Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.101.2.32
      1  1.101.2.32   thorpej /*	$NetBSD: kern_synch.c,v 1.101.2.32 2003/01/15 18:58:31 thorpej Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4        1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.63   thorpej  * NASA Ames Research Center.
     10        1.63   thorpej  *
     11        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12        1.63   thorpej  * modification, are permitted provided that the following conditions
     13        1.63   thorpej  * are met:
     14        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20        1.63   thorpej  *    must display the following acknowledgement:
     21        1.63   thorpej  *	This product includes software developed by the NetBSD
     22        1.63   thorpej  *	Foundation, Inc. and its contributors.
     23        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25        1.63   thorpej  *    from this software without specific prior written permission.
     26        1.63   thorpej  *
     27        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38        1.63   thorpej  */
     39        1.26       cgd 
     40        1.26       cgd /*-
     41        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44        1.26       cgd  * All or some portions of this file are derived from material licensed
     45        1.26       cgd  * to the University of California by American Telephone and Telegraph
     46        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48        1.26       cgd  *
     49        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50        1.26       cgd  * modification, are permitted provided that the following conditions
     51        1.26       cgd  * are met:
     52        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57        1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58        1.26       cgd  *    must display the following acknowledgement:
     59        1.26       cgd  *	This product includes software developed by the University of
     60        1.26       cgd  *	California, Berkeley and its contributors.
     61        1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62        1.26       cgd  *    may be used to endorse or promote products derived from this software
     63        1.26       cgd  *    without specific prior written permission.
     64        1.26       cgd  *
     65        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75        1.26       cgd  * SUCH DAMAGE.
     76        1.26       cgd  *
     77        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78        1.26       cgd  */
     79   1.101.2.7   nathanw 
     80   1.101.2.7   nathanw #include <sys/cdefs.h>
     81  1.101.2.32   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.32 2003/01/15 18:58:31 thorpej Exp $");
     82        1.48       mrg 
     83        1.52  jonathan #include "opt_ddb.h"
     84        1.51   thorpej #include "opt_ktrace.h"
     85  1.101.2.17   nathanw #include "opt_kstack.h"
     86        1.82   thorpej #include "opt_lockdebug.h"
     87        1.83   thorpej #include "opt_multiprocessor.h"
     88  1.101.2.18   nathanw #include "opt_perfctrs.h"
     89        1.26       cgd 
     90        1.26       cgd #include <sys/param.h>
     91        1.26       cgd #include <sys/systm.h>
     92        1.68   thorpej #include <sys/callout.h>
     93        1.26       cgd #include <sys/proc.h>
     94        1.26       cgd #include <sys/kernel.h>
     95        1.26       cgd #include <sys/buf.h>
     96  1.101.2.18   nathanw #if defined(PERFCTRS)
     97  1.101.2.18   nathanw #include <sys/pmc.h>
     98  1.101.2.18   nathanw #endif
     99        1.26       cgd #include <sys/signalvar.h>
    100        1.26       cgd #include <sys/resourcevar.h>
    101        1.55      ross #include <sys/sched.h>
    102   1.101.2.1   nathanw #include <sys/sa.h>
    103   1.101.2.1   nathanw #include <sys/savar.h>
    104        1.47       mrg 
    105        1.47       mrg #include <uvm/uvm_extern.h>
    106        1.47       mrg 
    107        1.26       cgd #ifdef KTRACE
    108        1.26       cgd #include <sys/ktrace.h>
    109        1.26       cgd #endif
    110        1.26       cgd 
    111        1.26       cgd #include <machine/cpu.h>
    112        1.34  christos 
    113        1.26       cgd int	lbolt;			/* once a second sleep address */
    114        1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    115        1.26       cgd 
    116        1.73   thorpej /*
    117        1.73   thorpej  * The global scheduler state.
    118        1.73   thorpej  */
    119        1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    120        1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    121        1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    122        1.73   thorpej 
    123        1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    124        1.83   thorpej 
    125        1.77   thorpej void schedcpu(void *);
    126   1.101.2.1   nathanw void updatepri(struct lwp *);
    127        1.77   thorpej void endtsleep(void *);
    128        1.34  christos 
    129   1.101.2.1   nathanw __inline void awaken(struct lwp *);
    130        1.63   thorpej 
    131        1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    132        1.68   thorpej 
    133   1.101.2.1   nathanw 
    134   1.101.2.1   nathanw 
    135        1.26       cgd /*
    136        1.26       cgd  * Force switch among equal priority processes every 100ms.
    137        1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    138        1.26       cgd  */
    139        1.26       cgd /* ARGSUSED */
    140        1.26       cgd void
    141        1.89  sommerfe roundrobin(struct cpu_info *ci)
    142        1.26       cgd {
    143        1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    144        1.26       cgd 
    145        1.88  sommerfe 	spc->spc_rrticks = rrticks;
    146        1.88  sommerfe 
    147  1.101.2.14   nathanw 	if (curlwp != NULL) {
    148        1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    149        1.69   thorpej 			/*
    150        1.69   thorpej 			 * The process has already been through a roundrobin
    151        1.69   thorpej 			 * without switching and may be hogging the CPU.
    152        1.69   thorpej 			 * Indicate that the process should yield.
    153        1.69   thorpej 			 */
    154        1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    155        1.69   thorpej 		} else
    156        1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    157        1.69   thorpej 	}
    158        1.87   thorpej 	need_resched(curcpu());
    159        1.26       cgd }
    160        1.26       cgd 
    161        1.26       cgd /*
    162        1.26       cgd  * Constants for digital decay and forget:
    163        1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    164        1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    165        1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    166        1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    167        1.26       cgd  *
    168        1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    169        1.26       cgd  *
    170        1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    171        1.26       cgd  * That is, the system wants to compute a value of decay such
    172        1.26       cgd  * that the following for loop:
    173        1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    174        1.26       cgd  * 		p_estcpu *= decay;
    175        1.26       cgd  * will compute
    176        1.26       cgd  * 	p_estcpu *= 0.1;
    177        1.26       cgd  * for all values of loadavg:
    178        1.26       cgd  *
    179        1.26       cgd  * Mathematically this loop can be expressed by saying:
    180        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    181        1.26       cgd  *
    182        1.26       cgd  * The system computes decay as:
    183        1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    184        1.26       cgd  *
    185        1.26       cgd  * We wish to prove that the system's computation of decay
    186        1.26       cgd  * will always fulfill the equation:
    187        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    188        1.26       cgd  *
    189        1.26       cgd  * If we compute b as:
    190        1.26       cgd  * 	b = 2 * loadavg
    191        1.26       cgd  * then
    192        1.26       cgd  * 	decay = b / (b + 1)
    193        1.26       cgd  *
    194        1.26       cgd  * We now need to prove two things:
    195        1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    196        1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    197        1.26       cgd  *
    198        1.26       cgd  * Facts:
    199        1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    200        1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    201        1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    202        1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    203        1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    204        1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    205        1.26       cgd  *         ln(.1) =~ -2.30
    206        1.26       cgd  *
    207        1.26       cgd  * Proof of (1):
    208        1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    209        1.26       cgd  *	solving for factor,
    210        1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    211        1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    212        1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    213        1.26       cgd  *
    214        1.26       cgd  * Proof of (2):
    215        1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    216        1.26       cgd  *	solving for power,
    217        1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    218        1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    219        1.26       cgd  *
    220        1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    221        1.26       cgd  *      loadav: 1       2       3       4
    222        1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    223        1.26       cgd  */
    224        1.26       cgd 
    225        1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    226        1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    227        1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    228        1.26       cgd 
    229        1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    230        1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    231        1.26       cgd 
    232        1.26       cgd /*
    233        1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    234        1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    235        1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    236        1.26       cgd  *
    237        1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    238        1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    239        1.26       cgd  *
    240        1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    241        1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    242        1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    243        1.26       cgd  */
    244        1.26       cgd #define	CCPU_SHIFT	11
    245        1.26       cgd 
    246        1.26       cgd /*
    247        1.26       cgd  * Recompute process priorities, every hz ticks.
    248        1.26       cgd  */
    249        1.26       cgd /* ARGSUSED */
    250        1.26       cgd void
    251        1.77   thorpej schedcpu(void *arg)
    252        1.26       cgd {
    253        1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    254   1.101.2.1   nathanw 	struct lwp *l;
    255        1.71  augustss 	struct proc *p;
    256  1.101.2.32   thorpej 	int s, minslp;
    257        1.71  augustss 	unsigned int newcpu;
    258        1.66      ross 	int clkhz;
    259        1.26       cgd 
    260        1.62   thorpej 	proclist_lock_read();
    261  1.101.2.30   nathanw 	LIST_FOREACH(p, &allproc, p_list) {
    262        1.26       cgd 		/*
    263        1.26       cgd 		 * Increment time in/out of memory and sleep time
    264        1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    265        1.26       cgd 		 * (remember them?) overflow takes 45 days.
    266        1.26       cgd 		 */
    267  1.101.2.30   nathanw 		minslp = 2;
    268  1.101.2.30   nathanw 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    269  1.101.2.30   nathanw 			l->l_swtime++;
    270  1.101.2.30   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    271  1.101.2.30   nathanw 			    l->l_stat == LSSUSPENDED) {
    272  1.101.2.30   nathanw 				l->l_slptime++;
    273  1.101.2.30   nathanw 				minslp = min(minslp, l->l_slptime);
    274  1.101.2.30   nathanw 			} else
    275  1.101.2.30   nathanw 				minslp = 0;
    276  1.101.2.30   nathanw 		}
    277        1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    278        1.26       cgd 		/*
    279        1.26       cgd 		 * If the process has slept the entire second,
    280        1.26       cgd 		 * stop recalculating its priority until it wakes up.
    281        1.26       cgd 		 */
    282  1.101.2.30   nathanw 		if (minslp > 1)
    283        1.26       cgd 			continue;
    284        1.26       cgd 		s = splstatclock();	/* prevent state changes */
    285        1.26       cgd 		/*
    286        1.26       cgd 		 * p_pctcpu is only for ps.
    287        1.26       cgd 		 */
    288        1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    289        1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    290        1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    291        1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    292        1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    293        1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    294        1.26       cgd #else
    295  1.101.2.30   nathanw 		p->p_pctcpu += ((FSCALE - ccpu) *
    296        1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    297        1.26       cgd #endif
    298        1.26       cgd 		p->p_cpticks = 0;
    299        1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    300        1.55      ross 		p->p_estcpu = newcpu;
    301  1.101.2.32   thorpej 		splx(s);	/* Done with the process CPU ticks update */
    302  1.101.2.32   thorpej 		SCHED_LOCK(s);
    303  1.101.2.30   nathanw 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    304  1.101.2.30   nathanw 			if (l->l_slptime > 1)
    305  1.101.2.30   nathanw 				continue;
    306  1.101.2.30   nathanw 			resetpriority(l);
    307  1.101.2.30   nathanw 			if (l->l_priority >= PUSER) {
    308  1.101.2.30   nathanw 				if (l->l_stat == LSRUN &&
    309  1.101.2.30   nathanw 				    (l->l_flag & L_INMEM) &&
    310  1.101.2.30   nathanw 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    311  1.101.2.30   nathanw 					remrunqueue(l);
    312  1.101.2.30   nathanw 					l->l_priority = l->l_usrpri;
    313  1.101.2.30   nathanw 					setrunqueue(l);
    314  1.101.2.30   nathanw 				} else
    315  1.101.2.30   nathanw 					l->l_priority = l->l_usrpri;
    316  1.101.2.30   nathanw 			}
    317        1.26       cgd 		}
    318  1.101.2.32   thorpej 		SCHED_UNLOCK(s);
    319        1.26       cgd 	}
    320        1.61   thorpej 	proclist_unlock_read();
    321        1.47       mrg 	uvm_meter();
    322        1.67      fvdl 	wakeup((caddr_t)&lbolt);
    323        1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    324        1.26       cgd }
    325        1.26       cgd 
    326        1.26       cgd /*
    327        1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    328        1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    329        1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    330        1.26       cgd  */
    331        1.26       cgd void
    332   1.101.2.1   nathanw updatepri(struct lwp *l)
    333        1.26       cgd {
    334   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    335        1.83   thorpej 	unsigned int newcpu;
    336        1.83   thorpej 	fixpt_t loadfac;
    337        1.83   thorpej 
    338        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    339        1.83   thorpej 
    340        1.83   thorpej 	newcpu = p->p_estcpu;
    341        1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    342        1.26       cgd 
    343   1.101.2.1   nathanw 	if (l->l_slptime > 5 * loadfac)
    344   1.101.2.1   nathanw 		p->p_estcpu = 0; /* XXX NJWLWP */
    345        1.26       cgd 	else {
    346   1.101.2.1   nathanw 		l->l_slptime--;	/* the first time was done in schedcpu */
    347   1.101.2.1   nathanw 		while (newcpu && --l->l_slptime)
    348        1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    349        1.55      ross 		p->p_estcpu = newcpu;
    350        1.26       cgd 	}
    351   1.101.2.1   nathanw 	resetpriority(l);
    352        1.26       cgd }
    353        1.26       cgd 
    354        1.26       cgd /*
    355        1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    356        1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    357        1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    358        1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    359        1.26       cgd  * This priority will typically be 0, or the lowest priority
    360        1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    361        1.26       cgd  * higher to block network software interrupts after panics.
    362        1.26       cgd  */
    363        1.26       cgd int safepri;
    364        1.26       cgd 
    365        1.26       cgd /*
    366        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    367        1.26       cgd  * performed on the specified identifier.  The process will then be made
    368        1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    369        1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    370        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    371        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    372        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    373        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    374        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    375        1.77   thorpej  *
    376   1.101.2.3   nathanw  * The interlock is held until the scheduler_slock is acquired.  The
    377        1.77   thorpej  * interlock will be locked before returning back to the caller
    378        1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    379        1.77   thorpej  * interlock will always be unlocked upon return.
    380        1.26       cgd  */
    381        1.26       cgd int
    382        1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    383        1.77   thorpej     __volatile struct simplelock *interlock)
    384        1.26       cgd {
    385  1.101.2.14   nathanw 	struct lwp *l = curlwp;
    386   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    387        1.71  augustss 	struct slpque *qp;
    388        1.77   thorpej 	int sig, s;
    389        1.77   thorpej 	int catch = priority & PCATCH;
    390        1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    391   1.101.2.1   nathanw 	int exiterr = (priority & PNOEXITERR) == 0;
    392        1.26       cgd 
    393        1.77   thorpej 	/*
    394        1.77   thorpej 	 * XXXSMP
    395        1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    396        1.77   thorpej 	 * thing to do here really is.
    397  1.101.2.14   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    398        1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    399        1.78  sommerfe 	 * how shutdown (barely) works.
    400        1.77   thorpej 	 */
    401   1.101.2.1   nathanw 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    402        1.26       cgd 		/*
    403        1.26       cgd 		 * After a panic, or during autoconfiguration,
    404        1.26       cgd 		 * just give interrupts a chance, then just return;
    405        1.26       cgd 		 * don't run any other procs or panic below,
    406        1.26       cgd 		 * in case this is the idle process and already asleep.
    407        1.26       cgd 		 */
    408        1.42       cgd 		s = splhigh();
    409        1.26       cgd 		splx(safepri);
    410        1.26       cgd 		splx(s);
    411        1.77   thorpej 		if (interlock != NULL && relock == 0)
    412        1.77   thorpej 			simple_unlock(interlock);
    413        1.26       cgd 		return (0);
    414        1.26       cgd 	}
    415        1.78  sommerfe 
    416   1.101.2.3   nathanw 	KASSERT(p != NULL);
    417   1.101.2.6   nathanw 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    418        1.42       cgd 
    419        1.42       cgd #ifdef KTRACE
    420        1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    421        1.74  sommerfe 		ktrcsw(p, 1, 0);
    422        1.42       cgd #endif
    423        1.77   thorpej 
    424        1.83   thorpej 	SCHED_LOCK(s);
    425        1.42       cgd 
    426        1.26       cgd #ifdef DIAGNOSTIC
    427        1.64   thorpej 	if (ident == NULL)
    428        1.77   thorpej 		panic("ltsleep: ident == NULL");
    429   1.101.2.1   nathanw 	if (l->l_stat != LSONPROC)
    430   1.101.2.1   nathanw 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    431   1.101.2.1   nathanw 	if (l->l_back != NULL)
    432        1.77   thorpej 		panic("ltsleep: p_back != NULL");
    433        1.26       cgd #endif
    434        1.77   thorpej 
    435   1.101.2.1   nathanw 	l->l_wchan = ident;
    436   1.101.2.1   nathanw 	l->l_wmesg = wmesg;
    437   1.101.2.1   nathanw 	l->l_slptime = 0;
    438   1.101.2.1   nathanw 	l->l_priority = priority & PRIMASK;
    439        1.77   thorpej 
    440        1.73   thorpej 	qp = SLPQUE(ident);
    441        1.26       cgd 	if (qp->sq_head == 0)
    442   1.101.2.1   nathanw 		qp->sq_head = l;
    443   1.101.2.1   nathanw 	else {
    444   1.101.2.1   nathanw 		*qp->sq_tailp = l;
    445   1.101.2.1   nathanw 	}
    446   1.101.2.1   nathanw 	*(qp->sq_tailp = &l->l_forw) = 0;
    447        1.77   thorpej 
    448        1.26       cgd 	if (timo)
    449   1.101.2.1   nathanw 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    450        1.77   thorpej 
    451        1.77   thorpej 	/*
    452        1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    453        1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    454        1.77   thorpej 	 * we do the switch.
    455        1.77   thorpej 	 *
    456        1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    457        1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    458        1.77   thorpej 	 * data structure for the sleep queues at some point.
    459        1.77   thorpej 	 */
    460        1.77   thorpej 	if (interlock != NULL)
    461        1.77   thorpej 		simple_unlock(interlock);
    462        1.77   thorpej 
    463        1.26       cgd 	/*
    464        1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    465        1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    466        1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    467        1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    468        1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    469        1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    470        1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    471        1.26       cgd 	 */
    472        1.26       cgd 	if (catch) {
    473   1.101.2.1   nathanw 		l->l_flag |= L_SINTR;
    474   1.101.2.1   nathanw 		if ((sig = CURSIG(l)) != 0) {
    475   1.101.2.1   nathanw 			if (l->l_wchan != NULL)
    476   1.101.2.1   nathanw 				unsleep(l);
    477   1.101.2.1   nathanw 			l->l_stat = LSONPROC;
    478        1.83   thorpej 			SCHED_UNLOCK(s);
    479        1.26       cgd 			goto resume;
    480        1.26       cgd 		}
    481   1.101.2.1   nathanw 		if (l->l_wchan == NULL) {
    482        1.26       cgd 			catch = 0;
    483        1.83   thorpej 			SCHED_UNLOCK(s);
    484        1.26       cgd 			goto resume;
    485        1.26       cgd 		}
    486        1.26       cgd 	} else
    487        1.26       cgd 		sig = 0;
    488   1.101.2.1   nathanw 	l->l_stat = LSSLEEP;
    489   1.101.2.1   nathanw 	p->p_nrlwps--;
    490        1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    491        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    492   1.101.2.1   nathanw 	if (l->l_flag & L_SA)
    493   1.101.2.1   nathanw 		sa_switch(l, SA_UPCALL_BLOCKED);
    494   1.101.2.1   nathanw 	else
    495   1.101.2.1   nathanw 		mi_switch(l, NULL);
    496        1.83   thorpej 
    497   1.101.2.3   nathanw #if	defined(DDB) && !defined(GPROF)
    498        1.26       cgd 	/* handy breakpoint location after process "wakes" */
    499  1.101.2.10   nathanw 	__asm(".globl bpendtsleep ; bpendtsleep:");
    500        1.26       cgd #endif
    501  1.101.2.16   nathanw 	/*
    502  1.101.2.16   nathanw 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    503  1.101.2.12   nathanw 	 * either setrunnable() or awaken().
    504  1.101.2.12   nathanw 	 */
    505        1.77   thorpej 
    506        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    507        1.83   thorpej 	splx(s);
    508        1.83   thorpej 
    509        1.77   thorpej  resume:
    510   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    511   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    512   1.101.2.1   nathanw 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    513   1.101.2.1   nathanw 
    514   1.101.2.1   nathanw 	l->l_flag &= ~L_SINTR;
    515   1.101.2.1   nathanw 	if (l->l_flag & L_TIMEOUT) {
    516   1.101.2.1   nathanw 		l->l_flag &= ~L_TIMEOUT;
    517        1.26       cgd 		if (sig == 0) {
    518        1.26       cgd #ifdef KTRACE
    519        1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    520        1.74  sommerfe 				ktrcsw(p, 0, 0);
    521        1.26       cgd #endif
    522        1.77   thorpej 			if (relock && interlock != NULL)
    523        1.77   thorpej 				simple_lock(interlock);
    524        1.26       cgd 			return (EWOULDBLOCK);
    525        1.26       cgd 		}
    526        1.26       cgd 	} else if (timo)
    527   1.101.2.1   nathanw 		callout_stop(&l->l_tsleep_ch);
    528   1.101.2.1   nathanw 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    529        1.26       cgd #ifdef KTRACE
    530        1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    531        1.74  sommerfe 			ktrcsw(p, 0, 0);
    532        1.26       cgd #endif
    533        1.77   thorpej 		if (relock && interlock != NULL)
    534        1.77   thorpej 			simple_lock(interlock);
    535        1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    536        1.26       cgd 			return (EINTR);
    537        1.26       cgd 		return (ERESTART);
    538        1.26       cgd 	}
    539   1.101.2.1   nathanw 	/* XXXNJW this is very much a kluge.
    540   1.101.2.1   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    541   1.101.2.1   nathanw 	 * wait4() and _lwp_wait() from wedging an exiting process
    542   1.101.2.1   nathanw 	 * would be preferred.
    543   1.101.2.1   nathanw 	 */
    544   1.101.2.1   nathanw 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    545   1.101.2.1   nathanw 		return (EINTR);
    546        1.26       cgd #ifdef KTRACE
    547        1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    548        1.74  sommerfe 		ktrcsw(p, 0, 0);
    549        1.26       cgd #endif
    550        1.77   thorpej 	if (relock && interlock != NULL)
    551        1.77   thorpej 		simple_lock(interlock);
    552        1.26       cgd 	return (0);
    553        1.26       cgd }
    554        1.26       cgd 
    555        1.26       cgd /*
    556        1.26       cgd  * Implement timeout for tsleep.
    557        1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    558        1.26       cgd  * set timeout flag and undo the sleep.  If proc
    559        1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    560        1.26       cgd  */
    561        1.26       cgd void
    562        1.77   thorpej endtsleep(void *arg)
    563        1.26       cgd {
    564   1.101.2.1   nathanw 	struct lwp *l;
    565        1.26       cgd 	int s;
    566        1.26       cgd 
    567   1.101.2.1   nathanw 	l = (struct lwp *)arg;
    568        1.83   thorpej 	SCHED_LOCK(s);
    569   1.101.2.1   nathanw 	if (l->l_wchan) {
    570   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP)
    571   1.101.2.1   nathanw 			setrunnable(l);
    572        1.26       cgd 		else
    573   1.101.2.1   nathanw 			unsleep(l);
    574   1.101.2.1   nathanw 		l->l_flag |= L_TIMEOUT;
    575        1.26       cgd 	}
    576        1.83   thorpej 	SCHED_UNLOCK(s);
    577        1.26       cgd }
    578        1.26       cgd 
    579        1.26       cgd /*
    580        1.26       cgd  * Remove a process from its wait queue
    581        1.26       cgd  */
    582        1.26       cgd void
    583   1.101.2.1   nathanw unsleep(struct lwp *l)
    584        1.26       cgd {
    585        1.71  augustss 	struct slpque *qp;
    586   1.101.2.1   nathanw 	struct lwp **hp;
    587        1.26       cgd 
    588        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    589        1.83   thorpej 
    590   1.101.2.1   nathanw 	if (l->l_wchan) {
    591   1.101.2.1   nathanw 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    592   1.101.2.1   nathanw 		while (*hp != l)
    593   1.101.2.1   nathanw 			hp = &(*hp)->l_forw;
    594   1.101.2.1   nathanw 		*hp = l->l_forw;
    595   1.101.2.1   nathanw 		if (qp->sq_tailp == &l->l_forw)
    596        1.26       cgd 			qp->sq_tailp = hp;
    597   1.101.2.1   nathanw 		l->l_wchan = 0;
    598        1.26       cgd 	}
    599        1.26       cgd }
    600        1.26       cgd 
    601        1.26       cgd /*
    602        1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    603        1.63   thorpej  */
    604        1.63   thorpej __inline void
    605   1.101.2.1   nathanw awaken(struct lwp *l)
    606        1.63   thorpej {
    607        1.63   thorpej 
    608        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    609   1.101.2.1   nathanw 
    610   1.101.2.1   nathanw 	if (l->l_slptime > 1)
    611   1.101.2.1   nathanw 		updatepri(l);
    612   1.101.2.1   nathanw 	l->l_slptime = 0;
    613   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    614  1.101.2.12   nathanw 	l->l_proc->p_nrlwps++;
    615        1.93    bouyer 	/*
    616        1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    617  1.101.2.28   thorpej 	 * is always better than curpriority on the last CPU on
    618  1.101.2.28   thorpej 	 * which it ran.
    619  1.101.2.28   thorpej 	 *
    620  1.101.2.28   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    621        1.93    bouyer 	 */
    622   1.101.2.1   nathanw 	if (l->l_flag & L_INMEM) {
    623   1.101.2.1   nathanw 		setrunqueue(l);
    624  1.101.2.19   nathanw 		if (l->l_flag & L_SA)
    625  1.101.2.19   nathanw 			l->l_proc->p_sa->sa_woken = l;
    626   1.101.2.1   nathanw 		KASSERT(l->l_cpu != NULL);
    627   1.101.2.1   nathanw 		need_resched(l->l_cpu);
    628        1.93    bouyer 	} else
    629        1.93    bouyer 		sched_wakeup(&proc0);
    630        1.83   thorpej }
    631        1.83   thorpej 
    632        1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    633        1.83   thorpej void
    634        1.83   thorpej sched_unlock_idle(void)
    635        1.83   thorpej {
    636        1.83   thorpej 
    637        1.83   thorpej 	simple_unlock(&sched_lock);
    638        1.63   thorpej }
    639        1.63   thorpej 
    640        1.83   thorpej void
    641        1.83   thorpej sched_lock_idle(void)
    642        1.83   thorpej {
    643        1.83   thorpej 
    644        1.83   thorpej 	simple_lock(&sched_lock);
    645        1.83   thorpej }
    646        1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    647        1.83   thorpej 
    648        1.63   thorpej /*
    649        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    650        1.26       cgd  */
    651        1.83   thorpej 
    652        1.26       cgd void
    653        1.77   thorpej wakeup(void *ident)
    654        1.26       cgd {
    655        1.83   thorpej 	int s;
    656        1.83   thorpej 
    657        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    658        1.83   thorpej 
    659        1.83   thorpej 	SCHED_LOCK(s);
    660        1.83   thorpej 	sched_wakeup(ident);
    661        1.83   thorpej 	SCHED_UNLOCK(s);
    662        1.83   thorpej }
    663        1.83   thorpej 
    664        1.83   thorpej void
    665        1.83   thorpej sched_wakeup(void *ident)
    666        1.83   thorpej {
    667        1.71  augustss 	struct slpque *qp;
    668   1.101.2.1   nathanw 	struct lwp *l, **q;
    669        1.26       cgd 
    670        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    671        1.77   thorpej 
    672        1.73   thorpej 	qp = SLPQUE(ident);
    673        1.77   thorpej  restart:
    674   1.101.2.1   nathanw 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    675        1.26       cgd #ifdef DIAGNOSTIC
    676   1.101.2.1   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    677   1.101.2.1   nathanw 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    678        1.26       cgd 			panic("wakeup");
    679        1.26       cgd #endif
    680   1.101.2.1   nathanw 		if (l->l_wchan == ident) {
    681   1.101.2.1   nathanw 			l->l_wchan = 0;
    682   1.101.2.1   nathanw 			*q = l->l_forw;
    683   1.101.2.1   nathanw 			if (qp->sq_tailp == &l->l_forw)
    684        1.26       cgd 				qp->sq_tailp = q;
    685   1.101.2.1   nathanw 			if (l->l_stat == LSSLEEP) {
    686   1.101.2.1   nathanw 				awaken(l);
    687        1.26       cgd 				goto restart;
    688        1.26       cgd 			}
    689        1.26       cgd 		} else
    690   1.101.2.1   nathanw 			q = &l->l_forw;
    691        1.63   thorpej 	}
    692        1.63   thorpej }
    693        1.63   thorpej 
    694        1.63   thorpej /*
    695        1.63   thorpej  * Make the highest priority process first in line on the specified
    696        1.63   thorpej  * identifier runnable.
    697        1.63   thorpej  */
    698        1.63   thorpej void
    699        1.77   thorpej wakeup_one(void *ident)
    700        1.63   thorpej {
    701        1.63   thorpej 	struct slpque *qp;
    702   1.101.2.1   nathanw 	struct lwp *l, **q;
    703   1.101.2.1   nathanw 	struct lwp *best_sleepp, **best_sleepq;
    704   1.101.2.1   nathanw 	struct lwp *best_stopp, **best_stopq;
    705        1.63   thorpej 	int s;
    706        1.63   thorpej 
    707        1.63   thorpej 	best_sleepp = best_stopp = NULL;
    708        1.63   thorpej 	best_sleepq = best_stopq = NULL;
    709        1.63   thorpej 
    710        1.83   thorpej 	SCHED_LOCK(s);
    711        1.77   thorpej 
    712        1.73   thorpej 	qp = SLPQUE(ident);
    713        1.77   thorpej 
    714   1.101.2.1   nathanw 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    715        1.63   thorpej #ifdef DIAGNOSTIC
    716   1.101.2.1   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    717   1.101.2.1   nathanw 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    718        1.63   thorpej 			panic("wakeup_one");
    719        1.63   thorpej #endif
    720   1.101.2.1   nathanw 		if (l->l_wchan == ident) {
    721   1.101.2.1   nathanw 			if (l->l_stat == LSSLEEP) {
    722        1.63   thorpej 				if (best_sleepp == NULL ||
    723   1.101.2.1   nathanw 				    l->l_priority < best_sleepp->l_priority) {
    724   1.101.2.1   nathanw 					best_sleepp = l;
    725        1.63   thorpej 					best_sleepq = q;
    726        1.63   thorpej 				}
    727        1.63   thorpej 			} else {
    728        1.63   thorpej 				if (best_stopp == NULL ||
    729   1.101.2.1   nathanw 				    l->l_priority < best_stopp->l_priority) {
    730   1.101.2.1   nathanw 				    	best_stopp = l;
    731        1.63   thorpej 					best_stopq = q;
    732        1.63   thorpej 				}
    733        1.63   thorpej 			}
    734        1.63   thorpej 		}
    735        1.63   thorpej 	}
    736        1.63   thorpej 
    737        1.63   thorpej 	/*
    738        1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    739        1.63   thorpej 	 * process.
    740        1.63   thorpej 	 */
    741        1.63   thorpej 	if (best_sleepp != NULL) {
    742   1.101.2.1   nathanw 		l = best_sleepp;
    743        1.63   thorpej 		q = best_sleepq;
    744        1.63   thorpej 	} else {
    745   1.101.2.1   nathanw 		l = best_stopp;
    746        1.63   thorpej 		q = best_stopq;
    747        1.63   thorpej 	}
    748        1.63   thorpej 
    749   1.101.2.1   nathanw 	if (l != NULL) {
    750   1.101.2.1   nathanw 		l->l_wchan = NULL;
    751   1.101.2.1   nathanw 		*q = l->l_forw;
    752   1.101.2.1   nathanw 		if (qp->sq_tailp == &l->l_forw)
    753        1.63   thorpej 			qp->sq_tailp = q;
    754   1.101.2.1   nathanw 		if (l->l_stat == LSSLEEP)
    755   1.101.2.1   nathanw 			awaken(l);
    756        1.26       cgd 	}
    757        1.83   thorpej 	SCHED_UNLOCK(s);
    758        1.26       cgd }
    759        1.26       cgd 
    760        1.26       cgd /*
    761        1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    762  1.101.2.28   thorpej  * performs a voluntary context switch.  Should only be called when the
    763  1.101.2.28   thorpej  * current process explicitly requests it (eg sched_yield(2) in compat code).
    764        1.69   thorpej  */
    765        1.69   thorpej void
    766        1.77   thorpej yield(void)
    767        1.69   thorpej {
    768  1.101.2.14   nathanw 	struct lwp *l = curlwp;
    769        1.69   thorpej 	int s;
    770        1.69   thorpej 
    771        1.83   thorpej 	SCHED_LOCK(s);
    772   1.101.2.1   nathanw 	l->l_priority = l->l_usrpri;
    773   1.101.2.1   nathanw 	l->l_stat = LSRUN;
    774   1.101.2.1   nathanw 	setrunqueue(l);
    775   1.101.2.1   nathanw 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    776   1.101.2.1   nathanw 	mi_switch(l, NULL);
    777        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    778        1.69   thorpej 	splx(s);
    779        1.69   thorpej }
    780        1.69   thorpej 
    781        1.69   thorpej /*
    782        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    783        1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    784        1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    785        1.69   thorpej  * criteria.
    786        1.69   thorpej  */
    787   1.101.2.1   nathanw 
    788        1.69   thorpej void
    789  1.101.2.31   thorpej preempt(int more)
    790        1.69   thorpej {
    791  1.101.2.14   nathanw 	struct lwp *l = curlwp;
    792   1.101.2.2   nathanw 	int r, s;
    793        1.69   thorpej 
    794  1.101.2.31   thorpej 	SCHED_LOCK(s);
    795  1.101.2.31   thorpej 	l->l_priority = l->l_usrpri;
    796  1.101.2.31   thorpej 	l->l_stat = LSRUN;
    797  1.101.2.31   thorpej 	setrunqueue(l);
    798  1.101.2.31   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    799  1.101.2.31   thorpej 	r = mi_switch(l, NULL);
    800  1.101.2.31   thorpej 	SCHED_ASSERT_UNLOCKED();
    801  1.101.2.31   thorpej 	splx(s);
    802  1.101.2.31   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    803  1.101.2.31   thorpej 		sa_preempt(l);
    804        1.69   thorpej }
    805        1.69   thorpej 
    806        1.69   thorpej /*
    807        1.72   thorpej  * The machine independent parts of context switch.
    808        1.86   thorpej  * Must be called at splsched() (no higher!) and with
    809        1.86   thorpej  * the sched_lock held.
    810   1.101.2.1   nathanw  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    811   1.101.2.1   nathanw  * the next lwp.
    812   1.101.2.2   nathanw  *
    813   1.101.2.2   nathanw  * Returns 1 if another process was actually run.
    814        1.26       cgd  */
    815   1.101.2.2   nathanw int
    816  1.101.2.22   nathanw mi_switch(struct lwp *l, struct lwp *newl)
    817        1.26       cgd {
    818        1.76   thorpej 	struct schedstate_percpu *spc;
    819        1.71  augustss 	struct rlimit *rlim;
    820        1.71  augustss 	long s, u;
    821        1.26       cgd 	struct timeval tv;
    822        1.85  sommerfe #if defined(MULTIPROCESSOR)
    823        1.85  sommerfe 	int hold_count;
    824        1.85  sommerfe #endif
    825   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
    826   1.101.2.2   nathanw 	int retval;
    827        1.26       cgd 
    828        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    829        1.83   thorpej 
    830        1.85  sommerfe #if defined(MULTIPROCESSOR)
    831        1.90  sommerfe 	/*
    832        1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    833        1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    834        1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    835        1.90  sommerfe 	 */
    836  1.101.2.24   nathanw 	if (l->l_flag & L_BIGLOCK)
    837        1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    838        1.85  sommerfe #endif
    839        1.85  sommerfe 
    840   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    841   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    842        1.76   thorpej 
    843   1.101.2.1   nathanw 	spc = &l->l_cpu->ci_schedstate;
    844        1.76   thorpej 
    845        1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    846        1.82   thorpej 	spinlock_switchcheck();
    847        1.82   thorpej #endif
    848        1.54       chs #ifdef LOCKDEBUG
    849        1.81   thorpej 	simple_lock_switchcheck();
    850        1.50      fvdl #endif
    851        1.81   thorpej 
    852        1.26       cgd 	/*
    853        1.26       cgd 	 * Compute the amount of time during which the current
    854  1.101.2.22   nathanw 	 * process was running.
    855        1.26       cgd 	 */
    856        1.26       cgd 	microtime(&tv);
    857   1.101.2.1   nathanw 	u = p->p_rtime.tv_usec +
    858   1.101.2.1   nathanw 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    859        1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    860        1.26       cgd 	if (u < 0) {
    861        1.26       cgd 		u += 1000000;
    862        1.26       cgd 		s--;
    863        1.26       cgd 	} else if (u >= 1000000) {
    864        1.26       cgd 		u -= 1000000;
    865        1.26       cgd 		s++;
    866        1.26       cgd 	}
    867        1.26       cgd 	p->p_rtime.tv_usec = u;
    868        1.26       cgd 	p->p_rtime.tv_sec = s;
    869        1.26       cgd 
    870        1.26       cgd 	/*
    871        1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    872        1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    873        1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    874        1.26       cgd 	 */
    875        1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    876        1.26       cgd 	if (s >= rlim->rlim_cur) {
    877       1.100  sommerfe 		/*
    878       1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    879       1.100  sommerfe 		 * use sched_psignal.
    880       1.100  sommerfe 		 */
    881        1.26       cgd 		if (s >= rlim->rlim_max)
    882       1.100  sommerfe 			sched_psignal(p, SIGKILL);
    883        1.26       cgd 		else {
    884       1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    885        1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    886        1.26       cgd 				rlim->rlim_cur += 5;
    887        1.26       cgd 		}
    888        1.26       cgd 	}
    889        1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    890        1.77   thorpej 	    p->p_nice == NZERO) {
    891        1.39        ws 		p->p_nice = autoniceval + NZERO;
    892   1.101.2.1   nathanw 		resetpriority(l);
    893        1.26       cgd 	}
    894        1.69   thorpej 
    895        1.69   thorpej 	/*
    896        1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    897        1.69   thorpej 	 * scheduling flags.
    898        1.69   thorpej 	 */
    899        1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    900  1.101.2.17   nathanw 
    901  1.101.2.17   nathanw #ifdef KSTACK_CHECK_MAGIC
    902  1.101.2.17   nathanw 	kstack_check_magic(p);
    903  1.101.2.17   nathanw #endif
    904        1.26       cgd 
    905        1.26       cgd 	/*
    906  1.101.2.18   nathanw 	 * If we are using h/w performance counters, save context.
    907  1.101.2.18   nathanw 	 */
    908  1.101.2.18   nathanw #if PERFCTRS
    909  1.101.2.18   nathanw 	if (PMC_ENABLED(p))
    910  1.101.2.18   nathanw 		pmc_save_context(p);
    911  1.101.2.18   nathanw #endif
    912  1.101.2.18   nathanw 
    913  1.101.2.18   nathanw 	/*
    914  1.101.2.22   nathanw 	 * Switch to the new current process.  When we
    915        1.76   thorpej 	 * run again, we'll return back here.
    916        1.26       cgd 	 */
    917        1.47       mrg 	uvmexp.swtch++;
    918  1.101.2.22   nathanw 	if (newl == NULL) {
    919  1.101.2.22   nathanw 		retval = cpu_switch(l, NULL);
    920   1.101.2.2   nathanw 	} else {
    921  1.101.2.29   thorpej 		remrunqueue(newl);
    922  1.101.2.29   thorpej 		cpu_switchto(l, newl);
    923   1.101.2.2   nathanw 		retval = 0;
    924   1.101.2.2   nathanw 	}
    925  1.101.2.18   nathanw 
    926  1.101.2.18   nathanw 	/*
    927  1.101.2.18   nathanw 	 * If we are using h/w performance counters, restore context.
    928  1.101.2.18   nathanw 	 */
    929  1.101.2.18   nathanw #if PERFCTRS
    930  1.101.2.18   nathanw 	if (PMC_ENABLED(p))
    931  1.101.2.18   nathanw 		pmc_restore_context(p);
    932  1.101.2.18   nathanw #endif
    933        1.76   thorpej 
    934        1.76   thorpej 	/*
    935        1.83   thorpej 	 * Make sure that MD code released the scheduler lock before
    936        1.83   thorpej 	 * resuming us.
    937        1.83   thorpej 	 */
    938        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    939        1.83   thorpej 
    940        1.83   thorpej 	/*
    941        1.76   thorpej 	 * We're running again; record our new start time.  We might
    942        1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    943        1.76   thorpej 	 * schedstate_percpu pointer.
    944        1.76   thorpej 	 */
    945   1.101.2.1   nathanw 	KDASSERT(l->l_cpu != NULL);
    946   1.101.2.1   nathanw 	KDASSERT(l->l_cpu == curcpu());
    947   1.101.2.1   nathanw 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    948        1.85  sommerfe 
    949        1.85  sommerfe #if defined(MULTIPROCESSOR)
    950        1.90  sommerfe 	/*
    951        1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    952        1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    953        1.90  sommerfe 	 * we reacquire the interlock.
    954        1.90  sommerfe 	 */
    955  1.101.2.24   nathanw 	if (l->l_flag & L_BIGLOCK)
    956        1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    957        1.85  sommerfe #endif
    958   1.101.2.2   nathanw 
    959   1.101.2.2   nathanw 	return retval;
    960        1.26       cgd }
    961        1.26       cgd 
    962        1.26       cgd /*
    963        1.26       cgd  * Initialize the (doubly-linked) run queues
    964        1.26       cgd  * to be empty.
    965        1.26       cgd  */
    966        1.26       cgd void
    967        1.26       cgd rqinit()
    968        1.26       cgd {
    969        1.71  augustss 	int i;
    970        1.26       cgd 
    971        1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    972        1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    973   1.101.2.1   nathanw 		    (struct lwp *)&sched_qs[i];
    974        1.26       cgd }
    975        1.26       cgd 
    976  1.101.2.28   thorpej static __inline void
    977  1.101.2.32   thorpej resched_proc(struct lwp *l, u_char pri)
    978  1.101.2.28   thorpej {
    979  1.101.2.28   thorpej 	struct cpu_info *ci;
    980  1.101.2.28   thorpej 
    981  1.101.2.28   thorpej 	/*
    982  1.101.2.28   thorpej 	 * XXXSMP
    983  1.101.2.28   thorpej 	 * Since l->l_cpu persists across a context switch,
    984  1.101.2.28   thorpej 	 * this gives us *very weak* processor affinity, in
    985  1.101.2.28   thorpej 	 * that we notify the CPU on which the process last
    986  1.101.2.28   thorpej 	 * ran that it should try to switch.
    987  1.101.2.28   thorpej 	 *
    988  1.101.2.28   thorpej 	 * This does not guarantee that the process will run on
    989  1.101.2.28   thorpej 	 * that processor next, because another processor might
    990  1.101.2.28   thorpej 	 * grab it the next time it performs a context switch.
    991  1.101.2.28   thorpej 	 *
    992  1.101.2.28   thorpej 	 * This also does not handle the case where its last
    993  1.101.2.28   thorpej 	 * CPU is running a higher-priority process, but every
    994  1.101.2.28   thorpej 	 * other CPU is running a lower-priority process.  There
    995  1.101.2.28   thorpej 	 * are ways to handle this situation, but they're not
    996  1.101.2.28   thorpej 	 * currently very pretty, and we also need to weigh the
    997  1.101.2.28   thorpej 	 * cost of moving a process from one CPU to another.
    998  1.101.2.28   thorpej 	 *
    999  1.101.2.28   thorpej 	 * XXXSMP
   1000  1.101.2.28   thorpej 	 * There is also the issue of locking the other CPU's
   1001  1.101.2.28   thorpej 	 * sched state, which we currently do not do.
   1002  1.101.2.28   thorpej 	 */
   1003  1.101.2.28   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1004  1.101.2.32   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1005  1.101.2.28   thorpej 		need_resched(ci);
   1006  1.101.2.28   thorpej }
   1007  1.101.2.28   thorpej 
   1008        1.26       cgd /*
   1009        1.26       cgd  * Change process state to be runnable,
   1010        1.26       cgd  * placing it on the run queue if it is in memory,
   1011        1.26       cgd  * and awakening the swapper if it isn't in memory.
   1012        1.26       cgd  */
   1013        1.26       cgd void
   1014   1.101.2.1   nathanw setrunnable(struct lwp *l)
   1015        1.26       cgd {
   1016   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1017        1.26       cgd 
   1018        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1019        1.83   thorpej 
   1020   1.101.2.1   nathanw 	switch (l->l_stat) {
   1021        1.26       cgd 	case 0:
   1022   1.101.2.1   nathanw 	case LSRUN:
   1023   1.101.2.1   nathanw 	case LSONPROC:
   1024   1.101.2.1   nathanw 	case LSZOMB:
   1025   1.101.2.1   nathanw 	case LSDEAD:
   1026        1.26       cgd 	default:
   1027        1.26       cgd 		panic("setrunnable");
   1028   1.101.2.1   nathanw 	case LSSTOP:
   1029        1.33   mycroft 		/*
   1030        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1031        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1032        1.33   mycroft 		 */
   1033        1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1034        1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1035       1.101   thorpej 			CHECKSIGS(p);
   1036        1.53   mycroft 		}
   1037   1.101.2.1   nathanw 	case LSSLEEP:
   1038   1.101.2.1   nathanw 		unsleep(l);		/* e.g. when sending signals */
   1039        1.26       cgd 		break;
   1040        1.26       cgd 
   1041   1.101.2.1   nathanw 	case LSIDL:
   1042   1.101.2.1   nathanw 		break;
   1043   1.101.2.1   nathanw 	case LSSUSPENDED:
   1044        1.26       cgd 		break;
   1045        1.26       cgd 	}
   1046   1.101.2.1   nathanw 	l->l_stat = LSRUN;
   1047  1.101.2.12   nathanw 	p->p_nrlwps++;
   1048  1.101.2.12   nathanw 
   1049   1.101.2.1   nathanw 	if (l->l_flag & L_INMEM)
   1050   1.101.2.1   nathanw 		setrunqueue(l);
   1051   1.101.2.1   nathanw 
   1052   1.101.2.1   nathanw 	if (l->l_slptime > 1)
   1053   1.101.2.1   nathanw 		updatepri(l);
   1054   1.101.2.1   nathanw 	l->l_slptime = 0;
   1055   1.101.2.1   nathanw 	if ((l->l_flag & L_INMEM) == 0)
   1056  1.101.2.26   nathanw 		sched_wakeup((caddr_t)&proc0);
   1057  1.101.2.28   thorpej 	else
   1058  1.101.2.32   thorpej 		resched_proc(l, l->l_priority);
   1059        1.26       cgd }
   1060        1.26       cgd 
   1061        1.26       cgd /*
   1062        1.26       cgd  * Compute the priority of a process when running in user mode.
   1063        1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1064        1.26       cgd  * than that of the current process.
   1065        1.26       cgd  */
   1066        1.26       cgd void
   1067   1.101.2.1   nathanw resetpriority(struct lwp *l)
   1068        1.26       cgd {
   1069        1.71  augustss 	unsigned int newpriority;
   1070   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1071        1.26       cgd 
   1072        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1073        1.83   thorpej 
   1074   1.101.2.1   nathanw 	newpriority = PUSER + p->p_estcpu +
   1075   1.101.2.1   nathanw 			NICE_WEIGHT * (p->p_nice - NZERO);
   1076        1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1077   1.101.2.1   nathanw 	l->l_usrpri = newpriority;
   1078  1.101.2.32   thorpej 	resched_proc(l, l->l_usrpri);
   1079        1.55      ross }
   1080        1.55      ross 
   1081   1.101.2.1   nathanw /*
   1082   1.101.2.1   nathanw  * Recompute priority for all LWPs in a process.
   1083   1.101.2.1   nathanw  */
   1084   1.101.2.1   nathanw void
   1085   1.101.2.1   nathanw resetprocpriority(struct proc *p)
   1086   1.101.2.1   nathanw {
   1087   1.101.2.1   nathanw 	struct lwp *l;
   1088   1.101.2.1   nathanw 
   1089  1.101.2.27   nathanw 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1090   1.101.2.1   nathanw 	    resetpriority(l);
   1091   1.101.2.1   nathanw }
   1092   1.101.2.1   nathanw 
   1093        1.55      ross /*
   1094        1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1095        1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1096        1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1097        1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1098        1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1099        1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1100        1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1101        1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1102        1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1103        1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1104        1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1105        1.56      ross  * processes.
   1106        1.55      ross  */
   1107        1.55      ross 
   1108        1.55      ross void
   1109   1.101.2.1   nathanw schedclock(struct lwp *l)
   1110        1.55      ross {
   1111   1.101.2.1   nathanw 	struct proc *p = l->l_proc;
   1112        1.83   thorpej 	int s;
   1113        1.77   thorpej 
   1114        1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1115        1.83   thorpej 	SCHED_LOCK(s);
   1116   1.101.2.1   nathanw 	resetpriority(l);
   1117        1.83   thorpej 	SCHED_UNLOCK(s);
   1118   1.101.2.1   nathanw 
   1119   1.101.2.1   nathanw 	if (l->l_priority >= PUSER)
   1120   1.101.2.1   nathanw 		l->l_priority = l->l_usrpri;
   1121        1.26       cgd }
   1122        1.94    bouyer 
   1123        1.94    bouyer void
   1124        1.94    bouyer suspendsched()
   1125        1.94    bouyer {
   1126   1.101.2.1   nathanw 	struct lwp *l;
   1127        1.97     enami 	int s;
   1128        1.94    bouyer 
   1129        1.94    bouyer 	/*
   1130   1.101.2.1   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1131   1.101.2.1   nathanw 	 * LSSUSPENDED.
   1132        1.94    bouyer 	 */
   1133        1.95   thorpej 	proclist_lock_read();
   1134        1.95   thorpej 	SCHED_LOCK(s);
   1135  1.101.2.23   nathanw 	LIST_FOREACH(l, &alllwp, l_list) {
   1136   1.101.2.1   nathanw 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1137        1.94    bouyer 			continue;
   1138   1.101.2.1   nathanw 
   1139   1.101.2.1   nathanw 		switch (l->l_stat) {
   1140   1.101.2.1   nathanw 		case LSRUN:
   1141  1.101.2.12   nathanw 			l->l_proc->p_nrlwps--;
   1142   1.101.2.1   nathanw 			if ((l->l_flag & L_INMEM) != 0)
   1143   1.101.2.1   nathanw 				remrunqueue(l);
   1144        1.97     enami 			/* FALLTHROUGH */
   1145   1.101.2.1   nathanw 		case LSSLEEP:
   1146   1.101.2.1   nathanw 			l->l_stat = LSSUSPENDED;
   1147        1.97     enami 			break;
   1148   1.101.2.1   nathanw 		case LSONPROC:
   1149        1.97     enami 			/*
   1150        1.97     enami 			 * XXX SMP: we need to deal with processes on
   1151        1.97     enami 			 * others CPU !
   1152        1.97     enami 			 */
   1153        1.97     enami 			break;
   1154        1.97     enami 		default:
   1155        1.97     enami 			break;
   1156        1.94    bouyer 		}
   1157        1.94    bouyer 	}
   1158        1.94    bouyer 	SCHED_UNLOCK(s);
   1159        1.97     enami 	proclist_unlock_read();
   1160        1.94    bouyer }
   1161   1.101.2.1   nathanw 
   1162  1.101.2.22   nathanw /*
   1163  1.101.2.22   nathanw  * Low-level routines to access the run queue.  Optimised assembler
   1164  1.101.2.22   nathanw  * routines can override these.
   1165  1.101.2.22   nathanw  */
   1166  1.101.2.22   nathanw 
   1167  1.101.2.22   nathanw #ifndef __HAVE_MD_RUNQUEUE
   1168  1.101.2.25   nathanw 
   1169  1.101.2.25   nathanw /*
   1170  1.101.2.25   nathanw  * The primitives that manipulate the run queues.  whichqs tells which
   1171  1.101.2.25   nathanw  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1172  1.101.2.25   nathanw  * into queues, remrunqueue removes them from queues.  The running process is
   1173  1.101.2.25   nathanw  * on no queue, other processes are on a queue related to p->p_priority,
   1174  1.101.2.25   nathanw  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1175  1.101.2.25   nathanw  * available queues.
   1176  1.101.2.25   nathanw  */
   1177  1.101.2.22   nathanw 
   1178  1.101.2.22   nathanw void
   1179  1.101.2.22   nathanw setrunqueue(struct lwp *l)
   1180  1.101.2.22   nathanw {
   1181  1.101.2.23   nathanw 	struct prochd *rq;
   1182  1.101.2.22   nathanw 	struct lwp *prev;
   1183  1.101.2.22   nathanw 	int whichq;
   1184  1.101.2.22   nathanw 
   1185  1.101.2.22   nathanw #ifdef DIAGNOSTIC
   1186  1.101.2.22   nathanw 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1187  1.101.2.22   nathanw 		panic("setrunqueue");
   1188  1.101.2.22   nathanw #endif
   1189  1.101.2.22   nathanw 	whichq = l->l_priority / 4;
   1190  1.101.2.22   nathanw 	sched_whichqs |= (1<<whichq);
   1191  1.101.2.22   nathanw 	rq = &sched_qs[whichq];
   1192  1.101.2.22   nathanw 	prev = rq->ph_rlink;
   1193  1.101.2.22   nathanw 	l->l_forw = (struct lwp *)rq;
   1194  1.101.2.22   nathanw 	rq->ph_rlink = l;
   1195  1.101.2.22   nathanw 	prev->l_forw = l;
   1196  1.101.2.22   nathanw 	l->l_back = prev;
   1197  1.101.2.22   nathanw }
   1198   1.101.2.1   nathanw 
   1199  1.101.2.22   nathanw void
   1200  1.101.2.22   nathanw remrunqueue(struct lwp *l)
   1201  1.101.2.22   nathanw {
   1202  1.101.2.23   nathanw 	struct lwp *prev, *next;
   1203  1.101.2.22   nathanw 	int whichq;
   1204  1.101.2.22   nathanw 
   1205  1.101.2.23   nathanw 	whichq = l->l_priority / 4;
   1206  1.101.2.22   nathanw #ifdef DIAGNOSTIC
   1207  1.101.2.22   nathanw 	if (((sched_whichqs & (1<<whichq)) == 0))
   1208  1.101.2.22   nathanw 		panic("remrunqueue");
   1209  1.101.2.22   nathanw #endif
   1210  1.101.2.22   nathanw 	prev = l->l_back;
   1211  1.101.2.22   nathanw 	l->l_back = NULL;
   1212  1.101.2.22   nathanw 	next = l->l_forw;
   1213  1.101.2.22   nathanw 	prev->l_forw = next;
   1214  1.101.2.22   nathanw 	next->l_back = prev;
   1215  1.101.2.22   nathanw 	if (prev == next)
   1216  1.101.2.22   nathanw 		sched_whichqs &= ~(1<<whichq);
   1217  1.101.2.22   nathanw }
   1218  1.101.2.22   nathanw 
   1219  1.101.2.22   nathanw #endif
   1220