without switching and may be hogging the CPU.
    148        1.69   thorpej 			 * Indicate that the process should yield.
    149        1.69   thorpej 			 */
    150        1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151        1.69   thorpej 		} else
    152        1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    153        1.69   thorpej 	}
    154        1.87   thorpej 	need_resched(curcpu());
    155        1.26       cgd }
    156        1.26       cgd 
    157        1.26       cgd /*
    158        1.26       cgd  * Constants for digital decay and forget:
    159        1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    160        1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    161        1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    162        1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    163        1.26       cgd  *
    164        1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    165        1.26       cgd  *
    166        1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    167        1.26       cgd  * That is, the system wants to compute a value of decay such
    168        1.26       cgd  * that the following for loop:
    169        1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    170        1.26       cgd  * 		p_estcpu *= decay;
    171        1.26       cgd  * will compute
    172        1.26       cgd  * 	p_estcpu *= 0.1;
    173        1.26       cgd  * for all values of loadavg:
    174        1.26       cgd  *
    175        1.26       cgd  * Mathematically this loop can be expressed by saying:
    176        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    177        1.26       cgd  *
    178        1.26       cgd  * The system computes decay as:
    179        1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    180        1.26       cgd  *
    181        1.26       cgd  * We wish to prove that the system's computation of decay
    182        1.26       cgd  * will always fulfill the equation:
    183        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    184        1.26       cgd  *
    185        1.26       cgd  * If we compute b as:
    186        1.26       cgd  * 	b = 2 * loadavg
    187        1.26       cgd  * then
    188        1.26       cgd  * 	decay = b / (b + 1)
    189        1.26       cgd  *
    190        1.26       cgd  * We now need to prove two things:
    191        1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    192        1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    193        1.26       cgd  *
    194        1.26       cgd  * Facts:
    195        1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    196        1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    197        1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    198        1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    199        1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    200        1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    201        1.26       cgd  *         ln(.1) =~ -2.30
    202        1.26       cgd  *
    203        1.26       cgd  * Proof of (1):
    204        1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    205        1.26       cgd  *	solving for factor,
    206        1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    207        1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    208        1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    209        1.26       cgd  *
    210        1.26       cgd  * Proof of (2):
    211        1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    212        1.26       cgd  *	solving for power,
    213        1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    214        1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    215        1.26       cgd  *
    216        1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    217        1.26       cgd  *      loadav: 1       2       3       4
    218        1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    219        1.26       cgd  */
    220        1.26       cgd 
    221        1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    222        1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    223        1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    224        1.26       cgd 
    225        1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    226        1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    227        1.26       cgd 
    228        1.26       cgd /*
    229        1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    230        1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    231        1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    232        1.26       cgd  *
    233        1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    234        1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    235        1.26       cgd  *
    236        1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    237        1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    238        1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    239        1.26       cgd  */
    240        1.26       cgd #define	CCPU_SHIFT	11
    241        1.26       cgd 
    242        1.26       cgd /*
    243        1.26       cgd  * Recompute process priorities, every hz ticks.
    244        1.26       cgd  */
    245        1.26       cgd /* ARGSUSED */
    246        1.26       cgd void
    247        1.77   thorpej schedcpu(void *arg)
    248        1.26       cgd {
    249        1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    250   1.101.2.1   nathanw 	struct lwp *l;
    251        1.71  augustss 	struct proc *p;
    252        1.83   thorpej 	int s, s1;
    253        1.71  augustss 	unsigned int newcpu;
    254        1.66      ross 	int clkhz;
    255        1.26       cgd 
    256        1.62   thorpej 	proclist_lock_read();
    257   1.101.2.1   nathanw 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
    258        1.26       cgd 		/*
    259        1.26       cgd 		 * Increment time in/out of memory and sleep time
    260        1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    261        1.26       cgd 		 * (remember them?) overflow takes 45 days.
    262        1.26       cgd 		 */
    263   1.101.2.1   nathanw 		p = l->l_proc;
    264   1.101.2.1   nathanw 		l->l_swtime++;
    265   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    266   1.101.2.1   nathanw 		    l->l_stat == LSSUSPENDED)
    267   1.101.2.1   nathanw 			l->l_slptime++;
    268        1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    269        1.26       cgd 		/*
    270        1.26       cgd 		 * If the process has slept the entire second,
    271        1.26       cgd 		 * stop recalculating its priority until it wakes up.
    272        1.26       cgd 		 */
    273   1.101.2.1   nathanw 		if (l->l_slptime > 1)
    274        1.26       cgd 			continue;
    275        1.26       cgd 		s = splstatclock();	/* prevent state changes */
    276        1.26       cgd 		/*
    277        1.26       cgd 		 * p_pctcpu is only for ps.
    278        1.26       cgd 		 */
    279        1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    280        1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    281        1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    282        1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    283        1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    284        1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    285        1.26       cgd #else
    286   1.101.2.1   nathanw 		l->l_pctcpu += ((FSCALE - ccpu) *
    287        1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    288        1.26       cgd #endif
    289        1.26       cgd 		p->p_cpticks = 0;
    290        1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    291        1.55      ross 		p->p_estcpu = newcpu;
    292        1.83   thorpej 		SCHED_LOCK(s1);
    293   1.101.2.1   nathanw 		resetpriority(l);
    294   1.101.2.1   nathanw 		if (l->l_priority >= PUSER) {
    295   1.101.2.1   nathanw 			if (l->l_stat == LSRUN &&
    296   1.101.2.1   nathanw 			    (l->l_flag & L_INMEM) &&
    297   1.101.2.1   nathanw 			    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    298   1.101.2.1   nathanw 				remrunqueue(l);
    299   1.101.2.1   nathanw 				l->l_priority = l->l_usrpri;
    300   1.101.2.1   nathanw 				setrunqueue(l);
    301        1.26       cgd 			} else
    302   1.101.2.1   nathanw 				l->l_priority = l->l_usrpri;
    303        1.26       cgd 		}
    304        1.83   thorpej 		SCHED_UNLOCK(s1);
    305        1.26       cgd 		splx(s);
    306        1.26       cgd 	}
    307        1.61   thorpej 	proclist_unlock_read();
    308        1.47       mrg 	uvm_meter();
    309        1.67      fvdl 	wakeup((caddr_t)&lbolt);
    310        1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    311        1.26       cgd }
    312        1.26       cgd 
    313        1.26       cgd /*
    314        1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    315        1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    316        1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    317        1.26       cgd  */
    318        1.26       cgd void
    319   1.101.2.1   nathanw updatepri(struct lwp *l)
    320        1.26       cgd {
    321   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    322        1.83   thorpej 	unsigned int newcpu;
    323        1.83   thorpej 	fixpt_t loadfac;
    324        1.83   thorpej 
    325        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    326        1.83   thorpej 
    327        1.83   thorpej 	newcpu = p->p_estcpu;
    328        1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    329        1.26       cgd 
    330   1.101.2.1   nathanw 	if (l->l_slptime > 5 * loadfac)
    331   1.101.2.1   nathanw 		p->p_estcpu = 0; /* XXX NJWLWP */
    332        1.26       cgd 	else {
    333   1.101.2.1   nathanw 		l->l_slptime--;	/* the first time was done in schedcpu */
    334   1.101.2.1   nathanw 		while (newcpu && --l->l_slptime)
    335        1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    336        1.55      ross 		p->p_estcpu = newcpu;
    337        1.26       cgd 	}
    338   1.101.2.1   nathanw 	resetpriority(l);
    339        1.26       cgd }
    340        1.26       cgd 
    341        1.26       cgd /*
    342        1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    343        1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    344        1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    345        1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    346        1.26       cgd  * This priority will typically be 0, or the lowest priority
    347        1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    348        1.26       cgd  * higher to block network software interrupts after panics.
    349        1.26       cgd  */
    350        1.26       cgd int safepri;
    351        1.26       cgd 
    352        1.26       cgd /*
    353        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    354        1.26       cgd  * performed on the specified identifier.  The process will then be made
    355        1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    356        1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    357        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    358        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    359        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    360        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    361        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    362        1.77   thorpej  *
    363   1.101.2.3   nathanw  * The interlock is held until the scheduler_slock is acquired.  The
    364        1.77   thorpej  * interlock will be locked before returning back to the caller
    365        1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    366        1.77   thorpej  * interlock will always be unlocked upon return.
    367        1.26       cgd  */
    368        1.26       cgd int
    369        1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    370        1.77   thorpej     __volatile struct simplelock *interlock)
    371        1.26       cgd {
    372   1.101.2.1   nathanw 	struct lwp *l = curproc;
    373   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    374        1.71  augustss 	struct slpque *qp;
    375        1.77   thorpej 	int sig, s;
    376        1.77   thorpej 	int catch = priority & PCATCH;
    377        1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    378   1.101.2.1   nathanw 	int exiterr = (priority & PNOEXITERR) == 0;
    379        1.26       cgd 
    380        1.77   thorpej 	/*
    381        1.77   thorpej 	 * XXXSMP
    382        1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    383        1.77   thorpej 	 * thing to do here really is.
    384        1.78  sommerfe 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    385        1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    386        1.78  sommerfe 	 * how shutdown (barely) works.
    387        1.77   thorpej 	 */
    388   1.101.2.1   nathanw 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    389        1.26       cgd 		/*
    390        1.26       cgd 		 * After a panic, or during autoconfiguration,
    391        1.26       cgd 		 * just give interrupts a chance, then just return;
    392        1.26       cgd 		 * don't run any other procs or panic below,
    393        1.26       cgd 		 * in case this is the idle process and already asleep.
    394        1.26       cgd 		 */
    395        1.42       cgd 		s = splhigh();
    396        1.26       cgd 		splx(safepri);
    397        1.26       cgd 		splx(s);
    398        1.77   thorpej 		if (interlock != NULL && relock == 0)
    399        1.77   thorpej 			simple_unlock(interlock);
    400        1.26       cgd 		return (0);
    401        1.26       cgd 	}
    402        1.78  sommerfe 
    403   1.101.2.3   nathanw 	KASSERT(p != NULL);
    404   1.101.2.6   nathanw 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    405        1.42       cgd 
    406        1.42       cgd #ifdef KTRACE
    407        1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    408        1.74  sommerfe 		ktrcsw(p, 1, 0);
    409        1.42       cgd #endif
    410        1.77   thorpej 
    411        1.83   thorpej 	SCHED_LOCK(s);
    412        1.42       cgd 
    413        1.26       cgd #ifdef DIAGNOSTIC
    414        1.64   thorpej 	if (ident == NULL)
    415        1.77   thorpej 		panic("ltsleep: ident == NULL");
    416   1.101.2.1   nathanw 	if (l->l_stat != LSONPROC)
    417   1.101.2.1   nathanw 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    418   1.101.2.1   nathanw 	if (l->l_back != NULL)
    419        1.77   thorpej 		panic("ltsleep: p_back != NULL");
    420        1.26       cgd #endif
    421        1.77   thorpej 
    422   1.101.2.1   nathanw 	l->l_wchan = ident;
    423   1.101.2.1   nathanw 	l->l_wmesg = wmesg;
    424   1.101.2.1   nathanw 	l->l_slptime = 0;
    425   1.101.2.1   nathanw 	l->l_priority = priority & PRIMASK;
    426        1.77   thorpej 
    427        1.73   thorpej 	qp = SLPQUE(ident);
    428        1.26       cgd 	if (qp->sq_head == 0)
    429   1.101.2.1   nathanw 		qp->sq_head = l;
    430   1.101.2.1   nathanw 	else {
    431   1.101.2.1   nathanw 		*qp->sq_tailp = l;
    432   1.101.2.1   nathanw 	}
    433   1.101.2.1   nathanw 	*(qp->sq_tailp = &l->l_forw) = 0;
    434        1.77   thorpej 
    435        1.26       cgd 	if (timo)
    436   1.101.2.1   nathanw 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    437        1.77   thorpej 
    438        1.77   thorpej 	/*
    439        1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    440        1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    441        1.77   thorpej 	 * we do the switch.
    442        1.77   thorpej 	 *
    443        1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    444        1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    445        1.77   thorpej 	 * data structure for the sleep queues at some point.
    446        1.77   thorpej 	 */
    447        1.77   thorpej 	if (interlock != NULL)
    448        1.77   thorpej 		simple_unlock(interlock);
    449        1.77   thorpej 
    450        1.26       cgd 	/*
    451        1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    452        1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    453        1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    454        1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    455        1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    456        1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    457        1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    458        1.26       cgd 	 */
    459        1.26       cgd 	if (catch) {
    460   1.101.2.1   nathanw 		l->l_flag |= L_SINTR;
    461   1.101.2.1   nathanw 		if ((sig = CURSIG(l)) != 0) {
    462   1.101.2.1   nathanw 			if (l->l_wchan != NULL)
    463   1.101.2.1   nathanw 				unsleep(l);
    464   1.101.2.1   nathanw 			l->l_stat = LSONPROC;
    465        1.83   thorpej 			SCHED_UNLOCK(s);
    466        1.26       cgd 			goto resume;
    467        1.26       cgd 		}
    468   1.101.2.1   nathanw 		if (l->l_wchan == NULL) {
    469        1.26       cgd 			catch = 0;
    470        1.83   thorpej 			SCHED_UNLOCK(s);
    471        1.26       cgd 			goto resume;
    472        1.26       cgd 		}
    473        1.26       cgd 	} else
    474        1.26       cgd 		sig = 0;
    475   1.101.2.1   nathanw 	l->l_stat = LSSLEEP;
    476   1.101.2.1   nathanw 	p->p_nrlwps--;
    477        1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    478        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    479   1.101.2.1   nathanw 	if (l->l_flag & L_SA)
    480   1.101.2.1   nathanw 		sa_switch(l, SA_UPCALL_BLOCKED);
    481   1.101.2.1   nathanw 	else
    482   1.101.2.1   nathanw 		mi_switch(l, NULL);
    483        1.83   thorpej 
    484   1.101.2.3   nathanw #if	defined(DDB) && !defined(GPROF)
    485        1.26       cgd 	/* handy breakpoint location after process "wakes" */
    486  1.101.2.10   nathanw 	__asm(".globl bpendtsleep ; bpendtsleep:");
    487        1.26       cgd #endif
    488  1.101.2.12   nathanw 	/* p->p_nrlwps is incremented by whoever made us runnable again,
    489  1.101.2.12   nathanw 	 * either setrunnable() or awaken().
    490  1.101.2.12   nathanw 	 */
    491        1.77   thorpej 
    492        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    493        1.83   thorpej 	splx(s);
    494        1.83   thorpej 
    495        1.77   thorpej  resume:
    496   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    497   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    498   1.101.2.1   nathanw 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    499   1.101.2.1   nathanw 
    500   1.101.2.1   nathanw 	l->l_flag &= ~L_SINTR;
    501   1.101.2.1   nathanw 	if (l->l_flag & L_TIMEOUT) {
    502   1.101.2.1   nathanw 		l->l_flag &= ~L_TIMEOUT;
    503        1.26       cgd 		if (sig == 0) {
    504        1.26       cgd #ifdef KTRACE
    505        1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    506        1.74  sommerfe 				ktrcsw(p, 0, 0);
    507        1.26       cgd #endif
    508        1.77   thorpej 			if (relock && interlock != NULL)
    509        1.77   thorpej 				simple_lock(interlock);
    510        1.26       cgd 			return (EWOULDBLOCK);
    511        1.26       cgd 		}
    512        1.26       cgd 	} else if (timo)
    513   1.101.2.1   nathanw 		callout_stop(&l->l_tsleep_ch);
    514   1.101.2.1   nathanw 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    515        1.26       cgd #ifdef KTRACE
    516        1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    517        1.74  sommerfe 			ktrcsw(p, 0, 0);
    518        1.26       cgd #endif
    519        1.77   thorpej 		if (relock && interlock != NULL)
    520        1.77   thorpej 			simple_lock(interlock);
    521        1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    522        1.26       cgd 			return (EINTR);
    523        1.26       cgd 		return (ERESTART);
    524        1.26       cgd 	}
    525   1.101.2.1   nathanw 	/* XXXNJW this is very much a kluge.
    526   1.101.2.1   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    527   1.101.2.1   nathanw 	 * wait4() and _lwp_wait() from wedging an exiting process
    528   1.101.2.1   nathanw 	 * would be preferred.
    529   1.101.2.1   nathanw 	 */
    530   1.101.2.1   nathanw 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    531   1.101.2.1   nathanw 		return (EINTR);
    532        1.26       cgd #ifdef KTRACE
    533        1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    534        1.74  sommerfe 		ktrcsw(p, 0, 0);
    535        1.26       cgd #endif
    536        1.77   thorpej 	if (relock && interlock != NULL)
    537        1.77   thorpej 		simple_lock(interlock);
    538        1.26       cgd 	return (0);
    539        1.26       cgd }
    540        1.26       cgd 
    541        1.26       cgd /*
    542        1.26       cgd  * Implement timeout for tsleep.
    543        1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    544        1.26       cgd  * set timeout flag and undo the sleep.  If proc
    545        1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    546        1.26       cgd  */
    547        1.26       cgd void
    548        1.77   thorpej endtsleep(void *arg)
    549        1.26       cgd {
    550   1.101.2.1   nathanw 	struct lwp *l;
    551        1.26       cgd 	int s;
    552        1.26       cgd 
    553   1.101.2.1   nathanw 	l = (struct lwp *)arg;
    554        1.83   thorpej 	SCHED_LOCK(s);
    555   1.101.2.1   nathanw 	if (l->l_wchan) {
    556   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP)
    557   1.101.2.1   nathanw 			setrunnable(l);
    558        1.26       cgd 		else
    559   1.101.2.1   nathanw 			unsleep(l);
    560   1.101.2.1   nathanw 		l->l_flag |= L_TIMEOUT;
    561        1.26       cgd 	}
    562        1.83   thorpej 	SCHED_UNLOCK(s);
    563        1.26       cgd }
    564        1.26       cgd 
    565        1.26       cgd /*
    566        1.26       cgd  * Remove a process from its wait queue
    567        1.26       cgd  */
    568        1.26       cgd void
    569   1.101.2.1   nathanw unsleep(struct lwp *l)
    570        1.26       cgd {
    571        1.71  augustss 	struct slpque *qp;
    572   1.101.2.1   nathanw 	struct lwp **hp;
    573        1.26       cgd 
    574        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    575        1.83   thorpej 
    576   1.101.2.1   nathanw 	if (l->l_wchan) {
    577   1.101.2.1   nathanw 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    578   1.101.2.1   nathanw 		while (*hp != l)
    579   1.101.2.1   nathanw 			hp = &(*hp)->l_forw;
    580   1.101.2.1   nathanw 		*hp = l->l_forw;
    581   1.101.2.1   nathanw 		if (qp->sq_tailp == &l->l_forw)
    582        1.26       cgd 			qp->sq_tailp = hp;
    583   1.101.2.1   nathanw 		l->l_wchan = 0;
    584        1.26       cgd 	}
    585        1.26       cgd }
    586        1.26       cgd 
    587        1.26       cgd /*
    588        1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    589        1.63   thorpej  */
    590        1.63   thorpej __inline void
    591   1.101.2.1   nathanw awaken(struct lwp *l)
    592        1.63   thorpej {
    593        1.63   thorpej 
    594        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    595   1.101.2.1   nathanw 
    596   1.101.2.1   nathanw 	if (l->l_slptime > 1)
    597   1.101.2.1   nathanw 		updatepri(l);
    598   1.101.2.1   nathanw 	l->l_slptime = 0;
    599   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    600  1.101.2.12   nathanw 	l->l_proc->p_nrlwps++;
    601        1.93    bouyer 	/*
    602        1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    603        1.93    bouyer 	 * is always better than curpriority.
    604        1.93    bouyer 	 */
    605   1.101.2.1   nathanw 	if (l->l_flag & L_INMEM) {
    606   1.101.2.1   nathanw 		setrunqueue(l);
    607   1.101.2.1   nathanw 		KASSERT(l->l_cpu != NULL);
    608   1.101.2.1   nathanw 		need_resched(l->l_cpu);
    609        1.93    bouyer 	} else
    610        1.93    bouyer 		sched_wakeup(&proc0);
    611        1.83   thorpej }
    612        1.83   thorpej 
    613        1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    614        1.83   thorpej void
    615        1.83   thorpej sched_unlock_idle(void)
    616        1.83   thorpej {
    617        1.83   thorpej 
    618        1.83   thorpej 	simple_unlock(&sched_lock);
    619        1.63   thorpej }
    620        1.63   thorpej 
    621        1.83   thorpej void
    622        1.83   thorpej sched_lock_idle(void)
    623        1.83   thorpej {
    624        1.83   thorpej 
    625        1.83   thorpej 	simple_lock(&sched_lock);
    626        1.83   thorpej }
    627        1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    628        1.83   thorpej 
    629        1.63   thorpej /*
    630        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    631        1.26       cgd  */
    632        1.83   thorpej 
    633        1.26       cgd void
    634        1.77   thorpej wakeup(void *ident)
    635        1.26       cgd {
    636        1.83   thorpej 	int s;
    637        1.83   thorpej 
    638        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    639        1.83   thorpej 
    640        1.83   thorpej 	SCHED_LOCK(s);
    641        1.83   thorpej 	sched_wakeup(ident);
    642        1.83   thorpej 	SCHED_UNLOCK(s);
    643        1.83   thorpej }
    644        1.83   thorpej 
    645        1.83   thorpej void
    646        1.83   thorpej sched_wakeup(void *ident)
    647        1.83   thorpej {
    648        1.71  augustss 	struct slpque *qp;
    649   1.101.2.1   nathanw 	struct lwp *l, **q;
    650        1.26       cgd 
    651        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    652        1.77   thorpej 
    653        1.73   thorpej 	qp = SLPQUE(ident);
    654        1.77   thorpej  restart:
    655   1.101.2.1   nathanw 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    656        1.26       cgd #ifdef DIAGNOSTIC
    657   1.101.2.1   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    658   1.101.2.1   nathanw 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    659        1.26       cgd 			panic("wakeup");
    660        1.26       cgd #endif
    661   1.101.2.1   nathanw 		if (l->l_wchan == ident) {
    662   1.101.2.1   nathanw 			l->l_wchan = 0;
    663   1.101.2.1   nathanw 			*q = l->l_forw;
    664   1.101.2.1   nathanw 			if (qp->sq_tailp == &l->l_forw)
    665        1.26       cgd 				qp->sq_tailp = q;
    666   1.101.2.1   nathanw 			if (l->l_stat == LSSLEEP) {
    667   1.101.2.1   nathanw 				awaken(l);
    668        1.26       cgd 				goto restart;
    669        1.26       cgd 			}
    670        1.26       cgd 		} else
    671   1.101.2.1   nathanw 			q = &l->l_forw;
    672        1.63   thorpej 	}
    673        1.63   thorpej }
    674        1.63   thorpej 
    675        1.63   thorpej /*
    676        1.63   thorpej  * Make the highest priority process first in line on the specified
    677        1.63   thorpej  * identifier runnable.
    678        1.63   thorpej  */
    679        1.63   thorpej void
    680        1.77   thorpej wakeup_one(void *ident)
    681        1.63   thorpej {
    682        1.63   thorpej 	struct slpque *qp;
    683   1.101.2.1   nathanw 	struct lwp *l, **q;
    684   1.101.2.1   nathanw 	struct lwp *best_sleepp, **best_sleepq;
    685   1.101.2.1   nathanw 	struct lwp *best_stopp, **best_stopq;
    686        1.63   thorpej 	int s;
    687        1.63   thorpej 
    688        1.63   thorpej 	best_sleepp = best_stopp = NULL;
    689        1.63   thorpej 	best_sleepq = best_stopq = NULL;
    690        1.63   thorpej 
    691        1.83   thorpej 	SCHED_LOCK(s);
    692        1.77   thorpej 
    693        1.73   thorpej 	qp = SLPQUE(ident);
    694        1.77   thorpej 
    695   1.101.2.1   nathanw 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    696        1.63   thorpej #ifdef DIAGNOSTIC
    697   1.101.2.1   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    698   1.101.2.1   nathanw 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    699        1.63   thorpej 			panic("wakeup_one");
    700        1.63   thorpej #endif
    701   1.101.2.1   nathanw 		if (l->l_wchan == ident) {
    702   1.101.2.1   nathanw 			if (l->l_stat == LSSLEEP) {
    703        1.63   thorpej 				if (best_sleepp == NULL ||
    704   1.101.2.1   nathanw 				    l->l_priority < best_sleepp->l_priority) {
    705   1.101.2.1   nathanw 					best_sleepp = l;
    706        1.63   thorpej 					best_sleepq = q;
    707        1.63   thorpej 				}
    708        1.63   thorpej 			} else {
    709        1.63   thorpej 				if (best_stopp == NULL ||
    710   1.101.2.1   nathanw 				    l->l_priority < best_stopp->l_priority) {
    711   1.101.2.1   nathanw 				    	best_stopp = l;
    712        1.63   thorpej 					best_stopq = q;
    713        1.63   thorpej 				}
    714        1.63   thorpej 			}
    715        1.63   thorpej 		}
    716        1.63   thorpej 	}
    717        1.63   thorpej 
    718        1.63   thorpej 	/*
    719        1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    720        1.63   thorpej 	 * process.
    721        1.63   thorpej 	 */
    722        1.63   thorpej 	if (best_sleepp != NULL) {
    723   1.101.2.1   nathanw 		l = best_sleepp;
    724        1.63   thorpej 		q = best_sleepq;
    725        1.63   thorpej 	} else {
    726   1.101.2.1   nathanw 		l = best_stopp;
    727        1.63   thorpej 		q = best_stopq;
    728        1.63   thorpej 	}
    729        1.63   thorpej 
    730   1.101.2.1   nathanw 	if (l != NULL) {
    731   1.101.2.1   nathanw 		l->l_wchan = NULL;
    732   1.101.2.1   nathanw 		*q = l->l_forw;
    733   1.101.2.1   nathanw 		if (qp->sq_tailp == &l->l_forw)
    734        1.63   thorpej 			qp->sq_tailp = q;
    735   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP)
    736   1.101.2.1   nathanw 			awaken(l);
    737        1.26       cgd 	}
    738        1.83   thorpej 	SCHED_UNLOCK(s);
    739        1.26       cgd }
    740        1.26       cgd 
    741        1.26       cgd /*
    742        1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    743        1.69   thorpej  * performs a voluntary context switch.
    744        1.69   thorpej  */
    745        1.69   thorpej void
    746        1.77   thorpej yield(void)
    747        1.69   thorpej {
    748   1.101.2.1   nathanw 	struct lwp *l = curproc;
    749        1.69   thorpej 	int s;
    750        1.69   thorpej 
    751        1.83   thorpej 	SCHED_LOCK(s);
    752   1.101.2.1   nathanw 	l->l_priority = l->l_usrpri;
    753   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    754   1.101.2.1   nathanw 	setrunqueue(l);
    755   1.101.2.1   nathanw 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    756   1.101.2.1   nathanw 	mi_switch(l, NULL);
    757        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    758        1.69   thorpej 	splx(s);
    759        1.69   thorpej }
    760        1.69   thorpej 
    761        1.69   thorpej /*
    762        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    763        1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    764        1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    765        1.69   thorpej  * criteria.
    766        1.69   thorpej  */
    767   1.101.2.1   nathanw 
    768        1.69   thorpej void
    769   1.101.2.1   nathanw preempt(struct lwp *newl)
    770        1.69   thorpej {
    771   1.101.2.1   nathanw 	struct lwp *l = curproc;
    772   1.101.2.2   nathanw 	int r, s;
    773        1.69   thorpej 
    774   1.101.2.9   nathanw 	if (l->l_flag & L_SA) {
    775   1.101.2.9   nathanw 		SCHED_LOCK(s);
    776   1.101.2.9   nathanw 		l->l_priority = l->l_usrpri;
    777   1.101.2.9   nathanw 		l->l_stat = LSRUN;
    778   1.101.2.9   nathanw 		setrunqueue(l);
    779   1.101.2.9   nathanw 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    780   1.101.2.9   nathanw 		r = mi_switch(l, newl);
    781   1.101.2.9   nathanw 		SCHED_ASSERT_UNLOCKED();
    782   1.101.2.9   nathanw 		splx(s);
    783   1.101.2.9   nathanw 		if (r != 0)
    784   1.101.2.9   nathanw 			sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, NULL);
    785   1.101.2.9   nathanw 	} else {
    786   1.101.2.9   nathanw 		SCHED_LOCK(s);
    787   1.101.2.9   nathanw 		l->l_priority = l->l_usrpri;
    788   1.101.2.9   nathanw 		l->l_stat = LSRUN;
    789   1.101.2.9   nathanw 		setrunqueue(l);
    790   1.101.2.9   nathanw 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    791   1.101.2.9   nathanw 		mi_switch(l, newl);
    792   1.101.2.9   nathanw 		SCHED_ASSERT_UNLOCKED();
    793   1.101.2.9   nathanw 		splx(s);
    794   1.101.2.9   nathanw 	}
    795   1.101.2.9   nathanw 
    796        1.69   thorpej }
    797        1.69   thorpej 
    798        1.69   thorpej /*
    799        1.72   thorpej  * The machine independent parts of context switch.
    800        1.86   thorpej  * Must be called at splsched() (no higher!) and with
    801        1.86   thorpej  * the sched_lock held.
    802   1.101.2.1   nathanw  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    803   1.101.2.1   nathanw  * the next lwp.
    804   1.101.2.2   nathanw  *
    805   1.101.2.2   nathanw  * Returns 1 if another process was actually run.
    806        1.26       cgd  */
    807   1.101.2.2   nathanw int
    808   1.101.2.1   nathanw mi_switch(struct lwp *l, struct lwp *new)
    809        1.26       cgd {
    810        1.76   thorpej 	struct schedstate_percpu *spc;
    811        1.71  augustss 	struct rlimit *rlim;
    812        1.71  augustss 	long s, u;
    813        1.26       cgd 	struct timeval tv;
    814        1.85  sommerfe #if defined(MULTIPROCESSOR)
    815        1.85  sommerfe 	int hold_count;
    816        1.85  sommerfe #endif
    817   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    818   1.101.2.2   nathanw 	int retval;
    819        1.26       cgd 
    820        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    821        1.83   thorpej 
    822        1.85  sommerfe #if defined(MULTIPROCESSOR)
    823        1.90  sommerfe 	/*
    824        1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    825        1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    826        1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    827        1.90  sommerfe 	 */
    828        1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    829        1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    830        1.85  sommerfe #endif
    831        1.85  sommerfe 
    832   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    833   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    834        1.76   thorpej 
    835   1.101.2.1   nathanw 	spc = &l->l_cpu->ci_schedstate;
    836        1.76   thorpej 
    837        1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    838        1.82   thorpej 	spinlock_switchcheck();
    839        1.82   thorpej #endif
    840        1.54       chs #ifdef LOCKDEBUG
    841        1.81   thorpej 	simple_lock_switchcheck();
    842        1.50      fvdl #endif
    843        1.81   thorpej 
    844        1.26       cgd 	/*
    845        1.26       cgd 	 * Compute the amount of time during which the current
    846        1.26       cgd 	 * process was running, and add that to its total so far.
    847        1.26       cgd 	 */
    848        1.26       cgd 	microtime(&tv);
    849   1.101.2.1   nathanw 	u = p->p_rtime.tv_usec +
    850   1.101.2.1   nathanw 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    851        1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    852        1.26       cgd 	if (u < 0) {
    853        1.26       cgd 		u += 1000000;
    854        1.26       cgd 		s--;
    855        1.26       cgd 	} else if (u >= 1000000) {
    856        1.26       cgd 		u -= 1000000;
    857        1.26       cgd 		s++;
    858        1.26       cgd 	}
    859        1.26       cgd 	p->p_rtime.tv_usec = u;
    860        1.26       cgd 	p->p_rtime.tv_sec = s;
    861        1.26       cgd 
    862        1.26       cgd 	/*
    863        1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    864        1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    865        1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    866        1.26       cgd 	 */
    867        1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    868        1.26       cgd 	if (s >= rlim->rlim_cur) {
    869       1.100  sommerfe 		/*
    870       1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    871       1.100  sommerfe 		 * use sched_psignal.
    872       1.100  sommerfe 		 */
    873        1.26       cgd 		if (s >= rlim->rlim_max)
    874       1.100  sommerfe 			sched_psignal(p, SIGKILL);
    875        1.26       cgd 		else {
    876       1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    877        1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    878        1.26       cgd 				rlim->rlim_cur += 5;
    879        1.26       cgd 		}
    880        1.26       cgd 	}
    881        1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    882        1.77   thorpej 	    p->p_nice == NZERO) {
    883        1.39        ws 		p->p_nice = autoniceval + NZERO;
    884   1.101.2.1   nathanw 		resetpriority(l);
    885        1.26       cgd 	}
    886        1.69   thorpej 
    887        1.69   thorpej 	/*
    888        1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    889        1.69   thorpej 	 * scheduling flags.
    890        1.69   thorpej 	 */
    891        1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    892        1.26       cgd 
    893        1.26       cgd 	/*
    894        1.76   thorpej 	 * Pick a new current process and switch to it.  When we
    895        1.76   thorpej 	 * run again, we'll return back here.
    896        1.26       cgd 	 */
    897        1.47       mrg 	uvmexp.swtch++;
    898   1.101.2.2   nathanw 	if (new == NULL) {
    899   1.101.2.2   nathanw 		retval = cpu_switch(l);
    900   1.101.2.2   nathanw 	} else {
    901   1.101.2.1   nathanw 		cpu_preempt(l, new);
    902   1.101.2.2   nathanw 		retval = 0;
    903   1.101.2.2   nathanw 	}
    904        1.76   thorpej 
    905        1.76   thorpej 	/*
    906        1.83   thorpej 	 * Make sure that MD code released the scheduler lock before
    907        1.83   thorpej 	 * resuming us.
    908        1.83   thorpej 	 */
    909        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    910        1.83   thorpej 
    911        1.83   thorpej 	/*
    912        1.76   thorpej 	 * We're running again; record our new start time.  We might
    913        1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    914        1.76   thorpej 	 * schedstate_percpu pointer.
    915        1.76   thorpej 	 */
    916   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    917   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    918   1.101.2.1   nathanw 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    919        1.85  sommerfe 
    920        1.85  sommerfe #if defined(MULTIPROCESSOR)
    921        1.90  sommerfe 	/*
    922        1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    923        1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    924        1.90  sommerfe 	 * we reacquire the interlock.
    925        1.90  sommerfe 	 */
    926        1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    927        1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    928        1.85  sommerfe #endif
    929   1.101.2.2   nathanw 
    930   1.101.2.2   nathanw 	return retval;
    931        1.26       cgd }
    932        1.26       cgd 
    933        1.26       cgd /*
    934        1.26       cgd  * Initialize the (doubly-linked) run queues
    935        1.26       cgd  * to be empty.
    936        1.26       cgd  */
    937        1.26       cgd void
    938        1.26       cgd rqinit()
    939        1.26       cgd {
    940        1.71  augustss 	int i;
    941        1.26       cgd 
    942        1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    943        1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    944   1.101.2.1   nathanw 		    (struct lwp *)&sched_qs[i];
    945        1.26       cgd }
    946        1.26       cgd 
    947        1.26       cgd /*
    948        1.26       cgd  * Change process state to be runnable,
    949        1.26       cgd  * placing it on the run queue if it is in memory,
    950        1.26       cgd  * and awakening the swapper if it isn't in memory.
    951        1.26       cgd  */
    952        1.26       cgd void
    953   1.101.2.1   nathanw setrunnable(struct lwp *l)
    954        1.26       cgd {
    955   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    956        1.26       cgd 
    957        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    958        1.83   thorpej 
    959   1.101.2.1   nathanw 	switch (l->l_stat) {
    960        1.26       cgd 	case 0:
    961   1.101.2.1   nathanw 	case LSRUN:
    962   1.101.2.1   nathanw 	case LSONPROC:
    963   1.101.2.1   nathanw 	case LSZOMB:
    964   1.101.2.1   nathanw 	case LSDEAD:
    965        1.26       cgd 	default:
    966        1.26       cgd 		panic("setrunnable");
    967   1.101.2.1   nathanw 	case LSSTOP:
    968        1.33   mycroft 		/*
    969        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    970        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    971        1.33   mycroft 		 */
    972        1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    973        1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    974       1.101   thorpej 			CHECKSIGS(p);
    975        1.53   mycroft 		}
    976   1.101.2.1   nathanw 	case LSSLEEP:
    977   1.101.2.1   nathanw 		unsleep(l);		/* e.g. when sending signals */
    978        1.26       cgd 		break;
    979        1.26       cgd 
    980   1.101.2.1   nathanw 	case LSIDL:
    981   1.101.2.1   nathanw 		break;
    982   1.101.2.1   nathanw 	case LSSUSPENDED:
    983        1.26       cgd 		break;
    984        1.26       cgd 	}
    985   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    986  1.101.2.12   nathanw 	p->p_nrlwps++;
    987  1.101.2.12   nathanw 
    988   1.101.2.1   nathanw 	if (l->l_flag & L_INMEM)
    989   1.101.2.1   nathanw 		setrunqueue(l);
    990   1.101.2.1   nathanw 
    991   1.101.2.1   nathanw 	if (l->l_slptime > 1)
    992   1.101.2.1   nathanw 		updatepri(l);
    993   1.101.2.1   nathanw 	l->l_slptime = 0;
    994   1.101.2.1   nathanw 	if ((l->l_flag & L_INMEM) == 0)
    995   1.101.2.1   nathanw 		wakeup((caddr_t)&proc0);
    996   1.101.2.1   nathanw 	else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
    997        1.76   thorpej 		/*
    998        1.76   thorpej 		 * XXXSMP
    999        1.87   thorpej 		 * This is not exactly right.  Since p->p_cpu persists
   1000        1.87   thorpej 		 * across a context switch, this gives us some sort
   1001        1.87   thorpej 		 * of processor affinity.  But we need to figure out
   1002        1.87   thorpej 		 * at what point it's better to reschedule on a different
   1003        1.87   thorpej 		 * CPU than the last one.
   1004        1.76   thorpej 		 */
   1005   1.101.2.5   nathanw 		need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
   1006        1.76   thorpej 	}
   1007        1.26       cgd }
   1008        1.26       cgd 
   1009        1.26       cgd /*
   1010        1.26       cgd  * Compute the priority of a process when running in user mode.
   1011        1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1012        1.26       cgd  * than that of the current process.
   1013        1.26       cgd  */
   1014        1.26       cgd void
   1015   1.101.2.1   nathanw resetpriority(struct lwp *l)
   1016        1.26       cgd {
   1017        1.71  augustss 	unsigned int newpriority;
   1018   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1019        1.26       cgd 
   1020        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1021        1.83   thorpej 
   1022   1.101.2.1   nathanw 	newpriority = PUSER + p->p_estcpu +
   1023   1.101.2.1   nathanw 			NICE_WEIGHT * (p->p_nice - NZERO);
   1024        1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1025   1.101.2.1   nathanw 	l->l_usrpri = newpriority;
   1026        1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
   1027        1.76   thorpej 		/*
   1028        1.76   thorpej 		 * XXXSMP
   1029        1.76   thorpej 		 * Same applies as in setrunnable() above.
   1030        1.76   thorpej 		 */
   1031   1.101.2.5   nathanw 		need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
   1032        1.76   thorpej 	}
   1033        1.55      ross }
   1034        1.55      ross 
   1035   1.101.2.1   nathanw /*
   1036   1.101.2.1   nathanw  * Recompute priority for all LWPs in a process.
   1037   1.101.2.1   nathanw  */
   1038   1.101.2.1   nathanw void
   1039   1.101.2.1   nathanw resetprocpriority(struct proc *p)
   1040   1.101.2.1   nathanw {
   1041   1.101.2.1   nathanw 	struct lwp *l;
   1042   1.101.2.1   nathanw 
   1043   1.101.2.1   nathanw 	LIST_FOREACH(l, &p->p_lwps, l_list)
   1044   1.101.2.1   nathanw 	    resetpriority(l);
   1045   1.101.2.1   nathanw }
   1046   1.101.2.1   nathanw 
   1047        1.55      ross /*
   1048        1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1049        1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1050        1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1051        1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1052        1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1053        1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1054        1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1055        1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1056        1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1057        1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1058        1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1059        1.56      ross  * processes.
   1060        1.55      ross  */
   1061        1.55      ross 
   1062        1.55      ross void
   1063   1.101.2.1   nathanw schedclock(struct lwp *l)
   1064        1.55      ross {
   1065   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1066        1.83   thorpej 	int s;
   1067        1.77   thorpej 
   1068        1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1069        1.83   thorpej 	SCHED_LOCK(s);
   1070   1.101.2.1   nathanw 	resetpriority(l);
   1071        1.83   thorpej 	SCHED_UNLOCK(s);
   1072   1.101.2.1   nathanw 
   1073   1.101.2.1   nathanw 	if (l->l_priority >= PUSER)
   1074   1.101.2.1   nathanw 		l->l_priority = l->l_usrpri;
   1075        1.26       cgd }
   1076        1.94    bouyer 
   1077        1.94    bouyer void
   1078        1.94    bouyer suspendsched()
   1079        1.94    bouyer {
   1080   1.101.2.1   nathanw 	struct lwp *l;
   1081        1.97     enami 	int s;
   1082        1.94    bouyer 
   1083        1.94    bouyer 	/*
   1084   1.101.2.1   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1085   1.101.2.1   nathanw 	 * LSSUSPENDED.
   1086        1.94    bouyer 	 */
   1087        1.95   thorpej 	proclist_lock_read();
   1088        1.95   thorpej 	SCHED_LOCK(s);
   1089   1.101.2.1   nathanw 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
   1090   1.101.2.1   nathanw 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1091        1.94    bouyer 			continue;
   1092   1.101.2.1   nathanw 
   1093   1.101.2.1   nathanw 		switch (l->l_stat) {
   1094   1.101.2.1   nathanw 		case LSRUN:
   1095  1.101.2.12   nathanw 			l->l_proc->p_nrlwps--;
   1096   1.101.2.1   nathanw 			if ((l->l_flag & L_INMEM) != 0)
   1097   1.101.2.1   nathanw 				remrunqueue(l);
   1098        1.97     enami 			/* FALLTHROUGH */
   1099   1.101.2.1   nathanw 		case LSSLEEP:
   1100   1.101.2.1   nathanw 			l->l_stat = LSSUSPENDED;
   1101        1.97     enami 			break;
   1102   1.101.2.1   nathanw 		case LSONPROC:
   1103        1.97     enami 			/*
   1104        1.97     enami 			 * XXX SMP: we need to deal with processes on
   1105        1.97     enami 			 * others CPU !
   1106        1.97     enami 			 */
   1107        1.97     enami 			break;
   1108        1.97     enami 		default:
   1109        1.97     enami 			break;
   1110        1.94    bouyer 		}
   1111        1.94    bouyer 	}
   1112        1.94    bouyer 	SCHED_UNLOCK(s);
   1113        1.97     enami 	proclist_unlock_read();
   1114        1.94    bouyer }
   1115   1.101.2.1   nathanw 
   1116   1.101.2.1   nathanw 
   1117