Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.101.2.28
      1  1.101.2.28   thorpej /*	$NetBSD: kern_synch.c,v 1.101.2.28 2002/12/29 20:54:42 thorpej Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4        1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.63   thorpej  * NASA Ames Research Center.
     10        1.63   thorpej  *
     11        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12        1.63   thorpej  * modification, are permitted provided that the following conditions
     13        1.63   thorpej  * are met:
     14        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20        1.63   thorpej  *    must display the following acknowledgement:
     21        1.63   thorpej  *	This product includes software developed by the NetBSD
     22        1.63   thorpej  *	Foundation, Inc. and its contributors.
     23        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25        1.63   thorpej  *    from this software without specific prior written permission.
     26        1.63   thorpej  *
     27        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38        1.63   thorpej  */
     39        1.26       cgd 
     40        1.26       cgd /*-
     41        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44        1.26       cgd  * All or some portions of this file are derived from material licensed
     45        1.26       cgd  * to the University of California by American Telephone and Telegraph
     46        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48        1.26       cgd  *
     49        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50        1.26       cgd  * modification, are permitted provided that the following conditions
     51        1.26       cgd  * are met:
     52        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57        1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58        1.26       cgd  *    must display the following acknowledgement:
     59        1.26       cgd  *	This product includes software developed by the University of
     60        1.26       cgd  *	California, Berkeley and its contributors.
     61        1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62        1.26       cgd  *    may be used to endorse or promote products derived from this software
     63        1.26       cgd  *    without specific prior written permission.
     64        1.26       cgd  *
     65        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75        1.26       cgd  * SUCH DAMAGE.
     76        1.26       cgd  *
     77        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78        1.26       cgd  */
     79   1.101.2.7   nathanw 
     80   1.101.2.7   nathanw #include <sys/cdefs.h>
     81  1.101.2.28   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.28 2002/12/29 20:54:42 thorpej Exp $");
     82        1.48       mrg 
     83        1.52  jonathan #include "opt_ddb.h"
     84        1.51   thorpej #include "opt_ktrace.h"
     85  1.101.2.17   nathanw #include "opt_kstack.h"
     86        1.82   thorpej #include "opt_lockdebug.h"
     87        1.83   thorpej #include "opt_multiprocessor.h"
     88  1.101.2.18   nathanw #include "opt_perfctrs.h"
     89        1.26       cgd 
     90        1.26       cgd #include <sys/param.h>
     91        1.26       cgd #include <sys/systm.h>
     92        1.68   thorpej #include <sys/callout.h>
     93        1.26       cgd #include <sys/proc.h>
     94        1.26       cgd #include <sys/kernel.h>
     95        1.26       cgd #include <sys/buf.h>
     96  1.101.2.18   nathanw #if defined(PERFCTRS)
     97  1.101.2.18   nathanw #include <sys/pmc.h>
     98  1.101.2.18   nathanw #endif
     99        1.26       cgd #include <sys/signalvar.h>
    100        1.26       cgd #include <sys/resourcevar.h>
    101        1.55      ross #include <sys/sched.h>
    102   1.101.2.1   nathanw #include <sys/sa.h>
    103   1.101.2.1   nathanw #include <sys/savar.h>
    104        1.47       mrg 
    105        1.47       mrg #include <uvm/uvm_extern.h>
    106        1.47       mrg 
    107        1.26       cgd #ifdef KTRACE
    108        1.26       cgd #include <sys/ktrace.h>
    109        1.26       cgd #endif
    110        1.26       cgd 
    111        1.26       cgd #include <machine/cpu.h>
    112        1.34  christos 
    113        1.26       cgd int	lbolt;			/* once a second sleep address */
    114        1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    115        1.26       cgd 
    116        1.73   thorpej /*
    117        1.73   thorpej  * The global scheduler state.
    118        1.73   thorpej  */
    119        1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    120        1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    121        1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    122        1.73   thorpej 
    123        1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    124        1.83   thorpej 
    125        1.77   thorpej void schedcpu(void *);
    126   1.101.2.1   nathanw void updatepri(struct lwp *);
    127        1.77   thorpej void endtsleep(void *);
    128        1.34  christos 
    129   1.101.2.1   nathanw __inline void awaken(struct lwp *);
    130        1.63   thorpej 
    131        1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    132        1.68   thorpej 
    133   1.101.2.1   nathanw 
    134   1.101.2.1   nathanw 
    135        1.26       cgd /*
    136        1.26       cgd  * Force switch among equal priority processes every 100ms.
    137        1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    138        1.26       cgd  */
    139        1.26       cgd /* ARGSUSED */
    140        1.26       cgd void
    141        1.89  sommerfe roundrobin(struct cpu_info *ci)
    142        1.26       cgd {
    143        1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    144        1.26       cgd 
    145        1.88  sommerfe 	spc->spc_rrticks = rrticks;
    146        1.88  sommerfe 
    147  1.101.2.14   nathanw 	if (curlwp != NULL) {
    148        1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    149        1.69   thorpej 			/*
    150        1.69   thorpej 			 * The process has already been through a roundrobin
    151        1.69   thorpej 			 * without switching and may be hogging the CPU.
    152        1.69   thorpej 			 * Indicate that the process should yield.
    153        1.69   thorpej 			 */
    154        1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    155        1.69   thorpej 		} else
    156        1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    157        1.69   thorpej 	}
    158        1.87   thorpej 	need_resched(curcpu());
    159        1.26       cgd }
    160        1.26       cgd 
    161        1.26       cgd /*
    162        1.26       cgd  * Constants for digital decay and forget:
    163        1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    164        1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    165        1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    166        1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    167        1.26       cgd  *
    168        1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    169        1.26       cgd  *
    170        1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    171        1.26       cgd  * That is, the system wants to compute a value of decay such
    172        1.26       cgd  * that the following for loop:
    173        1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    174        1.26       cgd  * 		p_estcpu *= decay;
    175        1.26       cgd  * will compute
    176        1.26       cgd  * 	p_estcpu *= 0.1;
    177        1.26       cgd  * for all values of loadavg:
    178        1.26       cgd  *
    179        1.26       cgd  * Mathematically this loop can be expressed by saying:
    180        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    181        1.26       cgd  *
    182        1.26       cgd  * The system computes decay as:
    183        1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    184        1.26       cgd  *
    185        1.26       cgd  * We wish to prove that the system's computation of decay
    186        1.26       cgd  * will always fulfill the equation:
    187        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    188        1.26       cgd  *
    189        1.26       cgd  * If we compute b as:
    190        1.26       cgd  * 	b = 2 * loadavg
    191        1.26       cgd  * then
    192        1.26       cgd  * 	decay = b / (b + 1)
    193        1.26       cgd  *
    194        1.26       cgd  * We now need to prove two things:
    195        1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    196        1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    197        1.26       cgd  *
    198        1.26       cgd  * Facts:
    199        1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    200        1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    201        1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    202        1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    203        1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    204        1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    205        1.26       cgd  *         ln(.1) =~ -2.30
    206        1.26       cgd  *
    207        1.26       cgd  * Proof of (1):
    208        1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    209        1.26       cgd  *	solving for factor,
    210        1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    211        1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    212        1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    213        1.26       cgd  *
    214        1.26       cgd  * Proof of (2):
    215        1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    216        1.26       cgd  *	solving for power,
    217        1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    218        1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    219        1.26       cgd  *
    220        1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    221        1.26       cgd  *      loadav: 1       2       3       4
    222        1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    223        1.26       cgd  */
    224        1.26       cgd 
    225        1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    226        1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    227        1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    228        1.26       cgd 
    229        1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    230        1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    231        1.26       cgd 
    232        1.26       cgd /*
    233        1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    234        1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    235        1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    236        1.26       cgd  *
    237        1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    238        1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    239        1.26       cgd  *
    240        1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    241        1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    242        1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    243        1.26       cgd  */
    244        1.26       cgd #define	CCPU_SHIFT	11
    245        1.26       cgd 
    246        1.26       cgd /*
    247        1.26       cgd  * Recompute process priorities, every hz ticks.
    248        1.26       cgd  */
    249        1.26       cgd /* ARGSUSED */
    250        1.26       cgd void
    251        1.77   thorpej schedcpu(void *arg)
    252        1.26       cgd {
    253        1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    254   1.101.2.1   nathanw 	struct lwp *l;
    255        1.71  augustss 	struct proc *p;
    256        1.83   thorpej 	int s, s1;
    257        1.71  augustss 	unsigned int newcpu;
    258        1.66      ross 	int clkhz;
    259        1.26       cgd 
    260        1.62   thorpej 	proclist_lock_read();
    261  1.101.2.21   nathanw 	LIST_FOREACH(l, &alllwp, l_list) {
    262        1.26       cgd 		/*
    263        1.26       cgd 		 * Increment time in/out of memory and sleep time
    264        1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    265        1.26       cgd 		 * (remember them?) overflow takes 45 days.
    266        1.26       cgd 		 */
    267   1.101.2.1   nathanw 		p = l->l_proc;
    268   1.101.2.1   nathanw 		l->l_swtime++;
    269   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    270   1.101.2.1   nathanw 		    l->l_stat == LSSUSPENDED)
    271   1.101.2.1   nathanw 			l->l_slptime++;
    272        1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    273        1.26       cgd 		/*
    274        1.26       cgd 		 * If the process has slept the entire second,
    275        1.26       cgd 		 * stop recalculating its priority until it wakes up.
    276        1.26       cgd 		 */
    277   1.101.2.1   nathanw 		if (l->l_slptime > 1)
    278        1.26       cgd 			continue;
    279        1.26       cgd 		s = splstatclock();	/* prevent state changes */
    280        1.26       cgd 		/*
    281        1.26       cgd 		 * p_pctcpu is only for ps.
    282        1.26       cgd 		 */
    283        1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    284        1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    285        1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    286        1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    287        1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    288        1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    289        1.26       cgd #else
    290   1.101.2.1   nathanw 		l->l_pctcpu += ((FSCALE - ccpu) *
    291        1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    292        1.26       cgd #endif
    293        1.26       cgd 		p->p_cpticks = 0;
    294        1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    295        1.55      ross 		p->p_estcpu = newcpu;
    296        1.83   thorpej 		SCHED_LOCK(s1);
    297   1.101.2.1   nathanw 		resetpriority(l);
    298   1.101.2.1   nathanw 		if (l->l_priority >= PUSER) {
    299   1.101.2.1   nathanw 			if (l->l_stat == LSRUN &&
    300   1.101.2.1   nathanw 			    (l->l_flag & L_INMEM) &&
    301   1.101.2.1   nathanw 			    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    302   1.101.2.1   nathanw 				remrunqueue(l);
    303   1.101.2.1   nathanw 				l->l_priority = l->l_usrpri;
    304   1.101.2.1   nathanw 				setrunqueue(l);
    305        1.26       cgd 			} else
    306   1.101.2.1   nathanw 				l->l_priority = l->l_usrpri;
    307        1.26       cgd 		}
    308        1.83   thorpej 		SCHED_UNLOCK(s1);
    309        1.26       cgd 		splx(s);
    310        1.26       cgd 	}
    311        1.61   thorpej 	proclist_unlock_read();
    312        1.47       mrg 	uvm_meter();
    313        1.67      fvdl 	wakeup((caddr_t)&lbolt);
    314        1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    315        1.26       cgd }
    316        1.26       cgd 
    317        1.26       cgd /*
    318        1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    319        1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    320        1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    321        1.26       cgd  */
    322        1.26       cgd void
    323   1.101.2.1   nathanw updatepri(struct lwp *l)
    324        1.26       cgd {
    325   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    326        1.83   thorpej 	unsigned int newcpu;
    327        1.83   thorpej 	fixpt_t loadfac;
    328        1.83   thorpej 
    329        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    330        1.83   thorpej 
    331        1.83   thorpej 	newcpu = p->p_estcpu;
    332        1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    333        1.26       cgd 
    334   1.101.2.1   nathanw 	if (l->l_slptime > 5 * loadfac)
    335   1.101.2.1   nathanw 		p->p_estcpu = 0; /* XXX NJWLWP */
    336        1.26       cgd 	else {
    337   1.101.2.1   nathanw 		l->l_slptime--;	/* the first time was done in schedcpu */
    338   1.101.2.1   nathanw 		while (newcpu && --l->l_slptime)
    339        1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    340        1.55      ross 		p->p_estcpu = newcpu;
    341        1.26       cgd 	}
    342   1.101.2.1   nathanw 	resetpriority(l);
    343        1.26       cgd }
    344        1.26       cgd 
    345        1.26       cgd /*
    346        1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    347        1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    348        1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    349        1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    350        1.26       cgd  * This priority will typically be 0, or the lowest priority
    351        1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    352        1.26       cgd  * higher to block network software interrupts after panics.
    353        1.26       cgd  */
    354        1.26       cgd int safepri;
    355        1.26       cgd 
    356        1.26       cgd /*
    357        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    358        1.26       cgd  * performed on the specified identifier.  The process will then be made
    359        1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    360        1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    361        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    362        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    363        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    364        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    365        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    366        1.77   thorpej  *
    367   1.101.2.3   nathanw  * The interlock is held until the scheduler_slock is acquired.  The
    368        1.77   thorpej  * interlock will be locked before returning back to the caller
    369        1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    370        1.77   thorpej  * interlock will always be unlocked upon return.
    371        1.26       cgd  */
    372        1.26       cgd int
    373        1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    374        1.77   thorpej     __volatile struct simplelock *interlock)
    375        1.26       cgd {
    376  1.101.2.14   nathanw 	struct lwp *l = curlwp;
    377   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    378        1.71  augustss 	struct slpque *qp;
    379        1.77   thorpej 	int sig, s;
    380        1.77   thorpej 	int catch = priority & PCATCH;
    381        1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    382   1.101.2.1   nathanw 	int exiterr = (priority & PNOEXITERR) == 0;
    383        1.26       cgd 
    384        1.77   thorpej 	/*
    385        1.77   thorpej 	 * XXXSMP
    386        1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    387        1.77   thorpej 	 * thing to do here really is.
    388  1.101.2.14   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    389        1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    390        1.78  sommerfe 	 * how shutdown (barely) works.
    391        1.77   thorpej 	 */
    392   1.101.2.1   nathanw 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    393        1.26       cgd 		/*
    394        1.26       cgd 		 * After a panic, or during autoconfiguration,
    395        1.26       cgd 		 * just give interrupts a chance, then just return;
    396        1.26       cgd 		 * don't run any other procs or panic below,
    397        1.26       cgd 		 * in case this is the idle process and already asleep.
    398        1.26       cgd 		 */
    399        1.42       cgd 		s = splhigh();
    400        1.26       cgd 		splx(safepri);
    401        1.26       cgd 		splx(s);
    402        1.77   thorpej 		if (interlock != NULL && relock == 0)
    403        1.77   thorpej 			simple_unlock(interlock);
    404        1.26       cgd 		return (0);
    405        1.26       cgd 	}
    406        1.78  sommerfe 
    407   1.101.2.3   nathanw 	KASSERT(p != NULL);
    408   1.101.2.6   nathanw 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    409        1.42       cgd 
    410        1.42       cgd #ifdef KTRACE
    411        1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    412        1.74  sommerfe 		ktrcsw(p, 1, 0);
    413        1.42       cgd #endif
    414        1.77   thorpej 
    415        1.83   thorpej 	SCHED_LOCK(s);
    416        1.42       cgd 
    417        1.26       cgd #ifdef DIAGNOSTIC
    418        1.64   thorpej 	if (ident == NULL)
    419        1.77   thorpej 		panic("ltsleep: ident == NULL");
    420   1.101.2.1   nathanw 	if (l->l_stat != LSONPROC)
    421   1.101.2.1   nathanw 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    422   1.101.2.1   nathanw 	if (l->l_back != NULL)
    423        1.77   thorpej 		panic("ltsleep: p_back != NULL");
    424        1.26       cgd #endif
    425        1.77   thorpej 
    426   1.101.2.1   nathanw 	l->l_wchan = ident;
    427   1.101.2.1   nathanw 	l->l_wmesg = wmesg;
    428   1.101.2.1   nathanw 	l->l_slptime = 0;
    429   1.101.2.1   nathanw 	l->l_priority = priority & PRIMASK;
    430        1.77   thorpej 
    431        1.73   thorpej 	qp = SLPQUE(ident);
    432        1.26       cgd 	if (qp->sq_head == 0)
    433   1.101.2.1   nathanw 		qp->sq_head = l;
    434   1.101.2.1   nathanw 	else {
    435   1.101.2.1   nathanw 		*qp->sq_tailp = l;
    436   1.101.2.1   nathanw 	}
    437   1.101.2.1   nathanw 	*(qp->sq_tailp = &l->l_forw) = 0;
    438        1.77   thorpej 
    439        1.26       cgd 	if (timo)
    440   1.101.2.1   nathanw 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    441        1.77   thorpej 
    442        1.77   thorpej 	/*
    443        1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    444        1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    445        1.77   thorpej 	 * we do the switch.
    446        1.77   thorpej 	 *
    447        1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    448        1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    449        1.77   thorpej 	 * data structure for the sleep queues at some point.
    450        1.77   thorpej 	 */
    451        1.77   thorpej 	if (interlock != NULL)
    452        1.77   thorpej 		simple_unlock(interlock);
    453        1.77   thorpej 
    454        1.26       cgd 	/*
    455        1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    456        1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    457        1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    458        1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    459        1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    460        1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    461        1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    462        1.26       cgd 	 */
    463        1.26       cgd 	if (catch) {
    464   1.101.2.1   nathanw 		l->l_flag |= L_SINTR;
    465   1.101.2.1   nathanw 		if ((sig = CURSIG(l)) != 0) {
    466   1.101.2.1   nathanw 			if (l->l_wchan != NULL)
    467   1.101.2.1   nathanw 				unsleep(l);
    468   1.101.2.1   nathanw 			l->l_stat = LSONPROC;
    469        1.83   thorpej 			SCHED_UNLOCK(s);
    470        1.26       cgd 			goto resume;
    471        1.26       cgd 		}
    472   1.101.2.1   nathanw 		if (l->l_wchan == NULL) {
    473        1.26       cgd 			catch = 0;
    474        1.83   thorpej 			SCHED_UNLOCK(s);
    475        1.26       cgd 			goto resume;
    476        1.26       cgd 		}
    477        1.26       cgd 	} else
    478        1.26       cgd 		sig = 0;
    479   1.101.2.1   nathanw 	l->l_stat = LSSLEEP;
    480   1.101.2.1   nathanw 	p->p_nrlwps--;
    481        1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    482        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    483   1.101.2.1   nathanw 	if (l->l_flag & L_SA)
    484   1.101.2.1   nathanw 		sa_switch(l, SA_UPCALL_BLOCKED);
    485   1.101.2.1   nathanw 	else
    486   1.101.2.1   nathanw 		mi_switch(l, NULL);
    487        1.83   thorpej 
    488   1.101.2.3   nathanw #if	defined(DDB) && !defined(GPROF)
    489        1.26       cgd 	/* handy breakpoint location after process "wakes" */
    490  1.101.2.10   nathanw 	__asm(".globl bpendtsleep ; bpendtsleep:");
    491        1.26       cgd #endif
    492  1.101.2.16   nathanw 	/*
    493  1.101.2.16   nathanw 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    494  1.101.2.12   nathanw 	 * either setrunnable() or awaken().
    495  1.101.2.12   nathanw 	 */
    496        1.77   thorpej 
    497        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    498        1.83   thorpej 	splx(s);
    499        1.83   thorpej 
    500        1.77   thorpej  resume:
    501   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    502   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    503   1.101.2.1   nathanw 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    504   1.101.2.1   nathanw 
    505   1.101.2.1   nathanw 	l->l_flag &= ~L_SINTR;
    506   1.101.2.1   nathanw 	if (l->l_flag & L_TIMEOUT) {
    507   1.101.2.1   nathanw 		l->l_flag &= ~L_TIMEOUT;
    508        1.26       cgd 		if (sig == 0) {
    509        1.26       cgd #ifdef KTRACE
    510        1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    511        1.74  sommerfe 				ktrcsw(p, 0, 0);
    512        1.26       cgd #endif
    513        1.77   thorpej 			if (relock && interlock != NULL)
    514        1.77   thorpej 				simple_lock(interlock);
    515        1.26       cgd 			return (EWOULDBLOCK);
    516        1.26       cgd 		}
    517        1.26       cgd 	} else if (timo)
    518   1.101.2.1   nathanw 		callout_stop(&l->l_tsleep_ch);
    519   1.101.2.1   nathanw 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    520        1.26       cgd #ifdef KTRACE
    521        1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    522        1.74  sommerfe 			ktrcsw(p, 0, 0);
    523        1.26       cgd #endif
    524        1.77   thorpej 		if (relock && interlock != NULL)
    525        1.77   thorpej 			simple_lock(interlock);
    526        1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    527        1.26       cgd 			return (EINTR);
    528        1.26       cgd 		return (ERESTART);
    529        1.26       cgd 	}
    530   1.101.2.1   nathanw 	/* XXXNJW this is very much a kluge.
    531   1.101.2.1   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    532   1.101.2.1   nathanw 	 * wait4() and _lwp_wait() from wedging an exiting process
    533   1.101.2.1   nathanw 	 * would be preferred.
    534   1.101.2.1   nathanw 	 */
    535   1.101.2.1   nathanw 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    536   1.101.2.1   nathanw 		return (EINTR);
    537        1.26       cgd #ifdef KTRACE
    538        1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    539        1.74  sommerfe 		ktrcsw(p, 0, 0);
    540        1.26       cgd #endif
    541        1.77   thorpej 	if (relock && interlock != NULL)
    542        1.77   thorpej 		simple_lock(interlock);
    543        1.26       cgd 	return (0);
    544        1.26       cgd }
    545        1.26       cgd 
    546        1.26       cgd /*
    547        1.26       cgd  * Implement timeout for tsleep.
    548        1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    549        1.26       cgd  * set timeout flag and undo the sleep.  If proc
    550        1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    551        1.26       cgd  */
    552        1.26       cgd void
    553        1.77   thorpej endtsleep(void *arg)
    554        1.26       cgd {
    555   1.101.2.1   nathanw 	struct lwp *l;
    556        1.26       cgd 	int s;
    557        1.26       cgd 
    558   1.101.2.1   nathanw 	l = (struct lwp *)arg;
    559        1.83   thorpej 	SCHED_LOCK(s);
    560   1.101.2.1   nathanw 	if (l->l_wchan) {
    561   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP)
    562   1.101.2.1   nathanw 			setrunnable(l);
    563        1.26       cgd 		else
    564   1.101.2.1   nathanw 			unsleep(l);
    565   1.101.2.1   nathanw 		l->l_flag |= L_TIMEOUT;
    566        1.26       cgd 	}
    567        1.83   thorpej 	SCHED_UNLOCK(s);
    568        1.26       cgd }
    569        1.26       cgd 
    570        1.26       cgd /*
    571        1.26       cgd  * Remove a process from its wait queue
    572        1.26       cgd  */
    573        1.26       cgd void
    574   1.101.2.1   nathanw unsleep(struct lwp *l)
    575        1.26       cgd {
    576        1.71  augustss 	struct slpque *qp;
    577   1.101.2.1   nathanw 	struct lwp **hp;
    578        1.26       cgd 
    579        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    580        1.83   thorpej 
    581   1.101.2.1   nathanw 	if (l->l_wchan) {
    582   1.101.2.1   nathanw 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    583   1.101.2.1   nathanw 		while (*hp != l)
    584   1.101.2.1   nathanw 			hp = &(*hp)->l_forw;
    585   1.101.2.1   nathanw 		*hp = l->l_forw;
    586   1.101.2.1   nathanw 		if (qp->sq_tailp == &l->l_forw)
    587        1.26       cgd 			qp->sq_tailp = hp;
    588   1.101.2.1   nathanw 		l->l_wchan = 0;
    589        1.26       cgd 	}
    590        1.26       cgd }
    591        1.26       cgd 
    592        1.26       cgd /*
    593        1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    594        1.63   thorpej  */
    595        1.63   thorpej __inline void
    596   1.101.2.1   nathanw awaken(struct lwp *l)
    597        1.63   thorpej {
    598        1.63   thorpej 
    599        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    600   1.101.2.1   nathanw 
    601   1.101.2.1   nathanw 	if (l->l_slptime > 1)
    602   1.101.2.1   nathanw 		updatepri(l);
    603   1.101.2.1   nathanw 	l->l_slptime = 0;
    604   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    605  1.101.2.12   nathanw 	l->l_proc->p_nrlwps++;
    606        1.93    bouyer 	/*
    607        1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    608  1.101.2.28   thorpej 	 * is always better than curpriority on the last CPU on
    609  1.101.2.28   thorpej 	 * which it ran.
    610  1.101.2.28   thorpej 	 *
    611  1.101.2.28   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    612        1.93    bouyer 	 */
    613   1.101.2.1   nathanw 	if (l->l_flag & L_INMEM) {
    614   1.101.2.1   nathanw 		setrunqueue(l);
    615  1.101.2.19   nathanw 		if (l->l_flag & L_SA)
    616  1.101.2.19   nathanw 			l->l_proc->p_sa->sa_woken = l;
    617   1.101.2.1   nathanw 		KASSERT(l->l_cpu != NULL);
    618   1.101.2.1   nathanw 		need_resched(l->l_cpu);
    619        1.93    bouyer 	} else
    620        1.93    bouyer 		sched_wakeup(&proc0);
    621        1.83   thorpej }
    622        1.83   thorpej 
    623        1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    624        1.83   thorpej void
    625        1.83   thorpej sched_unlock_idle(void)
    626        1.83   thorpej {
    627        1.83   thorpej 
    628        1.83   thorpej 	simple_unlock(&sched_lock);
    629        1.63   thorpej }
    630        1.63   thorpej 
    631        1.83   thorpej void
    632        1.83   thorpej sched_lock_idle(void)
    633        1.83   thorpej {
    634        1.83   thorpej 
    635        1.83   thorpej 	simple_lock(&sched_lock);
    636        1.83   thorpej }
    637        1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    638        1.83   thorpej 
    639        1.63   thorpej /*
    640        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    641        1.26       cgd  */
    642        1.83   thorpej 
    643        1.26       cgd void
    644        1.77   thorpej wakeup(void *ident)
    645        1.26       cgd {
    646        1.83   thorpej 	int s;
    647        1.83   thorpej 
    648        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    649        1.83   thorpej 
    650        1.83   thorpej 	SCHED_LOCK(s);
    651        1.83   thorpej 	sched_wakeup(ident);
    652        1.83   thorpej 	SCHED_UNLOCK(s);
    653        1.83   thorpej }
    654        1.83   thorpej 
    655        1.83   thorpej void
    656        1.83   thorpej sched_wakeup(void *ident)
    657        1.83   thorpej {
    658        1.71  augustss 	struct slpque *qp;
    659   1.101.2.1   nathanw 	struct lwp *l, **q;
    660        1.26       cgd 
    661        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    662        1.77   thorpej 
    663        1.73   thorpej 	qp = SLPQUE(ident);
    664        1.77   thorpej  restart:
    665   1.101.2.1   nathanw 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    666        1.26       cgd #ifdef DIAGNOSTIC
    667   1.101.2.1   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    668   1.101.2.1   nathanw 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    669        1.26       cgd 			panic("wakeup");
    670        1.26       cgd #endif
    671   1.101.2.1   nathanw 		if (l->l_wchan == ident) {
    672   1.101.2.1   nathanw 			l->l_wchan = 0;
    673   1.101.2.1   nathanw 			*q = l->l_forw;
    674   1.101.2.1   nathanw 			if (qp->sq_tailp == &l->l_forw)
    675        1.26       cgd 				qp->sq_tailp = q;
    676   1.101.2.1   nathanw 			if (l->l_stat == LSSLEEP) {
    677   1.101.2.1   nathanw 				awaken(l);
    678        1.26       cgd 				goto restart;
    679        1.26       cgd 			}
    680        1.26       cgd 		} else
    681   1.101.2.1   nathanw 			q = &l->l_forw;
    682        1.63   thorpej 	}
    683        1.63   thorpej }
    684        1.63   thorpej 
    685        1.63   thorpej /*
    686        1.63   thorpej  * Make the highest priority process first in line on the specified
    687        1.63   thorpej  * identifier runnable.
    688        1.63   thorpej  */
    689        1.63   thorpej void
    690        1.77   thorpej wakeup_one(void *ident)
    691        1.63   thorpej {
    692        1.63   thorpej 	struct slpque *qp;
    693   1.101.2.1   nathanw 	struct lwp *l, **q;
    694   1.101.2.1   nathanw 	struct lwp *best_sleepp, **best_sleepq;
    695   1.101.2.1   nathanw 	struct lwp *best_stopp, **best_stopq;
    696        1.63   thorpej 	int s;
    697        1.63   thorpej 
    698        1.63   thorpej 	best_sleepp = best_stopp = NULL;
    699        1.63   thorpej 	best_sleepq = best_stopq = NULL;
    700        1.63   thorpej 
    701        1.83   thorpej 	SCHED_LOCK(s);
    702        1.77   thorpej 
    703        1.73   thorpej 	qp = SLPQUE(ident);
    704        1.77   thorpej 
    705   1.101.2.1   nathanw 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    706        1.63   thorpej #ifdef DIAGNOSTIC
    707   1.101.2.1   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    708   1.101.2.1   nathanw 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    709        1.63   thorpej 			panic("wakeup_one");
    710        1.63   thorpej #endif
    711   1.101.2.1   nathanw 		if (l->l_wchan == ident) {
    712   1.101.2.1   nathanw 			if (l->l_stat == LSSLEEP) {
    713        1.63   thorpej 				if (best_sleepp == NULL ||
    714   1.101.2.1   nathanw 				    l->l_priority < best_sleepp->l_priority) {
    715   1.101.2.1   nathanw 					best_sleepp = l;
    716        1.63   thorpej 					best_sleepq = q;
    717        1.63   thorpej 				}
    718        1.63   thorpej 			} else {
    719        1.63   thorpej 				if (best_stopp == NULL ||
    720   1.101.2.1   nathanw 				    l->l_priority < best_stopp->l_priority) {
    721   1.101.2.1   nathanw 				    	best_stopp = l;
    722        1.63   thorpej 					best_stopq = q;
    723        1.63   thorpej 				}
    724        1.63   thorpej 			}
    725        1.63   thorpej 		}
    726        1.63   thorpej 	}
    727        1.63   thorpej 
    728        1.63   thorpej 	/*
    729        1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    730        1.63   thorpej 	 * process.
    731        1.63   thorpej 	 */
    732        1.63   thorpej 	if (best_sleepp != NULL) {
    733   1.101.2.1   nathanw 		l = best_sleepp;
    734        1.63   thorpej 		q = best_sleepq;
    735        1.63   thorpej 	} else {
    736   1.101.2.1   nathanw 		l = best_stopp;
    737        1.63   thorpej 		q = best_stopq;
    738        1.63   thorpej 	}
    739        1.63   thorpej 
    740   1.101.2.1   nathanw 	if (l != NULL) {
    741   1.101.2.1   nathanw 		l->l_wchan = NULL;
    742   1.101.2.1   nathanw 		*q = l->l_forw;
    743   1.101.2.1   nathanw 		if (qp->sq_tailp == &l->l_forw)
    744        1.63   thorpej 			qp->sq_tailp = q;
    745   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP)
    746   1.101.2.1   nathanw 			awaken(l);
    747        1.26       cgd 	}
    748        1.83   thorpej 	SCHED_UNLOCK(s);
    749        1.26       cgd }
    750        1.26       cgd 
    751        1.26       cgd /*
    752        1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    753  1.101.2.28   thorpej  * performs a voluntary context switch.  Should only be called when the
    754  1.101.2.28   thorpej  * current process explicitly requests it (eg sched_yield(2) in compat code).
    755        1.69   thorpej  */
    756        1.69   thorpej void
    757        1.77   thorpej yield(void)
    758        1.69   thorpej {
    759  1.101.2.14   nathanw 	struct lwp *l = curlwp;
    760        1.69   thorpej 	int s;
    761        1.69   thorpej 
    762        1.83   thorpej 	SCHED_LOCK(s);
    763   1.101.2.1   nathanw 	l->l_priority = l->l_usrpri;
    764   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    765   1.101.2.1   nathanw 	setrunqueue(l);
    766   1.101.2.1   nathanw 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    767   1.101.2.1   nathanw 	mi_switch(l, NULL);
    768        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    769        1.69   thorpej 	splx(s);
    770        1.69   thorpej }
    771        1.69   thorpej 
    772        1.69   thorpej /*
    773        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    774        1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    775        1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    776        1.69   thorpej  * criteria.
    777        1.69   thorpej  */
    778   1.101.2.1   nathanw 
    779        1.69   thorpej void
    780   1.101.2.1   nathanw preempt(struct lwp *newl)
    781        1.69   thorpej {
    782  1.101.2.14   nathanw 	struct lwp *l = curlwp;
    783   1.101.2.2   nathanw 	int r, s;
    784        1.69   thorpej 
    785   1.101.2.9   nathanw 	if (l->l_flag & L_SA) {
    786   1.101.2.9   nathanw 		SCHED_LOCK(s);
    787   1.101.2.9   nathanw 		l->l_priority = l->l_usrpri;
    788   1.101.2.9   nathanw 		l->l_stat = LSRUN;
    789   1.101.2.9   nathanw 		setrunqueue(l);
    790   1.101.2.9   nathanw 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    791   1.101.2.9   nathanw 		r = mi_switch(l, newl);
    792   1.101.2.9   nathanw 		SCHED_ASSERT_UNLOCKED();
    793   1.101.2.9   nathanw 		splx(s);
    794   1.101.2.9   nathanw 		if (r != 0)
    795  1.101.2.16   nathanw 			sa_preempt(l);
    796   1.101.2.9   nathanw 	} else {
    797   1.101.2.9   nathanw 		SCHED_LOCK(s);
    798   1.101.2.9   nathanw 		l->l_priority = l->l_usrpri;
    799   1.101.2.9   nathanw 		l->l_stat = LSRUN;
    800   1.101.2.9   nathanw 		setrunqueue(l);
    801   1.101.2.9   nathanw 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    802   1.101.2.9   nathanw 		mi_switch(l, newl);
    803   1.101.2.9   nathanw 		SCHED_ASSERT_UNLOCKED();
    804   1.101.2.9   nathanw 		splx(s);
    805   1.101.2.9   nathanw 	}
    806   1.101.2.9   nathanw 
    807        1.69   thorpej }
    808        1.69   thorpej 
    809        1.69   thorpej /*
    810        1.72   thorpej  * The machine independent parts of context switch.
    811        1.86   thorpej  * Must be called at splsched() (no higher!) and with
    812        1.86   thorpej  * the sched_lock held.
    813   1.101.2.1   nathanw  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    814   1.101.2.1   nathanw  * the next lwp.
    815   1.101.2.2   nathanw  *
    816   1.101.2.2   nathanw  * Returns 1 if another process was actually run.
    817        1.26       cgd  */
    818   1.101.2.2   nathanw int
    819  1.101.2.22   nathanw mi_switch(struct lwp *l, struct lwp *newl)
    820        1.26       cgd {
    821        1.76   thorpej 	struct schedstate_percpu *spc;
    822        1.71  augustss 	struct rlimit *rlim;
    823        1.71  augustss 	long s, u;
    824        1.26       cgd 	struct timeval tv;
    825        1.85  sommerfe #if defined(MULTIPROCESSOR)
    826        1.85  sommerfe 	int hold_count;
    827        1.85  sommerfe #endif
    828   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    829   1.101.2.2   nathanw 	int retval;
    830        1.26       cgd 
    831        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    832        1.83   thorpej 
    833        1.85  sommerfe #if defined(MULTIPROCESSOR)
    834        1.90  sommerfe 	/*
    835        1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    836        1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    837        1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    838        1.90  sommerfe 	 */
    839  1.101.2.24   nathanw 	if (l->l_flag & L_BIGLOCK)
    840        1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    841        1.85  sommerfe #endif
    842        1.85  sommerfe 
    843   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    844   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    845        1.76   thorpej 
    846   1.101.2.1   nathanw 	spc = &l->l_cpu->ci_schedstate;
    847        1.76   thorpej 
    848        1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    849        1.82   thorpej 	spinlock_switchcheck();
    850        1.82   thorpej #endif
    851        1.54       chs #ifdef LOCKDEBUG
    852        1.81   thorpej 	simple_lock_switchcheck();
    853        1.50      fvdl #endif
    854        1.81   thorpej 
    855        1.26       cgd 	/*
    856        1.26       cgd 	 * Compute the amount of time during which the current
    857  1.101.2.22   nathanw 	 * process was running.
    858        1.26       cgd 	 */
    859        1.26       cgd 	microtime(&tv);
    860   1.101.2.1   nathanw 	u = p->p_rtime.tv_usec +
    861   1.101.2.1   nathanw 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    862        1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    863        1.26       cgd 	if (u < 0) {
    864        1.26       cgd 		u += 1000000;
    865        1.26       cgd 		s--;
    866        1.26       cgd 	} else if (u >= 1000000) {
    867        1.26       cgd 		u -= 1000000;
    868        1.26       cgd 		s++;
    869        1.26       cgd 	}
    870        1.26       cgd 	p->p_rtime.tv_usec = u;
    871        1.26       cgd 	p->p_rtime.tv_sec = s;
    872        1.26       cgd 
    873        1.26       cgd 	/*
    874        1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    875        1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    876        1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    877        1.26       cgd 	 */
    878        1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    879        1.26       cgd 	if (s >= rlim->rlim_cur) {
    880       1.100  sommerfe 		/*
    881       1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    882       1.100  sommerfe 		 * use sched_psignal.
    883       1.100  sommerfe 		 */
    884        1.26       cgd 		if (s >= rlim->rlim_max)
    885       1.100  sommerfe 			sched_psignal(p, SIGKILL);
    886        1.26       cgd 		else {
    887       1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    888        1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    889        1.26       cgd 				rlim->rlim_cur += 5;
    890        1.26       cgd 		}
    891        1.26       cgd 	}
    892        1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    893        1.77   thorpej 	    p->p_nice == NZERO) {
    894        1.39        ws 		p->p_nice = autoniceval + NZERO;
    895   1.101.2.1   nathanw 		resetpriority(l);
    896        1.26       cgd 	}
    897        1.69   thorpej 
    898        1.69   thorpej 	/*
    899        1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    900        1.69   thorpej 	 * scheduling flags.
    901        1.69   thorpej 	 */
    902        1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    903  1.101.2.17   nathanw 
    904  1.101.2.17   nathanw #ifdef KSTACK_CHECK_MAGIC
    905  1.101.2.17   nathanw 	kstack_check_magic(p);
    906  1.101.2.17   nathanw #endif
    907        1.26       cgd 
    908        1.26       cgd 	/*
    909  1.101.2.18   nathanw 	 * If we are using h/w performance counters, save context.
    910  1.101.2.18   nathanw 	 */
    911  1.101.2.18   nathanw #if PERFCTRS
    912  1.101.2.18   nathanw 	if (PMC_ENABLED(p))
    913  1.101.2.18   nathanw 		pmc_save_context(p);
    914  1.101.2.18   nathanw #endif
    915  1.101.2.18   nathanw 
    916  1.101.2.18   nathanw 	/*
    917  1.101.2.22   nathanw 	 * Switch to the new current process.  When we
    918        1.76   thorpej 	 * run again, we'll return back here.
    919        1.26       cgd 	 */
    920        1.47       mrg 	uvmexp.swtch++;
    921  1.101.2.22   nathanw 	if (newl == NULL) {
    922  1.101.2.22   nathanw 		retval = cpu_switch(l, NULL);
    923   1.101.2.2   nathanw 	} else {
    924  1.101.2.22   nathanw 		cpu_preempt(l, newl);
    925   1.101.2.2   nathanw 		retval = 0;
    926   1.101.2.2   nathanw 	}
    927  1.101.2.18   nathanw 
    928  1.101.2.18   nathanw 	/*
    929  1.101.2.18   nathanw 	 * If we are using h/w performance counters, restore context.
    930  1.101.2.18   nathanw 	 */
    931  1.101.2.18   nathanw #if PERFCTRS
    932  1.101.2.18   nathanw 	if (PMC_ENABLED(p))
    933  1.101.2.18   nathanw 		pmc_restore_context(p);
    934  1.101.2.18   nathanw #endif
    935        1.76   thorpej 
    936        1.76   thorpej 	/*
    937        1.83   thorpej 	 * Make sure that MD code released the scheduler lock before
    938        1.83   thorpej 	 * resuming us.
    939        1.83   thorpej 	 */
    940        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    941        1.83   thorpej 
    942        1.83   thorpej 	/*
    943        1.76   thorpej 	 * We're running again; record our new start time.  We might
    944        1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    945        1.76   thorpej 	 * schedstate_percpu pointer.
    946        1.76   thorpej 	 */
    947   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    948   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    949   1.101.2.1   nathanw 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    950        1.85  sommerfe 
    951        1.85  sommerfe #if defined(MULTIPROCESSOR)
    952        1.90  sommerfe 	/*
    953        1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    954        1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    955        1.90  sommerfe 	 * we reacquire the interlock.
    956        1.90  sommerfe 	 */
    957  1.101.2.24   nathanw 	if (l->l_flag & L_BIGLOCK)
    958        1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    959        1.85  sommerfe #endif
    960   1.101.2.2   nathanw 
    961   1.101.2.2   nathanw 	return retval;
    962        1.26       cgd }
    963        1.26       cgd 
    964        1.26       cgd /*
    965        1.26       cgd  * Initialize the (doubly-linked) run queues
    966        1.26       cgd  * to be empty.
    967        1.26       cgd  */
    968        1.26       cgd void
    969        1.26       cgd rqinit()
    970        1.26       cgd {
    971        1.71  augustss 	int i;
    972        1.26       cgd 
    973        1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    974        1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    975   1.101.2.1   nathanw 		    (struct lwp *)&sched_qs[i];
    976        1.26       cgd }
    977        1.26       cgd 
    978  1.101.2.28   thorpej static __inline void
    979  1.101.2.28   thorpej resched_proc(struct lwp *l)
    980  1.101.2.28   thorpej {
    981  1.101.2.28   thorpej 	struct cpu_info *ci;
    982  1.101.2.28   thorpej 
    983  1.101.2.28   thorpej 	/*
    984  1.101.2.28   thorpej 	 * XXXSMP
    985  1.101.2.28   thorpej 	 * Since l->l_cpu persists across a context switch,
    986  1.101.2.28   thorpej 	 * this gives us *very weak* processor affinity, in
    987  1.101.2.28   thorpej 	 * that we notify the CPU on which the process last
    988  1.101.2.28   thorpej 	 * ran that it should try to switch.
    989  1.101.2.28   thorpej 	 *
    990  1.101.2.28   thorpej 	 * This does not guarantee that the process will run on
    991  1.101.2.28   thorpej 	 * that processor next, because another processor might
    992  1.101.2.28   thorpej 	 * grab it the next time it performs a context switch.
    993  1.101.2.28   thorpej 	 *
    994  1.101.2.28   thorpej 	 * This also does not handle the case where its last
    995  1.101.2.28   thorpej 	 * CPU is running a higher-priority process, but every
    996  1.101.2.28   thorpej 	 * other CPU is running a lower-priority process.  There
    997  1.101.2.28   thorpej 	 * are ways to handle this situation, but they're not
    998  1.101.2.28   thorpej 	 * currently very pretty, and we also need to weigh the
    999  1.101.2.28   thorpej 	 * cost of moving a process from one CPU to another.
   1000  1.101.2.28   thorpej 	 *
   1001  1.101.2.28   thorpej 	 * XXXSMP
   1002  1.101.2.28   thorpej 	 * There is also the issue of locking the other CPU's
   1003  1.101.2.28   thorpej 	 * sched state, which we currently do not do.
   1004  1.101.2.28   thorpej 	 */
   1005  1.101.2.28   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1006  1.101.2.28   thorpej 	if (l->l_priority < ci->ci_schedstate.spc_curpriority)
   1007  1.101.2.28   thorpej 		need_resched(ci);
   1008  1.101.2.28   thorpej }
   1009  1.101.2.28   thorpej 
   1010        1.26       cgd /*
   1011        1.26       cgd  * Change process state to be runnable,
   1012        1.26       cgd  * placing it on the run queue if it is in memory,
   1013        1.26       cgd  * and awakening the swapper if it isn't in memory.
   1014        1.26       cgd  */
   1015        1.26       cgd void
   1016   1.101.2.1   nathanw setrunnable(struct lwp *l)
   1017        1.26       cgd {
   1018   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1019        1.26       cgd 
   1020        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1021        1.83   thorpej 
   1022   1.101.2.1   nathanw 	switch (l->l_stat) {
   1023        1.26       cgd 	case 0:
   1024   1.101.2.1   nathanw 	case LSRUN:
   1025   1.101.2.1   nathanw 	case LSONPROC:
   1026   1.101.2.1   nathanw 	case LSZOMB:
   1027   1.101.2.1   nathanw 	case LSDEAD:
   1028        1.26       cgd 	default:
   1029        1.26       cgd 		panic("setrunnable");
   1030   1.101.2.1   nathanw 	case LSSTOP:
   1031        1.33   mycroft 		/*
   1032        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1033        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1034        1.33   mycroft 		 */
   1035        1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1036        1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1037       1.101   thorpej 			CHECKSIGS(p);
   1038        1.53   mycroft 		}
   1039   1.101.2.1   nathanw 	case LSSLEEP:
   1040   1.101.2.1   nathanw 		unsleep(l);		/* e.g. when sending signals */
   1041        1.26       cgd 		break;
   1042        1.26       cgd 
   1043   1.101.2.1   nathanw 	case LSIDL:
   1044   1.101.2.1   nathanw 		break;
   1045   1.101.2.1   nathanw 	case LSSUSPENDED:
   1046        1.26       cgd 		break;
   1047        1.26       cgd 	}
   1048   1.101.2.1   nathanw 	l->l_stat = LSRUN;
   1049  1.101.2.12   nathanw 	p->p_nrlwps++;
   1050  1.101.2.12   nathanw 
   1051   1.101.2.1   nathanw 	if (l->l_flag & L_INMEM)
   1052   1.101.2.1   nathanw 		setrunqueue(l);
   1053   1.101.2.1   nathanw 
   1054   1.101.2.1   nathanw 	if (l->l_slptime > 1)
   1055   1.101.2.1   nathanw 		updatepri(l);
   1056   1.101.2.1   nathanw 	l->l_slptime = 0;
   1057   1.101.2.1   nathanw 	if ((l->l_flag & L_INMEM) == 0)
   1058  1.101.2.26   nathanw 		sched_wakeup((caddr_t)&proc0);
   1059  1.101.2.28   thorpej 	else
   1060  1.101.2.28   thorpej 		resched_proc(l);
   1061        1.26       cgd }
   1062        1.26       cgd 
   1063        1.26       cgd /*
   1064        1.26       cgd  * Compute the priority of a process when running in user mode.
   1065        1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1066        1.26       cgd  * than that of the current process.
   1067        1.26       cgd  */
   1068        1.26       cgd void
   1069   1.101.2.1   nathanw resetpriority(struct lwp *l)
   1070        1.26       cgd {
   1071        1.71  augustss 	unsigned int newpriority;
   1072   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1073        1.26       cgd 
   1074        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1075        1.83   thorpej 
   1076   1.101.2.1   nathanw 	newpriority = PUSER + p->p_estcpu +
   1077   1.101.2.1   nathanw 			NICE_WEIGHT * (p->p_nice - NZERO);
   1078        1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1079   1.101.2.1   nathanw 	l->l_usrpri = newpriority;
   1080  1.101.2.28   thorpej 	resched_proc(l);
   1081        1.55      ross }
   1082        1.55      ross 
   1083   1.101.2.1   nathanw /*
   1084   1.101.2.1   nathanw  * Recompute priority for all LWPs in a process.
   1085   1.101.2.1   nathanw  */
   1086   1.101.2.1   nathanw void
   1087   1.101.2.1   nathanw resetprocpriority(struct proc *p)
   1088   1.101.2.1   nathanw {
   1089   1.101.2.1   nathanw 	struct lwp *l;
   1090   1.101.2.1   nathanw 
   1091  1.101.2.27   nathanw 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1092   1.101.2.1   nathanw 	    resetpriority(l);
   1093   1.101.2.1   nathanw }
   1094   1.101.2.1   nathanw 
   1095        1.55      ross /*
   1096        1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1097        1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1098        1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1099        1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1100        1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1101        1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1102        1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1103        1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1104        1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1105        1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1106        1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1107        1.56      ross  * processes.
   1108        1.55      ross  */
   1109        1.55      ross 
   1110        1.55      ross void
   1111   1.101.2.1   nathanw schedclock(struct lwp *l)
   1112        1.55      ross {
   1113   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1114        1.83   thorpej 	int s;
   1115        1.77   thorpej 
   1116        1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1117        1.83   thorpej 	SCHED_LOCK(s);
   1118   1.101.2.1   nathanw 	resetpriority(l);
   1119        1.83   thorpej 	SCHED_UNLOCK(s);
   1120   1.101.2.1   nathanw 
   1121   1.101.2.1   nathanw 	if (l->l_priority >= PUSER)
   1122   1.101.2.1   nathanw 		l->l_priority = l->l_usrpri;
   1123        1.26       cgd }
   1124        1.94    bouyer 
   1125        1.94    bouyer void
   1126        1.94    bouyer suspendsched()
   1127        1.94    bouyer {
   1128   1.101.2.1   nathanw 	struct lwp *l;
   1129        1.97     enami 	int s;
   1130        1.94    bouyer 
   1131        1.94    bouyer 	/*
   1132   1.101.2.1   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1133   1.101.2.1   nathanw 	 * LSSUSPENDED.
   1134        1.94    bouyer 	 */
   1135        1.95   thorpej 	proclist_lock_read();
   1136        1.95   thorpej 	SCHED_LOCK(s);
   1137  1.101.2.23   nathanw 	LIST_FOREACH(l, &alllwp, l_list) {
   1138   1.101.2.1   nathanw 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1139        1.94    bouyer 			continue;
   1140   1.101.2.1   nathanw 
   1141   1.101.2.1   nathanw 		switch (l->l_stat) {
   1142   1.101.2.1   nathanw 		case LSRUN:
   1143  1.101.2.12   nathanw 			l->l_proc->p_nrlwps--;
   1144   1.101.2.1   nathanw 			if ((l->l_flag & L_INMEM) != 0)
   1145   1.101.2.1   nathanw 				remrunqueue(l);
   1146        1.97     enami 			/* FALLTHROUGH */
   1147   1.101.2.1   nathanw 		case LSSLEEP:
   1148   1.101.2.1   nathanw 			l->l_stat = LSSUSPENDED;
   1149        1.97     enami 			break;
   1150   1.101.2.1   nathanw 		case LSONPROC:
   1151        1.97     enami 			/*
   1152        1.97     enami 			 * XXX SMP: we need to deal with processes on
   1153        1.97     enami 			 * others CPU !
   1154        1.97     enami 			 */
   1155        1.97     enami 			break;
   1156        1.97     enami 		default:
   1157        1.97     enami 			break;
   1158        1.94    bouyer 		}
   1159        1.94    bouyer 	}
   1160        1.94    bouyer 	SCHED_UNLOCK(s);
   1161        1.97     enami 	proclist_unlock_read();
   1162        1.94    bouyer }
   1163   1.101.2.1   nathanw 
   1164  1.101.2.22   nathanw /*
   1165  1.101.2.22   nathanw  * Low-level routines to access the run queue.  Optimised assembler
   1166  1.101.2.22   nathanw  * routines can override these.
   1167  1.101.2.22   nathanw  */
   1168  1.101.2.22   nathanw 
   1169  1.101.2.22   nathanw #ifndef __HAVE_MD_RUNQUEUE
   1170  1.101.2.25   nathanw 
   1171  1.101.2.25   nathanw /*
   1172  1.101.2.25   nathanw  * The primitives that manipulate the run queues.  whichqs tells which
   1173  1.101.2.25   nathanw  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1174  1.101.2.25   nathanw  * into queues, remrunqueue removes them from queues.  The running process is
   1175  1.101.2.25   nathanw  * on no queue, other processes are on a queue related to p->p_priority,
   1176  1.101.2.25   nathanw  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1177  1.101.2.25   nathanw  * available queues.
   1178  1.101.2.25   nathanw  */
   1179  1.101.2.22   nathanw 
   1180  1.101.2.22   nathanw void
   1181  1.101.2.22   nathanw setrunqueue(struct lwp *l)
   1182  1.101.2.22   nathanw {
   1183  1.101.2.23   nathanw 	struct prochd *rq;
   1184  1.101.2.22   nathanw 	struct lwp *prev;
   1185  1.101.2.22   nathanw 	int whichq;
   1186  1.101.2.22   nathanw 
   1187  1.101.2.22   nathanw #ifdef DIAGNOSTIC
   1188  1.101.2.22   nathanw 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1189  1.101.2.22   nathanw 		panic("setrunqueue");
   1190  1.101.2.22   nathanw #endif
   1191  1.101.2.22   nathanw 	whichq = l->l_priority / 4;
   1192  1.101.2.22   nathanw 	sched_whichqs |= (1<<whichq);
   1193  1.101.2.22   nathanw 	rq = &sched_qs[whichq];
   1194  1.101.2.22   nathanw 	prev = rq->ph_rlink;
   1195  1.101.2.22   nathanw 	l->l_forw = (struct lwp *)rq;
   1196  1.101.2.22   nathanw 	rq->ph_rlink = l;
   1197  1.101.2.22   nathanw 	prev->l_forw = l;
   1198  1.101.2.22   nathanw 	l->l_back = prev;
   1199  1.101.2.22   nathanw }
   1200   1.101.2.1   nathanw 
   1201  1.101.2.22   nathanw void
   1202  1.101.2.22   nathanw remrunqueue(struct lwp *l)
   1203  1.101.2.22   nathanw {
   1204  1.101.2.23   nathanw 	struct lwp *prev, *next;
   1205  1.101.2.22   nathanw 	int whichq;
   1206  1.101.2.22   nathanw 
   1207  1.101.2.23   nathanw 	whichq = l->l_priority / 4;
   1208  1.101.2.22   nathanw #ifdef DIAGNOSTIC
   1209  1.101.2.22   nathanw 	if (((sched_whichqs & (1<<whichq)) == 0))
   1210  1.101.2.22   nathanw 		panic("remrunqueue");
   1211  1.101.2.22   nathanw #endif
   1212  1.101.2.22   nathanw 	prev = l->l_back;
   1213  1.101.2.22   nathanw 	l->l_back = NULL;
   1214  1.101.2.22   nathanw 	next = l->l_forw;
   1215  1.101.2.22   nathanw 	prev->l_forw = next;
   1216  1.101.2.22   nathanw 	next->l_back = prev;
   1217  1.101.2.22   nathanw 	if (prev == next)
   1218  1.101.2.22   nathanw 		sched_whichqs &= ~(1<<whichq);
   1219  1.101.2.22   nathanw }
   1220  1.101.2.22   nathanw 
   1221  1.101.2.22   nathanw #endif
   1222