kern_synch.c revision 1.101.2.15 1 1.101.2.15 nathanw /* $NetBSD: kern_synch.c,v 1.101.2.15 2002/07/12 01:40:19 nathanw Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.101.2.7 nathanw
80 1.101.2.7 nathanw #include <sys/cdefs.h>
81 1.101.2.15 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.15 2002/07/12 01:40:19 nathanw Exp $");
82 1.48 mrg
83 1.52 jonathan #include "opt_ddb.h"
84 1.51 thorpej #include "opt_ktrace.h"
85 1.82 thorpej #include "opt_lockdebug.h"
86 1.83 thorpej #include "opt_multiprocessor.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.26 cgd #include <sys/kernel.h>
93 1.26 cgd #include <sys/buf.h>
94 1.26 cgd #include <sys/signalvar.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.101.2.1 nathanw #include <sys/sa.h>
98 1.101.2.1 nathanw #include <sys/savar.h>
99 1.47 mrg
100 1.47 mrg #include <uvm/uvm_extern.h>
101 1.47 mrg
102 1.26 cgd #ifdef KTRACE
103 1.26 cgd #include <sys/ktrace.h>
104 1.26 cgd #endif
105 1.26 cgd
106 1.26 cgd #include <machine/cpu.h>
107 1.34 christos
108 1.26 cgd int lbolt; /* once a second sleep address */
109 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
110 1.26 cgd
111 1.73 thorpej /*
112 1.73 thorpej * The global scheduler state.
113 1.73 thorpej */
114 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
115 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
116 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
117 1.73 thorpej
118 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
119 1.83 thorpej
120 1.77 thorpej void schedcpu(void *);
121 1.101.2.1 nathanw void updatepri(struct lwp *);
122 1.77 thorpej void endtsleep(void *);
123 1.34 christos
124 1.101.2.1 nathanw __inline void awaken(struct lwp *);
125 1.63 thorpej
126 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
127 1.68 thorpej
128 1.101.2.1 nathanw
129 1.101.2.1 nathanw
130 1.26 cgd /*
131 1.26 cgd * Force switch among equal priority processes every 100ms.
132 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
133 1.26 cgd */
134 1.26 cgd /* ARGSUSED */
135 1.26 cgd void
136 1.89 sommerfe roundrobin(struct cpu_info *ci)
137 1.26 cgd {
138 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
139 1.26 cgd
140 1.88 sommerfe spc->spc_rrticks = rrticks;
141 1.88 sommerfe
142 1.101.2.14 nathanw if (curlwp != NULL) {
143 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
144 1.69 thorpej /*
145 1.69 thorpej * The process has already been through a roundrobin
146 1.69 thorpej * without switching and may be hogging the CPU.
147 1.69 thorpej * Indicate that the process should yield.
148 1.69 thorpej */
149 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
150 1.69 thorpej } else
151 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
152 1.69 thorpej }
153 1.87 thorpej need_resched(curcpu());
154 1.26 cgd }
155 1.26 cgd
156 1.26 cgd /*
157 1.26 cgd * Constants for digital decay and forget:
158 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
159 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
160 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
161 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
162 1.26 cgd *
163 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
164 1.26 cgd *
165 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
166 1.26 cgd * That is, the system wants to compute a value of decay such
167 1.26 cgd * that the following for loop:
168 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
169 1.26 cgd * p_estcpu *= decay;
170 1.26 cgd * will compute
171 1.26 cgd * p_estcpu *= 0.1;
172 1.26 cgd * for all values of loadavg:
173 1.26 cgd *
174 1.26 cgd * Mathematically this loop can be expressed by saying:
175 1.26 cgd * decay ** (5 * loadavg) ~= .1
176 1.26 cgd *
177 1.26 cgd * The system computes decay as:
178 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
179 1.26 cgd *
180 1.26 cgd * We wish to prove that the system's computation of decay
181 1.26 cgd * will always fulfill the equation:
182 1.26 cgd * decay ** (5 * loadavg) ~= .1
183 1.26 cgd *
184 1.26 cgd * If we compute b as:
185 1.26 cgd * b = 2 * loadavg
186 1.26 cgd * then
187 1.26 cgd * decay = b / (b + 1)
188 1.26 cgd *
189 1.26 cgd * We now need to prove two things:
190 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
191 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
192 1.26 cgd *
193 1.26 cgd * Facts:
194 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
195 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
196 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
197 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
198 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
199 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
200 1.26 cgd * ln(.1) =~ -2.30
201 1.26 cgd *
202 1.26 cgd * Proof of (1):
203 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
204 1.26 cgd * solving for factor,
205 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
206 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
207 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
208 1.26 cgd *
209 1.26 cgd * Proof of (2):
210 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
211 1.26 cgd * solving for power,
212 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
213 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
214 1.26 cgd *
215 1.26 cgd * Actual power values for the implemented algorithm are as follows:
216 1.26 cgd * loadav: 1 2 3 4
217 1.26 cgd * power: 5.68 10.32 14.94 19.55
218 1.26 cgd */
219 1.26 cgd
220 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
221 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
222 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
223 1.26 cgd
224 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
225 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
226 1.26 cgd
227 1.26 cgd /*
228 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
229 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
230 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
231 1.26 cgd *
232 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
233 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
234 1.26 cgd *
235 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
236 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
237 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
238 1.26 cgd */
239 1.26 cgd #define CCPU_SHIFT 11
240 1.26 cgd
241 1.26 cgd /*
242 1.26 cgd * Recompute process priorities, every hz ticks.
243 1.26 cgd */
244 1.26 cgd /* ARGSUSED */
245 1.26 cgd void
246 1.77 thorpej schedcpu(void *arg)
247 1.26 cgd {
248 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
249 1.101.2.1 nathanw struct lwp *l;
250 1.71 augustss struct proc *p;
251 1.83 thorpej int s, s1;
252 1.71 augustss unsigned int newcpu;
253 1.66 ross int clkhz;
254 1.26 cgd
255 1.62 thorpej proclist_lock_read();
256 1.101.2.1 nathanw for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
257 1.26 cgd /*
258 1.26 cgd * Increment time in/out of memory and sleep time
259 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
260 1.26 cgd * (remember them?) overflow takes 45 days.
261 1.26 cgd */
262 1.101.2.1 nathanw p = l->l_proc;
263 1.101.2.1 nathanw l->l_swtime++;
264 1.101.2.1 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
265 1.101.2.1 nathanw l->l_stat == LSSUSPENDED)
266 1.101.2.1 nathanw l->l_slptime++;
267 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
268 1.26 cgd /*
269 1.26 cgd * If the process has slept the entire second,
270 1.26 cgd * stop recalculating its priority until it wakes up.
271 1.26 cgd */
272 1.101.2.1 nathanw if (l->l_slptime > 1)
273 1.26 cgd continue;
274 1.26 cgd s = splstatclock(); /* prevent state changes */
275 1.26 cgd /*
276 1.26 cgd * p_pctcpu is only for ps.
277 1.26 cgd */
278 1.66 ross clkhz = stathz != 0 ? stathz : hz;
279 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
280 1.66 ross p->p_pctcpu += (clkhz == 100)?
281 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
282 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
283 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
284 1.26 cgd #else
285 1.101.2.1 nathanw l->l_pctcpu += ((FSCALE - ccpu) *
286 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
287 1.26 cgd #endif
288 1.26 cgd p->p_cpticks = 0;
289 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
290 1.55 ross p->p_estcpu = newcpu;
291 1.83 thorpej SCHED_LOCK(s1);
292 1.101.2.1 nathanw resetpriority(l);
293 1.101.2.1 nathanw if (l->l_priority >= PUSER) {
294 1.101.2.1 nathanw if (l->l_stat == LSRUN &&
295 1.101.2.1 nathanw (l->l_flag & L_INMEM) &&
296 1.101.2.1 nathanw (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
297 1.101.2.1 nathanw remrunqueue(l);
298 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
299 1.101.2.1 nathanw setrunqueue(l);
300 1.26 cgd } else
301 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
302 1.26 cgd }
303 1.83 thorpej SCHED_UNLOCK(s1);
304 1.26 cgd splx(s);
305 1.26 cgd }
306 1.61 thorpej proclist_unlock_read();
307 1.47 mrg uvm_meter();
308 1.67 fvdl wakeup((caddr_t)&lbolt);
309 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
310 1.26 cgd }
311 1.26 cgd
312 1.26 cgd /*
313 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
314 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
315 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
316 1.26 cgd */
317 1.26 cgd void
318 1.101.2.1 nathanw updatepri(struct lwp *l)
319 1.26 cgd {
320 1.101.2.1 nathanw struct proc *p = l->l_proc;
321 1.83 thorpej unsigned int newcpu;
322 1.83 thorpej fixpt_t loadfac;
323 1.83 thorpej
324 1.83 thorpej SCHED_ASSERT_LOCKED();
325 1.83 thorpej
326 1.83 thorpej newcpu = p->p_estcpu;
327 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
328 1.26 cgd
329 1.101.2.1 nathanw if (l->l_slptime > 5 * loadfac)
330 1.101.2.1 nathanw p->p_estcpu = 0; /* XXX NJWLWP */
331 1.26 cgd else {
332 1.101.2.1 nathanw l->l_slptime--; /* the first time was done in schedcpu */
333 1.101.2.1 nathanw while (newcpu && --l->l_slptime)
334 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
335 1.55 ross p->p_estcpu = newcpu;
336 1.26 cgd }
337 1.101.2.1 nathanw resetpriority(l);
338 1.26 cgd }
339 1.26 cgd
340 1.26 cgd /*
341 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
342 1.26 cgd * lower the priority briefly to allow interrupts, then return.
343 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
344 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
345 1.26 cgd * This priority will typically be 0, or the lowest priority
346 1.26 cgd * that is safe for use on the interrupt stack; it can be made
347 1.26 cgd * higher to block network software interrupts after panics.
348 1.26 cgd */
349 1.26 cgd int safepri;
350 1.26 cgd
351 1.26 cgd /*
352 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
353 1.26 cgd * performed on the specified identifier. The process will then be made
354 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
355 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
356 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
357 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
358 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
359 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
360 1.26 cgd * call should be interrupted by the signal (return EINTR).
361 1.77 thorpej *
362 1.101.2.3 nathanw * The interlock is held until the scheduler_slock is acquired. The
363 1.77 thorpej * interlock will be locked before returning back to the caller
364 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
365 1.77 thorpej * interlock will always be unlocked upon return.
366 1.26 cgd */
367 1.26 cgd int
368 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
369 1.77 thorpej __volatile struct simplelock *interlock)
370 1.26 cgd {
371 1.101.2.14 nathanw struct lwp *l = curlwp;
372 1.101.2.1 nathanw struct proc *p = l->l_proc;
373 1.71 augustss struct slpque *qp;
374 1.77 thorpej int sig, s;
375 1.77 thorpej int catch = priority & PCATCH;
376 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
377 1.101.2.1 nathanw int exiterr = (priority & PNOEXITERR) == 0;
378 1.26 cgd
379 1.77 thorpej /*
380 1.77 thorpej * XXXSMP
381 1.77 thorpej * This is probably bogus. Figure out what the right
382 1.77 thorpej * thing to do here really is.
383 1.101.2.14 nathanw * Note that not sleeping if ltsleep is called with curlwp == NULL
384 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
385 1.78 sommerfe * how shutdown (barely) works.
386 1.77 thorpej */
387 1.101.2.1 nathanw if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
388 1.26 cgd /*
389 1.26 cgd * After a panic, or during autoconfiguration,
390 1.26 cgd * just give interrupts a chance, then just return;
391 1.26 cgd * don't run any other procs or panic below,
392 1.26 cgd * in case this is the idle process and already asleep.
393 1.26 cgd */
394 1.42 cgd s = splhigh();
395 1.26 cgd splx(safepri);
396 1.26 cgd splx(s);
397 1.77 thorpej if (interlock != NULL && relock == 0)
398 1.77 thorpej simple_unlock(interlock);
399 1.26 cgd return (0);
400 1.26 cgd }
401 1.78 sommerfe
402 1.101.2.3 nathanw KASSERT(p != NULL);
403 1.101.2.6 nathanw LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
404 1.42 cgd
405 1.42 cgd #ifdef KTRACE
406 1.42 cgd if (KTRPOINT(p, KTR_CSW))
407 1.74 sommerfe ktrcsw(p, 1, 0);
408 1.42 cgd #endif
409 1.77 thorpej
410 1.83 thorpej SCHED_LOCK(s);
411 1.42 cgd
412 1.26 cgd #ifdef DIAGNOSTIC
413 1.64 thorpej if (ident == NULL)
414 1.77 thorpej panic("ltsleep: ident == NULL");
415 1.101.2.1 nathanw if (l->l_stat != LSONPROC)
416 1.101.2.1 nathanw panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
417 1.101.2.1 nathanw if (l->l_back != NULL)
418 1.77 thorpej panic("ltsleep: p_back != NULL");
419 1.26 cgd #endif
420 1.77 thorpej
421 1.101.2.1 nathanw l->l_wchan = ident;
422 1.101.2.1 nathanw l->l_wmesg = wmesg;
423 1.101.2.1 nathanw l->l_slptime = 0;
424 1.101.2.1 nathanw l->l_priority = priority & PRIMASK;
425 1.77 thorpej
426 1.73 thorpej qp = SLPQUE(ident);
427 1.26 cgd if (qp->sq_head == 0)
428 1.101.2.1 nathanw qp->sq_head = l;
429 1.101.2.1 nathanw else {
430 1.101.2.1 nathanw *qp->sq_tailp = l;
431 1.101.2.1 nathanw }
432 1.101.2.1 nathanw *(qp->sq_tailp = &l->l_forw) = 0;
433 1.77 thorpej
434 1.26 cgd if (timo)
435 1.101.2.1 nathanw callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
436 1.77 thorpej
437 1.77 thorpej /*
438 1.77 thorpej * We can now release the interlock; the scheduler_slock
439 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
440 1.77 thorpej * we do the switch.
441 1.77 thorpej *
442 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
443 1.77 thorpej * on the sleep queue, because we might want a more clever
444 1.77 thorpej * data structure for the sleep queues at some point.
445 1.77 thorpej */
446 1.77 thorpej if (interlock != NULL)
447 1.77 thorpej simple_unlock(interlock);
448 1.77 thorpej
449 1.26 cgd /*
450 1.26 cgd * We put ourselves on the sleep queue and start our timeout
451 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
452 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
453 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
454 1.26 cgd * without resuming us, thus we must be ready for sleep
455 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
456 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
457 1.26 cgd */
458 1.26 cgd if (catch) {
459 1.101.2.1 nathanw l->l_flag |= L_SINTR;
460 1.101.2.1 nathanw if ((sig = CURSIG(l)) != 0) {
461 1.101.2.1 nathanw if (l->l_wchan != NULL)
462 1.101.2.1 nathanw unsleep(l);
463 1.101.2.1 nathanw l->l_stat = LSONPROC;
464 1.83 thorpej SCHED_UNLOCK(s);
465 1.26 cgd goto resume;
466 1.26 cgd }
467 1.101.2.1 nathanw if (l->l_wchan == NULL) {
468 1.26 cgd catch = 0;
469 1.83 thorpej SCHED_UNLOCK(s);
470 1.26 cgd goto resume;
471 1.26 cgd }
472 1.26 cgd } else
473 1.26 cgd sig = 0;
474 1.101.2.1 nathanw l->l_stat = LSSLEEP;
475 1.101.2.1 nathanw p->p_nrlwps--;
476 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
477 1.83 thorpej SCHED_ASSERT_LOCKED();
478 1.101.2.1 nathanw if (l->l_flag & L_SA)
479 1.101.2.1 nathanw sa_switch(l, SA_UPCALL_BLOCKED);
480 1.101.2.1 nathanw else
481 1.101.2.1 nathanw mi_switch(l, NULL);
482 1.83 thorpej
483 1.101.2.3 nathanw #if defined(DDB) && !defined(GPROF)
484 1.26 cgd /* handy breakpoint location after process "wakes" */
485 1.101.2.10 nathanw __asm(".globl bpendtsleep ; bpendtsleep:");
486 1.26 cgd #endif
487 1.101.2.12 nathanw /* p->p_nrlwps is incremented by whoever made us runnable again,
488 1.101.2.12 nathanw * either setrunnable() or awaken().
489 1.101.2.12 nathanw */
490 1.77 thorpej
491 1.83 thorpej SCHED_ASSERT_UNLOCKED();
492 1.83 thorpej splx(s);
493 1.83 thorpej
494 1.77 thorpej resume:
495 1.101.2.1 nathanw KDASSERT(l->l_cpu != NULL);
496 1.101.2.1 nathanw KDASSERT(l->l_cpu == curcpu());
497 1.101.2.1 nathanw l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
498 1.101.2.1 nathanw
499 1.101.2.1 nathanw l->l_flag &= ~L_SINTR;
500 1.101.2.1 nathanw if (l->l_flag & L_TIMEOUT) {
501 1.101.2.1 nathanw l->l_flag &= ~L_TIMEOUT;
502 1.26 cgd if (sig == 0) {
503 1.26 cgd #ifdef KTRACE
504 1.26 cgd if (KTRPOINT(p, KTR_CSW))
505 1.74 sommerfe ktrcsw(p, 0, 0);
506 1.26 cgd #endif
507 1.77 thorpej if (relock && interlock != NULL)
508 1.77 thorpej simple_lock(interlock);
509 1.26 cgd return (EWOULDBLOCK);
510 1.26 cgd }
511 1.26 cgd } else if (timo)
512 1.101.2.1 nathanw callout_stop(&l->l_tsleep_ch);
513 1.101.2.1 nathanw if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
514 1.26 cgd #ifdef KTRACE
515 1.26 cgd if (KTRPOINT(p, KTR_CSW))
516 1.74 sommerfe ktrcsw(p, 0, 0);
517 1.26 cgd #endif
518 1.77 thorpej if (relock && interlock != NULL)
519 1.77 thorpej simple_lock(interlock);
520 1.98 jdolecek if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
521 1.26 cgd return (EINTR);
522 1.26 cgd return (ERESTART);
523 1.26 cgd }
524 1.101.2.1 nathanw /* XXXNJW this is very much a kluge.
525 1.101.2.1 nathanw * revisit. a better way of preventing looping/hanging syscalls like
526 1.101.2.1 nathanw * wait4() and _lwp_wait() from wedging an exiting process
527 1.101.2.1 nathanw * would be preferred.
528 1.101.2.1 nathanw */
529 1.101.2.1 nathanw if (catch && ((p->p_flag & P_WEXIT) && exiterr))
530 1.101.2.1 nathanw return (EINTR);
531 1.26 cgd #ifdef KTRACE
532 1.26 cgd if (KTRPOINT(p, KTR_CSW))
533 1.74 sommerfe ktrcsw(p, 0, 0);
534 1.26 cgd #endif
535 1.77 thorpej if (relock && interlock != NULL)
536 1.77 thorpej simple_lock(interlock);
537 1.26 cgd return (0);
538 1.26 cgd }
539 1.26 cgd
540 1.26 cgd /*
541 1.26 cgd * Implement timeout for tsleep.
542 1.26 cgd * If process hasn't been awakened (wchan non-zero),
543 1.26 cgd * set timeout flag and undo the sleep. If proc
544 1.26 cgd * is stopped, just unsleep so it will remain stopped.
545 1.26 cgd */
546 1.26 cgd void
547 1.77 thorpej endtsleep(void *arg)
548 1.26 cgd {
549 1.101.2.1 nathanw struct lwp *l;
550 1.26 cgd int s;
551 1.26 cgd
552 1.101.2.1 nathanw l = (struct lwp *)arg;
553 1.83 thorpej SCHED_LOCK(s);
554 1.101.2.1 nathanw if (l->l_wchan) {
555 1.101.2.1 nathanw if (l->l_stat == LSSLEEP)
556 1.101.2.1 nathanw setrunnable(l);
557 1.26 cgd else
558 1.101.2.1 nathanw unsleep(l);
559 1.101.2.1 nathanw l->l_flag |= L_TIMEOUT;
560 1.26 cgd }
561 1.83 thorpej SCHED_UNLOCK(s);
562 1.26 cgd }
563 1.26 cgd
564 1.26 cgd /*
565 1.26 cgd * Remove a process from its wait queue
566 1.26 cgd */
567 1.26 cgd void
568 1.101.2.1 nathanw unsleep(struct lwp *l)
569 1.26 cgd {
570 1.71 augustss struct slpque *qp;
571 1.101.2.1 nathanw struct lwp **hp;
572 1.26 cgd
573 1.83 thorpej SCHED_ASSERT_LOCKED();
574 1.83 thorpej
575 1.101.2.1 nathanw if (l->l_wchan) {
576 1.101.2.1 nathanw hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
577 1.101.2.1 nathanw while (*hp != l)
578 1.101.2.1 nathanw hp = &(*hp)->l_forw;
579 1.101.2.1 nathanw *hp = l->l_forw;
580 1.101.2.1 nathanw if (qp->sq_tailp == &l->l_forw)
581 1.26 cgd qp->sq_tailp = hp;
582 1.101.2.1 nathanw l->l_wchan = 0;
583 1.26 cgd }
584 1.26 cgd }
585 1.26 cgd
586 1.26 cgd /*
587 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
588 1.63 thorpej */
589 1.63 thorpej __inline void
590 1.101.2.1 nathanw awaken(struct lwp *l)
591 1.63 thorpej {
592 1.63 thorpej
593 1.83 thorpej SCHED_ASSERT_LOCKED();
594 1.101.2.1 nathanw
595 1.101.2.1 nathanw if (l->l_slptime > 1)
596 1.101.2.1 nathanw updatepri(l);
597 1.101.2.1 nathanw l->l_slptime = 0;
598 1.101.2.1 nathanw l->l_stat = LSRUN;
599 1.101.2.12 nathanw l->l_proc->p_nrlwps++;
600 1.93 bouyer /*
601 1.93 bouyer * Since curpriority is a user priority, p->p_priority
602 1.93 bouyer * is always better than curpriority.
603 1.93 bouyer */
604 1.101.2.1 nathanw if (l->l_flag & L_INMEM) {
605 1.101.2.1 nathanw setrunqueue(l);
606 1.101.2.1 nathanw KASSERT(l->l_cpu != NULL);
607 1.101.2.1 nathanw need_resched(l->l_cpu);
608 1.93 bouyer } else
609 1.93 bouyer sched_wakeup(&proc0);
610 1.83 thorpej }
611 1.83 thorpej
612 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
613 1.83 thorpej void
614 1.83 thorpej sched_unlock_idle(void)
615 1.83 thorpej {
616 1.83 thorpej
617 1.83 thorpej simple_unlock(&sched_lock);
618 1.63 thorpej }
619 1.63 thorpej
620 1.83 thorpej void
621 1.83 thorpej sched_lock_idle(void)
622 1.83 thorpej {
623 1.83 thorpej
624 1.83 thorpej simple_lock(&sched_lock);
625 1.83 thorpej }
626 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
627 1.83 thorpej
628 1.63 thorpej /*
629 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
630 1.26 cgd */
631 1.83 thorpej
632 1.26 cgd void
633 1.77 thorpej wakeup(void *ident)
634 1.26 cgd {
635 1.83 thorpej int s;
636 1.83 thorpej
637 1.83 thorpej SCHED_ASSERT_UNLOCKED();
638 1.83 thorpej
639 1.83 thorpej SCHED_LOCK(s);
640 1.83 thorpej sched_wakeup(ident);
641 1.83 thorpej SCHED_UNLOCK(s);
642 1.83 thorpej }
643 1.83 thorpej
644 1.83 thorpej void
645 1.83 thorpej sched_wakeup(void *ident)
646 1.83 thorpej {
647 1.71 augustss struct slpque *qp;
648 1.101.2.1 nathanw struct lwp *l, **q;
649 1.26 cgd
650 1.83 thorpej SCHED_ASSERT_LOCKED();
651 1.77 thorpej
652 1.73 thorpej qp = SLPQUE(ident);
653 1.77 thorpej restart:
654 1.101.2.1 nathanw for (q = &qp->sq_head; (l = *q) != NULL; ) {
655 1.26 cgd #ifdef DIAGNOSTIC
656 1.101.2.1 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
657 1.101.2.1 nathanw l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
658 1.26 cgd panic("wakeup");
659 1.26 cgd #endif
660 1.101.2.1 nathanw if (l->l_wchan == ident) {
661 1.101.2.1 nathanw l->l_wchan = 0;
662 1.101.2.1 nathanw *q = l->l_forw;
663 1.101.2.1 nathanw if (qp->sq_tailp == &l->l_forw)
664 1.26 cgd qp->sq_tailp = q;
665 1.101.2.1 nathanw if (l->l_stat == LSSLEEP) {
666 1.101.2.1 nathanw awaken(l);
667 1.26 cgd goto restart;
668 1.26 cgd }
669 1.26 cgd } else
670 1.101.2.1 nathanw q = &l->l_forw;
671 1.63 thorpej }
672 1.63 thorpej }
673 1.63 thorpej
674 1.63 thorpej /*
675 1.63 thorpej * Make the highest priority process first in line on the specified
676 1.63 thorpej * identifier runnable.
677 1.63 thorpej */
678 1.63 thorpej void
679 1.77 thorpej wakeup_one(void *ident)
680 1.63 thorpej {
681 1.63 thorpej struct slpque *qp;
682 1.101.2.1 nathanw struct lwp *l, **q;
683 1.101.2.1 nathanw struct lwp *best_sleepp, **best_sleepq;
684 1.101.2.1 nathanw struct lwp *best_stopp, **best_stopq;
685 1.63 thorpej int s;
686 1.63 thorpej
687 1.63 thorpej best_sleepp = best_stopp = NULL;
688 1.63 thorpej best_sleepq = best_stopq = NULL;
689 1.63 thorpej
690 1.83 thorpej SCHED_LOCK(s);
691 1.77 thorpej
692 1.73 thorpej qp = SLPQUE(ident);
693 1.77 thorpej
694 1.101.2.1 nathanw for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
695 1.63 thorpej #ifdef DIAGNOSTIC
696 1.101.2.1 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
697 1.101.2.1 nathanw l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
698 1.63 thorpej panic("wakeup_one");
699 1.63 thorpej #endif
700 1.101.2.1 nathanw if (l->l_wchan == ident) {
701 1.101.2.1 nathanw if (l->l_stat == LSSLEEP) {
702 1.63 thorpej if (best_sleepp == NULL ||
703 1.101.2.1 nathanw l->l_priority < best_sleepp->l_priority) {
704 1.101.2.1 nathanw best_sleepp = l;
705 1.63 thorpej best_sleepq = q;
706 1.63 thorpej }
707 1.63 thorpej } else {
708 1.63 thorpej if (best_stopp == NULL ||
709 1.101.2.1 nathanw l->l_priority < best_stopp->l_priority) {
710 1.101.2.1 nathanw best_stopp = l;
711 1.63 thorpej best_stopq = q;
712 1.63 thorpej }
713 1.63 thorpej }
714 1.63 thorpej }
715 1.63 thorpej }
716 1.63 thorpej
717 1.63 thorpej /*
718 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
719 1.63 thorpej * process.
720 1.63 thorpej */
721 1.63 thorpej if (best_sleepp != NULL) {
722 1.101.2.1 nathanw l = best_sleepp;
723 1.63 thorpej q = best_sleepq;
724 1.63 thorpej } else {
725 1.101.2.1 nathanw l = best_stopp;
726 1.63 thorpej q = best_stopq;
727 1.63 thorpej }
728 1.63 thorpej
729 1.101.2.1 nathanw if (l != NULL) {
730 1.101.2.1 nathanw l->l_wchan = NULL;
731 1.101.2.1 nathanw *q = l->l_forw;
732 1.101.2.1 nathanw if (qp->sq_tailp == &l->l_forw)
733 1.63 thorpej qp->sq_tailp = q;
734 1.101.2.1 nathanw if (l->l_stat == LSSLEEP)
735 1.101.2.1 nathanw awaken(l);
736 1.26 cgd }
737 1.83 thorpej SCHED_UNLOCK(s);
738 1.26 cgd }
739 1.26 cgd
740 1.26 cgd /*
741 1.69 thorpej * General yield call. Puts the current process back on its run queue and
742 1.69 thorpej * performs a voluntary context switch.
743 1.69 thorpej */
744 1.69 thorpej void
745 1.77 thorpej yield(void)
746 1.69 thorpej {
747 1.101.2.14 nathanw struct lwp *l = curlwp;
748 1.69 thorpej int s;
749 1.69 thorpej
750 1.83 thorpej SCHED_LOCK(s);
751 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
752 1.101.2.1 nathanw l->l_stat = LSRUN;
753 1.101.2.1 nathanw setrunqueue(l);
754 1.101.2.1 nathanw l->l_proc->p_stats->p_ru.ru_nvcsw++;
755 1.101.2.1 nathanw mi_switch(l, NULL);
756 1.83 thorpej SCHED_ASSERT_UNLOCKED();
757 1.69 thorpej splx(s);
758 1.69 thorpej }
759 1.69 thorpej
760 1.69 thorpej /*
761 1.69 thorpej * General preemption call. Puts the current process back on its run queue
762 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
763 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
764 1.69 thorpej * criteria.
765 1.69 thorpej */
766 1.101.2.1 nathanw
767 1.69 thorpej void
768 1.101.2.1 nathanw preempt(struct lwp *newl)
769 1.69 thorpej {
770 1.101.2.14 nathanw struct lwp *l = curlwp;
771 1.101.2.2 nathanw int r, s;
772 1.69 thorpej
773 1.101.2.9 nathanw if (l->l_flag & L_SA) {
774 1.101.2.9 nathanw SCHED_LOCK(s);
775 1.101.2.9 nathanw l->l_priority = l->l_usrpri;
776 1.101.2.9 nathanw l->l_stat = LSRUN;
777 1.101.2.9 nathanw setrunqueue(l);
778 1.101.2.9 nathanw l->l_proc->p_stats->p_ru.ru_nivcsw++;
779 1.101.2.9 nathanw r = mi_switch(l, newl);
780 1.101.2.9 nathanw SCHED_ASSERT_UNLOCKED();
781 1.101.2.9 nathanw splx(s);
782 1.101.2.9 nathanw if (r != 0)
783 1.101.2.9 nathanw sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, NULL);
784 1.101.2.9 nathanw } else {
785 1.101.2.9 nathanw SCHED_LOCK(s);
786 1.101.2.9 nathanw l->l_priority = l->l_usrpri;
787 1.101.2.9 nathanw l->l_stat = LSRUN;
788 1.101.2.9 nathanw setrunqueue(l);
789 1.101.2.9 nathanw l->l_proc->p_stats->p_ru.ru_nivcsw++;
790 1.101.2.9 nathanw mi_switch(l, newl);
791 1.101.2.9 nathanw SCHED_ASSERT_UNLOCKED();
792 1.101.2.9 nathanw splx(s);
793 1.101.2.9 nathanw }
794 1.101.2.9 nathanw
795 1.69 thorpej }
796 1.69 thorpej
797 1.69 thorpej /*
798 1.72 thorpej * The machine independent parts of context switch.
799 1.86 thorpej * Must be called at splsched() (no higher!) and with
800 1.86 thorpej * the sched_lock held.
801 1.101.2.1 nathanw * Switch to "new" if non-NULL, otherwise let cpu_switch choose
802 1.101.2.1 nathanw * the next lwp.
803 1.101.2.2 nathanw *
804 1.101.2.2 nathanw * Returns 1 if another process was actually run.
805 1.26 cgd */
806 1.101.2.2 nathanw int
807 1.101.2.1 nathanw mi_switch(struct lwp *l, struct lwp *new)
808 1.26 cgd {
809 1.76 thorpej struct schedstate_percpu *spc;
810 1.71 augustss struct rlimit *rlim;
811 1.71 augustss long s, u;
812 1.26 cgd struct timeval tv;
813 1.85 sommerfe #if defined(MULTIPROCESSOR)
814 1.85 sommerfe int hold_count;
815 1.85 sommerfe #endif
816 1.101.2.1 nathanw struct proc *p = l->l_proc;
817 1.101.2.2 nathanw int retval;
818 1.26 cgd
819 1.83 thorpej SCHED_ASSERT_LOCKED();
820 1.83 thorpej
821 1.85 sommerfe #if defined(MULTIPROCESSOR)
822 1.90 sommerfe /*
823 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
824 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
825 1.90 sommerfe * selects a new process and removes it from the run queue.
826 1.90 sommerfe */
827 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
828 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
829 1.85 sommerfe #endif
830 1.85 sommerfe
831 1.101.2.1 nathanw KDASSERT(l->l_cpu != NULL);
832 1.101.2.1 nathanw KDASSERT(l->l_cpu == curcpu());
833 1.76 thorpej
834 1.101.2.1 nathanw spc = &l->l_cpu->ci_schedstate;
835 1.76 thorpej
836 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
837 1.82 thorpej spinlock_switchcheck();
838 1.82 thorpej #endif
839 1.54 chs #ifdef LOCKDEBUG
840 1.81 thorpej simple_lock_switchcheck();
841 1.50 fvdl #endif
842 1.81 thorpej
843 1.26 cgd /*
844 1.26 cgd * Compute the amount of time during which the current
845 1.26 cgd * process was running, and add that to its total so far.
846 1.26 cgd */
847 1.26 cgd microtime(&tv);
848 1.101.2.1 nathanw u = p->p_rtime.tv_usec +
849 1.101.2.1 nathanw (tv.tv_usec - spc->spc_runtime.tv_usec);
850 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
851 1.26 cgd if (u < 0) {
852 1.26 cgd u += 1000000;
853 1.26 cgd s--;
854 1.26 cgd } else if (u >= 1000000) {
855 1.26 cgd u -= 1000000;
856 1.26 cgd s++;
857 1.26 cgd }
858 1.26 cgd p->p_rtime.tv_usec = u;
859 1.26 cgd p->p_rtime.tv_sec = s;
860 1.26 cgd
861 1.26 cgd /*
862 1.26 cgd * Check if the process exceeds its cpu resource allocation.
863 1.26 cgd * If over max, kill it. In any case, if it has run for more
864 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
865 1.26 cgd */
866 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
867 1.26 cgd if (s >= rlim->rlim_cur) {
868 1.100 sommerfe /*
869 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
870 1.100 sommerfe * use sched_psignal.
871 1.100 sommerfe */
872 1.26 cgd if (s >= rlim->rlim_max)
873 1.100 sommerfe sched_psignal(p, SIGKILL);
874 1.26 cgd else {
875 1.100 sommerfe sched_psignal(p, SIGXCPU);
876 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
877 1.26 cgd rlim->rlim_cur += 5;
878 1.26 cgd }
879 1.26 cgd }
880 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
881 1.77 thorpej p->p_nice == NZERO) {
882 1.39 ws p->p_nice = autoniceval + NZERO;
883 1.101.2.1 nathanw resetpriority(l);
884 1.26 cgd }
885 1.69 thorpej
886 1.69 thorpej /*
887 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
888 1.69 thorpej * scheduling flags.
889 1.69 thorpej */
890 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
891 1.26 cgd
892 1.26 cgd /*
893 1.76 thorpej * Pick a new current process and switch to it. When we
894 1.76 thorpej * run again, we'll return back here.
895 1.26 cgd */
896 1.47 mrg uvmexp.swtch++;
897 1.101.2.2 nathanw if (new == NULL) {
898 1.101.2.2 nathanw retval = cpu_switch(l);
899 1.101.2.2 nathanw } else {
900 1.101.2.1 nathanw cpu_preempt(l, new);
901 1.101.2.2 nathanw retval = 0;
902 1.101.2.2 nathanw }
903 1.76 thorpej
904 1.76 thorpej /*
905 1.83 thorpej * Make sure that MD code released the scheduler lock before
906 1.83 thorpej * resuming us.
907 1.83 thorpej */
908 1.83 thorpej SCHED_ASSERT_UNLOCKED();
909 1.83 thorpej
910 1.83 thorpej /*
911 1.76 thorpej * We're running again; record our new start time. We might
912 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
913 1.76 thorpej * schedstate_percpu pointer.
914 1.76 thorpej */
915 1.101.2.1 nathanw KDASSERT(l->l_cpu != NULL);
916 1.101.2.1 nathanw KDASSERT(l->l_cpu == curcpu());
917 1.101.2.1 nathanw microtime(&l->l_cpu->ci_schedstate.spc_runtime);
918 1.85 sommerfe
919 1.85 sommerfe #if defined(MULTIPROCESSOR)
920 1.90 sommerfe /*
921 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
922 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
923 1.90 sommerfe * we reacquire the interlock.
924 1.90 sommerfe */
925 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
926 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
927 1.85 sommerfe #endif
928 1.101.2.2 nathanw
929 1.101.2.2 nathanw return retval;
930 1.26 cgd }
931 1.26 cgd
932 1.26 cgd /*
933 1.26 cgd * Initialize the (doubly-linked) run queues
934 1.26 cgd * to be empty.
935 1.26 cgd */
936 1.26 cgd void
937 1.26 cgd rqinit()
938 1.26 cgd {
939 1.71 augustss int i;
940 1.26 cgd
941 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
942 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
943 1.101.2.1 nathanw (struct lwp *)&sched_qs[i];
944 1.26 cgd }
945 1.26 cgd
946 1.26 cgd /*
947 1.26 cgd * Change process state to be runnable,
948 1.26 cgd * placing it on the run queue if it is in memory,
949 1.26 cgd * and awakening the swapper if it isn't in memory.
950 1.26 cgd */
951 1.26 cgd void
952 1.101.2.1 nathanw setrunnable(struct lwp *l)
953 1.26 cgd {
954 1.101.2.1 nathanw struct proc *p = l->l_proc;
955 1.26 cgd
956 1.83 thorpej SCHED_ASSERT_LOCKED();
957 1.83 thorpej
958 1.101.2.1 nathanw switch (l->l_stat) {
959 1.26 cgd case 0:
960 1.101.2.1 nathanw case LSRUN:
961 1.101.2.1 nathanw case LSONPROC:
962 1.101.2.1 nathanw case LSZOMB:
963 1.101.2.1 nathanw case LSDEAD:
964 1.26 cgd default:
965 1.26 cgd panic("setrunnable");
966 1.101.2.1 nathanw case LSSTOP:
967 1.33 mycroft /*
968 1.33 mycroft * If we're being traced (possibly because someone attached us
969 1.33 mycroft * while we were stopped), check for a signal from the debugger.
970 1.33 mycroft */
971 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
972 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
973 1.101 thorpej CHECKSIGS(p);
974 1.53 mycroft }
975 1.101.2.1 nathanw case LSSLEEP:
976 1.101.2.1 nathanw unsleep(l); /* e.g. when sending signals */
977 1.26 cgd break;
978 1.26 cgd
979 1.101.2.1 nathanw case LSIDL:
980 1.101.2.1 nathanw break;
981 1.101.2.1 nathanw case LSSUSPENDED:
982 1.26 cgd break;
983 1.26 cgd }
984 1.101.2.1 nathanw l->l_stat = LSRUN;
985 1.101.2.12 nathanw p->p_nrlwps++;
986 1.101.2.12 nathanw
987 1.101.2.1 nathanw if (l->l_flag & L_INMEM)
988 1.101.2.1 nathanw setrunqueue(l);
989 1.101.2.1 nathanw
990 1.101.2.1 nathanw if (l->l_slptime > 1)
991 1.101.2.1 nathanw updatepri(l);
992 1.101.2.1 nathanw l->l_slptime = 0;
993 1.101.2.1 nathanw if ((l->l_flag & L_INMEM) == 0)
994 1.101.2.1 nathanw wakeup((caddr_t)&proc0);
995 1.101.2.1 nathanw else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
996 1.76 thorpej /*
997 1.76 thorpej * XXXSMP
998 1.87 thorpej * This is not exactly right. Since p->p_cpu persists
999 1.87 thorpej * across a context switch, this gives us some sort
1000 1.87 thorpej * of processor affinity. But we need to figure out
1001 1.87 thorpej * at what point it's better to reschedule on a different
1002 1.87 thorpej * CPU than the last one.
1003 1.76 thorpej */
1004 1.101.2.5 nathanw need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1005 1.76 thorpej }
1006 1.26 cgd }
1007 1.26 cgd
1008 1.26 cgd /*
1009 1.26 cgd * Compute the priority of a process when running in user mode.
1010 1.26 cgd * Arrange to reschedule if the resulting priority is better
1011 1.26 cgd * than that of the current process.
1012 1.26 cgd */
1013 1.26 cgd void
1014 1.101.2.1 nathanw resetpriority(struct lwp *l)
1015 1.26 cgd {
1016 1.71 augustss unsigned int newpriority;
1017 1.101.2.1 nathanw struct proc *p = l->l_proc;
1018 1.26 cgd
1019 1.83 thorpej SCHED_ASSERT_LOCKED();
1020 1.83 thorpej
1021 1.101.2.1 nathanw newpriority = PUSER + p->p_estcpu +
1022 1.101.2.1 nathanw NICE_WEIGHT * (p->p_nice - NZERO);
1023 1.26 cgd newpriority = min(newpriority, MAXPRI);
1024 1.101.2.1 nathanw l->l_usrpri = newpriority;
1025 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1026 1.76 thorpej /*
1027 1.76 thorpej * XXXSMP
1028 1.76 thorpej * Same applies as in setrunnable() above.
1029 1.76 thorpej */
1030 1.101.2.5 nathanw need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1031 1.76 thorpej }
1032 1.55 ross }
1033 1.55 ross
1034 1.101.2.1 nathanw /*
1035 1.101.2.1 nathanw * Recompute priority for all LWPs in a process.
1036 1.101.2.1 nathanw */
1037 1.101.2.1 nathanw void
1038 1.101.2.1 nathanw resetprocpriority(struct proc *p)
1039 1.101.2.1 nathanw {
1040 1.101.2.1 nathanw struct lwp *l;
1041 1.101.2.1 nathanw
1042 1.101.2.1 nathanw LIST_FOREACH(l, &p->p_lwps, l_list)
1043 1.101.2.1 nathanw resetpriority(l);
1044 1.101.2.1 nathanw }
1045 1.101.2.1 nathanw
1046 1.55 ross /*
1047 1.56 ross * We adjust the priority of the current process. The priority of a process
1048 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1049 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1050 1.56 ross * will compute a different value each time p_estcpu increases. This can
1051 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1052 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
1053 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1054 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1055 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1056 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1057 1.56 ross * processes which haven't run much recently, and to round-robin among other
1058 1.56 ross * processes.
1059 1.55 ross */
1060 1.55 ross
1061 1.55 ross void
1062 1.101.2.1 nathanw schedclock(struct lwp *l)
1063 1.55 ross {
1064 1.101.2.1 nathanw struct proc *p = l->l_proc;
1065 1.83 thorpej int s;
1066 1.77 thorpej
1067 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1068 1.83 thorpej SCHED_LOCK(s);
1069 1.101.2.1 nathanw resetpriority(l);
1070 1.83 thorpej SCHED_UNLOCK(s);
1071 1.101.2.1 nathanw
1072 1.101.2.1 nathanw if (l->l_priority >= PUSER)
1073 1.101.2.1 nathanw l->l_priority = l->l_usrpri;
1074 1.26 cgd }
1075 1.94 bouyer
1076 1.94 bouyer void
1077 1.94 bouyer suspendsched()
1078 1.94 bouyer {
1079 1.101.2.1 nathanw struct lwp *l;
1080 1.97 enami int s;
1081 1.94 bouyer
1082 1.94 bouyer /*
1083 1.101.2.1 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1084 1.101.2.1 nathanw * LSSUSPENDED.
1085 1.94 bouyer */
1086 1.95 thorpej proclist_lock_read();
1087 1.95 thorpej SCHED_LOCK(s);
1088 1.101.2.1 nathanw for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1089 1.101.2.1 nathanw if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1090 1.94 bouyer continue;
1091 1.101.2.1 nathanw
1092 1.101.2.1 nathanw switch (l->l_stat) {
1093 1.101.2.1 nathanw case LSRUN:
1094 1.101.2.12 nathanw l->l_proc->p_nrlwps--;
1095 1.101.2.1 nathanw if ((l->l_flag & L_INMEM) != 0)
1096 1.101.2.1 nathanw remrunqueue(l);
1097 1.97 enami /* FALLTHROUGH */
1098 1.101.2.1 nathanw case LSSLEEP:
1099 1.101.2.1 nathanw l->l_stat = LSSUSPENDED;
1100 1.97 enami break;
1101 1.101.2.1 nathanw case LSONPROC:
1102 1.97 enami /*
1103 1.97 enami * XXX SMP: we need to deal with processes on
1104 1.97 enami * others CPU !
1105 1.97 enami */
1106 1.97 enami break;
1107 1.97 enami default:
1108 1.97 enami break;
1109 1.94 bouyer }
1110 1.94 bouyer }
1111 1.94 bouyer SCHED_UNLOCK(s);
1112 1.97 enami proclist_unlock_read();
1113 1.94 bouyer }
1114 1.101.2.1 nathanw
1115 1.101.2.1 nathanw
1116