Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.105.2.1
      1  1.105.2.1   thorpej /*	$NetBSD: kern_synch.c,v 1.105.2.1 2001/11/12 21:18:50 thorpej Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4       1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.63   thorpej  * NASA Ames Research Center.
     10       1.63   thorpej  *
     11       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.63   thorpej  * modification, are permitted provided that the following conditions
     13       1.63   thorpej  * are met:
     14       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20       1.63   thorpej  *    must display the following acknowledgement:
     21       1.63   thorpej  *	This product includes software developed by the NetBSD
     22       1.63   thorpej  *	Foundation, Inc. and its contributors.
     23       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25       1.63   thorpej  *    from this software without specific prior written permission.
     26       1.63   thorpej  *
     27       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38       1.63   thorpej  */
     39       1.26       cgd 
     40       1.26       cgd /*-
     41       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44       1.26       cgd  * All or some portions of this file are derived from material licensed
     45       1.26       cgd  * to the University of California by American Telephone and Telegraph
     46       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48       1.26       cgd  *
     49       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50       1.26       cgd  * modification, are permitted provided that the following conditions
     51       1.26       cgd  * are met:
     52       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57       1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58       1.26       cgd  *    must display the following acknowledgement:
     59       1.26       cgd  *	This product includes software developed by the University of
     60       1.26       cgd  *	California, Berkeley and its contributors.
     61       1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62       1.26       cgd  *    may be used to endorse or promote products derived from this software
     63       1.26       cgd  *    without specific prior written permission.
     64       1.26       cgd  *
     65       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75       1.26       cgd  * SUCH DAMAGE.
     76       1.26       cgd  *
     77       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78       1.26       cgd  */
     79  1.105.2.1   thorpej 
     80  1.105.2.1   thorpej #include <sys/cdefs.h>
     81  1.105.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.105.2.1 2001/11/12 21:18:50 thorpej Exp $");
     82       1.48       mrg 
     83       1.52  jonathan #include "opt_ddb.h"
     84       1.51   thorpej #include "opt_ktrace.h"
     85       1.82   thorpej #include "opt_lockdebug.h"
     86       1.83   thorpej #include "opt_multiprocessor.h"
     87       1.26       cgd 
     88       1.26       cgd #include <sys/param.h>
     89       1.26       cgd #include <sys/systm.h>
     90       1.68   thorpej #include <sys/callout.h>
     91       1.26       cgd #include <sys/proc.h>
     92       1.26       cgd #include <sys/kernel.h>
     93       1.26       cgd #include <sys/buf.h>
     94       1.26       cgd #include <sys/signalvar.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97       1.47       mrg 
     98       1.47       mrg #include <uvm/uvm_extern.h>
     99       1.47       mrg 
    100       1.26       cgd #ifdef KTRACE
    101       1.26       cgd #include <sys/ktrace.h>
    102       1.26       cgd #endif
    103       1.26       cgd 
    104       1.26       cgd #include <machine/cpu.h>
    105       1.34  christos 
    106       1.26       cgd int	lbolt;			/* once a second sleep address */
    107       1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    108       1.26       cgd 
    109       1.73   thorpej /*
    110       1.73   thorpej  * The global scheduler state.
    111       1.73   thorpej  */
    112       1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    113       1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    114       1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    115       1.73   thorpej 
    116       1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    117       1.84   thorpej #if defined(MULTIPROCESSOR)
    118       1.84   thorpej struct lock kernel_lock;
    119       1.84   thorpej #endif
    120       1.83   thorpej 
    121       1.77   thorpej void schedcpu(void *);
    122       1.77   thorpej void updatepri(struct proc *);
    123       1.77   thorpej void endtsleep(void *);
    124       1.34  christos 
    125       1.77   thorpej __inline void awaken(struct proc *);
    126       1.63   thorpej 
    127       1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    128       1.68   thorpej 
    129       1.26       cgd /*
    130       1.26       cgd  * Force switch among equal priority processes every 100ms.
    131       1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    132       1.26       cgd  */
    133       1.26       cgd /* ARGSUSED */
    134       1.26       cgd void
    135       1.89  sommerfe roundrobin(struct cpu_info *ci)
    136       1.26       cgd {
    137       1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    138       1.26       cgd 
    139       1.88  sommerfe 	spc->spc_rrticks = rrticks;
    140       1.88  sommerfe 
    141       1.69   thorpej 	if (curproc != NULL) {
    142       1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    143       1.69   thorpej 			/*
    144       1.69   thorpej 			 * The process has already been through a roundrobin
    145       1.69   thorpej 			 * without switching and may be hogging the CPU.
    146       1.69   thorpej 			 * Indicate that the process should yield.
    147       1.69   thorpej 			 */
    148       1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    149       1.69   thorpej 		} else
    150       1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    151       1.69   thorpej 	}
    152       1.87   thorpej 	need_resched(curcpu());
    153       1.26       cgd }
    154       1.26       cgd 
    155       1.26       cgd /*
    156       1.26       cgd  * Constants for digital decay and forget:
    157       1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    158       1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    159       1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    160       1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    161       1.26       cgd  *
    162       1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    163       1.26       cgd  *
    164       1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    165       1.26       cgd  * That is, the system wants to compute a value of decay such
    166       1.26       cgd  * that the following for loop:
    167       1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    168       1.26       cgd  * 		p_estcpu *= decay;
    169       1.26       cgd  * will compute
    170       1.26       cgd  * 	p_estcpu *= 0.1;
    171       1.26       cgd  * for all values of loadavg:
    172       1.26       cgd  *
    173       1.26       cgd  * Mathematically this loop can be expressed by saying:
    174       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    175       1.26       cgd  *
    176       1.26       cgd  * The system computes decay as:
    177       1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    178       1.26       cgd  *
    179       1.26       cgd  * We wish to prove that the system's computation of decay
    180       1.26       cgd  * will always fulfill the equation:
    181       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    182       1.26       cgd  *
    183       1.26       cgd  * If we compute b as:
    184       1.26       cgd  * 	b = 2 * loadavg
    185       1.26       cgd  * then
    186       1.26       cgd  * 	decay = b / (b + 1)
    187       1.26       cgd  *
    188       1.26       cgd  * We now need to prove two things:
    189       1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    190       1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    191       1.26       cgd  *
    192       1.26       cgd  * Facts:
    193       1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    194       1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    195       1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    196       1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    197       1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    198       1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    199       1.26       cgd  *         ln(.1) =~ -2.30
    200       1.26       cgd  *
    201       1.26       cgd  * Proof of (1):
    202       1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    203       1.26       cgd  *	solving for factor,
    204       1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    205       1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    206       1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    207       1.26       cgd  *
    208       1.26       cgd  * Proof of (2):
    209       1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    210       1.26       cgd  *	solving for power,
    211       1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    212       1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    213       1.26       cgd  *
    214       1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    215       1.26       cgd  *      loadav: 1       2       3       4
    216       1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    217       1.26       cgd  */
    218       1.26       cgd 
    219       1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    220       1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    221       1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    222       1.26       cgd 
    223       1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    224       1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    225       1.26       cgd 
    226       1.26       cgd /*
    227       1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    228       1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    229       1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    230       1.26       cgd  *
    231       1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    232       1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    233       1.26       cgd  *
    234       1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    235       1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    236       1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    237       1.26       cgd  */
    238       1.26       cgd #define	CCPU_SHIFT	11
    239       1.26       cgd 
    240       1.26       cgd /*
    241       1.26       cgd  * Recompute process priorities, every hz ticks.
    242       1.26       cgd  */
    243       1.26       cgd /* ARGSUSED */
    244       1.26       cgd void
    245       1.77   thorpej schedcpu(void *arg)
    246       1.26       cgd {
    247       1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    248       1.71  augustss 	struct proc *p;
    249       1.83   thorpej 	int s, s1;
    250       1.71  augustss 	unsigned int newcpu;
    251       1.66      ross 	int clkhz;
    252       1.26       cgd 
    253       1.62   thorpej 	proclist_lock_read();
    254       1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    255       1.26       cgd 		/*
    256       1.26       cgd 		 * Increment time in/out of memory and sleep time
    257       1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    258       1.26       cgd 		 * (remember them?) overflow takes 45 days.
    259       1.26       cgd 		 */
    260       1.26       cgd 		p->p_swtime++;
    261       1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    262       1.26       cgd 			p->p_slptime++;
    263       1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    264       1.26       cgd 		/*
    265       1.26       cgd 		 * If the process has slept the entire second,
    266       1.26       cgd 		 * stop recalculating its priority until it wakes up.
    267       1.26       cgd 		 */
    268       1.26       cgd 		if (p->p_slptime > 1)
    269       1.26       cgd 			continue;
    270       1.26       cgd 		s = splstatclock();	/* prevent state changes */
    271       1.26       cgd 		/*
    272       1.26       cgd 		 * p_pctcpu is only for ps.
    273       1.26       cgd 		 */
    274       1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    275       1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    276       1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    277       1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    278       1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    279       1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    280       1.26       cgd #else
    281       1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    282       1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    283       1.26       cgd #endif
    284       1.26       cgd 		p->p_cpticks = 0;
    285       1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    286       1.55      ross 		p->p_estcpu = newcpu;
    287       1.83   thorpej 		SCHED_LOCK(s1);
    288       1.26       cgd 		resetpriority(p);
    289       1.26       cgd 		if (p->p_priority >= PUSER) {
    290       1.72   thorpej 			if (p->p_stat == SRUN &&
    291       1.26       cgd 			    (p->p_flag & P_INMEM) &&
    292       1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    293       1.43       cgd 				remrunqueue(p);
    294       1.26       cgd 				p->p_priority = p->p_usrpri;
    295       1.26       cgd 				setrunqueue(p);
    296       1.26       cgd 			} else
    297       1.26       cgd 				p->p_priority = p->p_usrpri;
    298       1.26       cgd 		}
    299       1.83   thorpej 		SCHED_UNLOCK(s1);
    300       1.26       cgd 		splx(s);
    301       1.26       cgd 	}
    302       1.61   thorpej 	proclist_unlock_read();
    303       1.47       mrg 	uvm_meter();
    304       1.67      fvdl 	wakeup((caddr_t)&lbolt);
    305       1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    306       1.26       cgd }
    307       1.26       cgd 
    308       1.26       cgd /*
    309       1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    310       1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    311       1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    312       1.26       cgd  */
    313       1.26       cgd void
    314       1.77   thorpej updatepri(struct proc *p)
    315       1.26       cgd {
    316       1.83   thorpej 	unsigned int newcpu;
    317       1.83   thorpej 	fixpt_t loadfac;
    318       1.83   thorpej 
    319       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    320       1.83   thorpej 
    321       1.83   thorpej 	newcpu = p->p_estcpu;
    322       1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    323       1.26       cgd 
    324       1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    325       1.26       cgd 		p->p_estcpu = 0;
    326       1.26       cgd 	else {
    327       1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    328       1.26       cgd 		while (newcpu && --p->p_slptime)
    329       1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    330       1.55      ross 		p->p_estcpu = newcpu;
    331       1.26       cgd 	}
    332       1.26       cgd 	resetpriority(p);
    333       1.26       cgd }
    334       1.26       cgd 
    335       1.26       cgd /*
    336       1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    337       1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    338       1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    339       1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    340       1.26       cgd  * This priority will typically be 0, or the lowest priority
    341       1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    342       1.26       cgd  * higher to block network software interrupts after panics.
    343       1.26       cgd  */
    344       1.26       cgd int safepri;
    345       1.26       cgd 
    346       1.26       cgd /*
    347       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    348       1.26       cgd  * performed on the specified identifier.  The process will then be made
    349       1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    350       1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    351       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    352       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    353       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    354       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    355       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    356       1.77   thorpej  *
    357      1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    358       1.77   thorpej  * interlock will be locked before returning back to the caller
    359       1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    360       1.77   thorpej  * interlock will always be unlocked upon return.
    361       1.26       cgd  */
    362       1.26       cgd int
    363       1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    364       1.77   thorpej     __volatile struct simplelock *interlock)
    365       1.26       cgd {
    366       1.71  augustss 	struct proc *p = curproc;
    367       1.71  augustss 	struct slpque *qp;
    368       1.77   thorpej 	int sig, s;
    369       1.77   thorpej 	int catch = priority & PCATCH;
    370       1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    371       1.26       cgd 
    372       1.77   thorpej 	/*
    373       1.77   thorpej 	 * XXXSMP
    374       1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    375       1.77   thorpej 	 * thing to do here really is.
    376       1.78  sommerfe 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    377       1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    378       1.78  sommerfe 	 * how shutdown (barely) works.
    379       1.77   thorpej 	 */
    380       1.78  sommerfe 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    381       1.26       cgd 		/*
    382       1.26       cgd 		 * After a panic, or during autoconfiguration,
    383       1.26       cgd 		 * just give interrupts a chance, then just return;
    384       1.26       cgd 		 * don't run any other procs or panic below,
    385       1.26       cgd 		 * in case this is the idle process and already asleep.
    386       1.26       cgd 		 */
    387       1.42       cgd 		s = splhigh();
    388       1.26       cgd 		splx(safepri);
    389       1.26       cgd 		splx(s);
    390       1.77   thorpej 		if (interlock != NULL && relock == 0)
    391       1.77   thorpej 			simple_unlock(interlock);
    392       1.26       cgd 		return (0);
    393       1.26       cgd 	}
    394       1.78  sommerfe 
    395      1.102   thorpej 	KASSERT(p != NULL);
    396      1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    397       1.42       cgd 
    398       1.42       cgd #ifdef KTRACE
    399       1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    400       1.74  sommerfe 		ktrcsw(p, 1, 0);
    401       1.42       cgd #endif
    402       1.77   thorpej 
    403       1.83   thorpej 	SCHED_LOCK(s);
    404       1.42       cgd 
    405       1.26       cgd #ifdef DIAGNOSTIC
    406       1.64   thorpej 	if (ident == NULL)
    407       1.77   thorpej 		panic("ltsleep: ident == NULL");
    408       1.72   thorpej 	if (p->p_stat != SONPROC)
    409       1.77   thorpej 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    410       1.64   thorpej 	if (p->p_back != NULL)
    411       1.77   thorpej 		panic("ltsleep: p_back != NULL");
    412       1.26       cgd #endif
    413       1.77   thorpej 
    414       1.26       cgd 	p->p_wchan = ident;
    415       1.26       cgd 	p->p_wmesg = wmesg;
    416       1.26       cgd 	p->p_slptime = 0;
    417       1.26       cgd 	p->p_priority = priority & PRIMASK;
    418       1.77   thorpej 
    419       1.73   thorpej 	qp = SLPQUE(ident);
    420       1.26       cgd 	if (qp->sq_head == 0)
    421       1.26       cgd 		qp->sq_head = p;
    422       1.26       cgd 	else
    423       1.26       cgd 		*qp->sq_tailp = p;
    424       1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    425       1.77   thorpej 
    426       1.26       cgd 	if (timo)
    427       1.68   thorpej 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    428       1.77   thorpej 
    429       1.77   thorpej 	/*
    430       1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    431       1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    432       1.77   thorpej 	 * we do the switch.
    433       1.77   thorpej 	 *
    434       1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    435       1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    436       1.77   thorpej 	 * data structure for the sleep queues at some point.
    437       1.77   thorpej 	 */
    438       1.77   thorpej 	if (interlock != NULL)
    439       1.77   thorpej 		simple_unlock(interlock);
    440       1.77   thorpej 
    441       1.26       cgd 	/*
    442       1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    443       1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    444       1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    445       1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    446       1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    447       1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    448       1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    449       1.26       cgd 	 */
    450       1.26       cgd 	if (catch) {
    451       1.26       cgd 		p->p_flag |= P_SINTR;
    452       1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    453       1.77   thorpej 			if (p->p_wchan != NULL)
    454       1.26       cgd 				unsleep(p);
    455       1.72   thorpej 			p->p_stat = SONPROC;
    456       1.83   thorpej 			SCHED_UNLOCK(s);
    457       1.26       cgd 			goto resume;
    458       1.26       cgd 		}
    459       1.77   thorpej 		if (p->p_wchan == NULL) {
    460       1.26       cgd 			catch = 0;
    461       1.83   thorpej 			SCHED_UNLOCK(s);
    462       1.26       cgd 			goto resume;
    463       1.26       cgd 		}
    464       1.26       cgd 	} else
    465       1.26       cgd 		sig = 0;
    466       1.26       cgd 	p->p_stat = SSLEEP;
    467       1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    468       1.77   thorpej 
    469       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    470       1.74  sommerfe 	mi_switch(p);
    471       1.83   thorpej 
    472      1.104       chs #if	defined(DDB) && !defined(GPROF)
    473       1.26       cgd 	/* handy breakpoint location after process "wakes" */
    474       1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    475       1.26       cgd #endif
    476       1.77   thorpej 
    477       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    478       1.83   thorpej 	splx(s);
    479       1.83   thorpej 
    480       1.77   thorpej  resume:
    481       1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    482       1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    483       1.76   thorpej 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    484       1.83   thorpej 
    485       1.26       cgd 	p->p_flag &= ~P_SINTR;
    486       1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    487       1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    488       1.26       cgd 		if (sig == 0) {
    489       1.26       cgd #ifdef KTRACE
    490       1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    491       1.74  sommerfe 				ktrcsw(p, 0, 0);
    492       1.26       cgd #endif
    493       1.77   thorpej 			if (relock && interlock != NULL)
    494       1.77   thorpej 				simple_lock(interlock);
    495       1.26       cgd 			return (EWOULDBLOCK);
    496       1.26       cgd 		}
    497       1.26       cgd 	} else if (timo)
    498       1.68   thorpej 		callout_stop(&p->p_tsleep_ch);
    499       1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    500       1.26       cgd #ifdef KTRACE
    501       1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    502       1.74  sommerfe 			ktrcsw(p, 0, 0);
    503       1.26       cgd #endif
    504       1.77   thorpej 		if (relock && interlock != NULL)
    505       1.77   thorpej 			simple_lock(interlock);
    506       1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    507       1.26       cgd 			return (EINTR);
    508       1.26       cgd 		return (ERESTART);
    509       1.26       cgd 	}
    510       1.26       cgd #ifdef KTRACE
    511       1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    512       1.74  sommerfe 		ktrcsw(p, 0, 0);
    513       1.26       cgd #endif
    514       1.77   thorpej 	if (relock && interlock != NULL)
    515       1.77   thorpej 		simple_lock(interlock);
    516       1.26       cgd 	return (0);
    517       1.26       cgd }
    518       1.26       cgd 
    519       1.26       cgd /*
    520       1.26       cgd  * Implement timeout for tsleep.
    521       1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    522       1.26       cgd  * set timeout flag and undo the sleep.  If proc
    523       1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    524       1.26       cgd  */
    525       1.26       cgd void
    526       1.77   thorpej endtsleep(void *arg)
    527       1.26       cgd {
    528       1.71  augustss 	struct proc *p;
    529       1.26       cgd 	int s;
    530       1.26       cgd 
    531       1.26       cgd 	p = (struct proc *)arg;
    532       1.83   thorpej 
    533       1.83   thorpej 	SCHED_LOCK(s);
    534       1.26       cgd 	if (p->p_wchan) {
    535       1.26       cgd 		if (p->p_stat == SSLEEP)
    536       1.26       cgd 			setrunnable(p);
    537       1.26       cgd 		else
    538       1.26       cgd 			unsleep(p);
    539       1.26       cgd 		p->p_flag |= P_TIMEOUT;
    540       1.26       cgd 	}
    541       1.83   thorpej 	SCHED_UNLOCK(s);
    542       1.26       cgd }
    543       1.26       cgd 
    544       1.26       cgd /*
    545       1.26       cgd  * Remove a process from its wait queue
    546       1.26       cgd  */
    547       1.26       cgd void
    548       1.77   thorpej unsleep(struct proc *p)
    549       1.26       cgd {
    550       1.71  augustss 	struct slpque *qp;
    551       1.71  augustss 	struct proc **hp;
    552       1.26       cgd 
    553       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    554       1.83   thorpej 
    555       1.26       cgd 	if (p->p_wchan) {
    556       1.73   thorpej 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    557       1.26       cgd 		while (*hp != p)
    558       1.26       cgd 			hp = &(*hp)->p_forw;
    559       1.26       cgd 		*hp = p->p_forw;
    560       1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    561       1.26       cgd 			qp->sq_tailp = hp;
    562       1.26       cgd 		p->p_wchan = 0;
    563       1.26       cgd 	}
    564       1.26       cgd }
    565       1.26       cgd 
    566       1.26       cgd /*
    567       1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    568       1.63   thorpej  */
    569       1.63   thorpej __inline void
    570       1.77   thorpej awaken(struct proc *p)
    571       1.63   thorpej {
    572       1.63   thorpej 
    573       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    574       1.83   thorpej 
    575       1.63   thorpej 	if (p->p_slptime > 1)
    576       1.63   thorpej 		updatepri(p);
    577       1.63   thorpej 	p->p_slptime = 0;
    578       1.93    bouyer 	p->p_stat = SRUN;
    579       1.93    bouyer 
    580       1.93    bouyer 	/*
    581       1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    582       1.93    bouyer 	 * is always better than curpriority.
    583       1.93    bouyer 	 */
    584       1.93    bouyer 	if (p->p_flag & P_INMEM) {
    585       1.93    bouyer 		setrunqueue(p);
    586       1.93    bouyer 		KASSERT(p->p_cpu != NULL);
    587       1.93    bouyer 		need_resched(p->p_cpu);
    588       1.93    bouyer 	} else
    589       1.93    bouyer 		sched_wakeup(&proc0);
    590       1.83   thorpej }
    591       1.83   thorpej 
    592       1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    593       1.83   thorpej void
    594       1.83   thorpej sched_unlock_idle(void)
    595       1.83   thorpej {
    596       1.83   thorpej 
    597       1.83   thorpej 	simple_unlock(&sched_lock);
    598       1.63   thorpej }
    599       1.63   thorpej 
    600       1.83   thorpej void
    601       1.83   thorpej sched_lock_idle(void)
    602       1.83   thorpej {
    603       1.83   thorpej 
    604       1.83   thorpej 	simple_lock(&sched_lock);
    605       1.83   thorpej }
    606       1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    607       1.83   thorpej 
    608       1.63   thorpej /*
    609       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    610       1.26       cgd  */
    611       1.83   thorpej 
    612       1.26       cgd void
    613       1.77   thorpej wakeup(void *ident)
    614       1.26       cgd {
    615       1.83   thorpej 	int s;
    616       1.83   thorpej 
    617       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    618       1.83   thorpej 
    619       1.83   thorpej 	SCHED_LOCK(s);
    620       1.83   thorpej 	sched_wakeup(ident);
    621       1.83   thorpej 	SCHED_UNLOCK(s);
    622       1.83   thorpej }
    623       1.83   thorpej 
    624       1.83   thorpej void
    625       1.83   thorpej sched_wakeup(void *ident)
    626       1.83   thorpej {
    627       1.71  augustss 	struct slpque *qp;
    628       1.71  augustss 	struct proc *p, **q;
    629       1.26       cgd 
    630       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    631       1.77   thorpej 
    632       1.73   thorpej 	qp = SLPQUE(ident);
    633       1.77   thorpej  restart:
    634       1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    635       1.26       cgd #ifdef DIAGNOSTIC
    636       1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    637       1.26       cgd 			panic("wakeup");
    638       1.26       cgd #endif
    639       1.26       cgd 		if (p->p_wchan == ident) {
    640       1.26       cgd 			p->p_wchan = 0;
    641       1.26       cgd 			*q = p->p_forw;
    642       1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    643       1.26       cgd 				qp->sq_tailp = q;
    644       1.26       cgd 			if (p->p_stat == SSLEEP) {
    645       1.63   thorpej 				awaken(p);
    646       1.26       cgd 				goto restart;
    647       1.26       cgd 			}
    648       1.26       cgd 		} else
    649       1.26       cgd 			q = &p->p_forw;
    650       1.63   thorpej 	}
    651       1.63   thorpej }
    652       1.63   thorpej 
    653       1.63   thorpej /*
    654       1.63   thorpej  * Make the highest priority process first in line on the specified
    655       1.63   thorpej  * identifier runnable.
    656       1.63   thorpej  */
    657       1.63   thorpej void
    658       1.77   thorpej wakeup_one(void *ident)
    659       1.63   thorpej {
    660       1.63   thorpej 	struct slpque *qp;
    661       1.63   thorpej 	struct proc *p, **q;
    662       1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    663       1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    664       1.63   thorpej 	int s;
    665       1.63   thorpej 
    666       1.63   thorpej 	best_sleepp = best_stopp = NULL;
    667       1.63   thorpej 	best_sleepq = best_stopq = NULL;
    668       1.63   thorpej 
    669       1.83   thorpej 	SCHED_LOCK(s);
    670       1.77   thorpej 
    671       1.73   thorpej 	qp = SLPQUE(ident);
    672       1.77   thorpej 
    673       1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    674       1.63   thorpej #ifdef DIAGNOSTIC
    675       1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    676       1.63   thorpej 			panic("wakeup_one");
    677       1.63   thorpej #endif
    678       1.63   thorpej 		if (p->p_wchan == ident) {
    679       1.63   thorpej 			if (p->p_stat == SSLEEP) {
    680       1.63   thorpej 				if (best_sleepp == NULL ||
    681       1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    682       1.63   thorpej 					best_sleepp = p;
    683       1.63   thorpej 					best_sleepq = q;
    684       1.63   thorpej 				}
    685       1.63   thorpej 			} else {
    686       1.63   thorpej 				if (best_stopp == NULL ||
    687       1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    688       1.63   thorpej 					best_stopp = p;
    689       1.63   thorpej 					best_stopq = q;
    690       1.63   thorpej 				}
    691       1.63   thorpej 			}
    692       1.63   thorpej 		}
    693       1.63   thorpej 	}
    694       1.63   thorpej 
    695       1.63   thorpej 	/*
    696       1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    697       1.63   thorpej 	 * process.
    698       1.63   thorpej 	 */
    699       1.63   thorpej 	if (best_sleepp != NULL) {
    700       1.63   thorpej 		p = best_sleepp;
    701       1.63   thorpej 		q = best_sleepq;
    702       1.63   thorpej 	} else {
    703       1.63   thorpej 		p = best_stopp;
    704       1.63   thorpej 		q = best_stopq;
    705       1.63   thorpej 	}
    706       1.63   thorpej 
    707       1.63   thorpej 	if (p != NULL) {
    708       1.77   thorpej 		p->p_wchan = NULL;
    709       1.63   thorpej 		*q = p->p_forw;
    710       1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    711       1.63   thorpej 			qp->sq_tailp = q;
    712       1.63   thorpej 		if (p->p_stat == SSLEEP)
    713       1.63   thorpej 			awaken(p);
    714       1.26       cgd 	}
    715       1.83   thorpej 	SCHED_UNLOCK(s);
    716       1.26       cgd }
    717       1.26       cgd 
    718       1.26       cgd /*
    719       1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    720       1.69   thorpej  * performs a voluntary context switch.
    721       1.69   thorpej  */
    722       1.69   thorpej void
    723       1.77   thorpej yield(void)
    724       1.69   thorpej {
    725       1.69   thorpej 	struct proc *p = curproc;
    726       1.69   thorpej 	int s;
    727       1.69   thorpej 
    728       1.83   thorpej 	SCHED_LOCK(s);
    729       1.69   thorpej 	p->p_priority = p->p_usrpri;
    730       1.93    bouyer 	p->p_stat = SRUN;
    731       1.93    bouyer 	setrunqueue(p);
    732       1.69   thorpej 	p->p_stats->p_ru.ru_nvcsw++;
    733       1.74  sommerfe 	mi_switch(p);
    734       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    735       1.69   thorpej 	splx(s);
    736       1.69   thorpej }
    737       1.69   thorpej 
    738       1.69   thorpej /*
    739       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    740       1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    741       1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    742       1.69   thorpej  * criteria.
    743       1.69   thorpej  */
    744       1.69   thorpej void
    745       1.77   thorpej preempt(struct proc *newp)
    746       1.69   thorpej {
    747       1.69   thorpej 	struct proc *p = curproc;
    748       1.69   thorpej 	int s;
    749       1.69   thorpej 
    750       1.69   thorpej 	/*
    751       1.69   thorpej 	 * XXX Switching to a specific process is not supported yet.
    752       1.69   thorpej 	 */
    753       1.69   thorpej 	if (newp != NULL)
    754       1.69   thorpej 		panic("preempt: cpu_preempt not yet implemented");
    755       1.69   thorpej 
    756       1.83   thorpej 	SCHED_LOCK(s);
    757       1.69   thorpej 	p->p_priority = p->p_usrpri;
    758       1.93    bouyer 	p->p_stat = SRUN;
    759       1.93    bouyer 	setrunqueue(p);
    760       1.69   thorpej 	p->p_stats->p_ru.ru_nivcsw++;
    761       1.74  sommerfe 	mi_switch(p);
    762       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    763       1.69   thorpej 	splx(s);
    764       1.69   thorpej }
    765       1.69   thorpej 
    766       1.69   thorpej /*
    767       1.72   thorpej  * The machine independent parts of context switch.
    768       1.86   thorpej  * Must be called at splsched() (no higher!) and with
    769       1.86   thorpej  * the sched_lock held.
    770       1.26       cgd  */
    771       1.26       cgd void
    772       1.77   thorpej mi_switch(struct proc *p)
    773       1.26       cgd {
    774       1.76   thorpej 	struct schedstate_percpu *spc;
    775       1.71  augustss 	struct rlimit *rlim;
    776       1.71  augustss 	long s, u;
    777       1.26       cgd 	struct timeval tv;
    778       1.85  sommerfe #if defined(MULTIPROCESSOR)
    779       1.85  sommerfe 	int hold_count;
    780       1.85  sommerfe #endif
    781       1.26       cgd 
    782       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    783       1.83   thorpej 
    784       1.85  sommerfe #if defined(MULTIPROCESSOR)
    785       1.90  sommerfe 	/*
    786       1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    787       1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    788       1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    789       1.90  sommerfe 	 */
    790       1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    791       1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    792       1.85  sommerfe #endif
    793       1.85  sommerfe 
    794       1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    795       1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    796       1.76   thorpej 
    797       1.76   thorpej 	spc = &p->p_cpu->ci_schedstate;
    798       1.76   thorpej 
    799       1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    800       1.82   thorpej 	spinlock_switchcheck();
    801       1.82   thorpej #endif
    802       1.54       chs #ifdef LOCKDEBUG
    803       1.81   thorpej 	simple_lock_switchcheck();
    804       1.50      fvdl #endif
    805       1.81   thorpej 
    806       1.26       cgd 	/*
    807       1.26       cgd 	 * Compute the amount of time during which the current
    808       1.26       cgd 	 * process was running, and add that to its total so far.
    809       1.26       cgd 	 */
    810       1.26       cgd 	microtime(&tv);
    811       1.73   thorpej 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    812       1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    813       1.26       cgd 	if (u < 0) {
    814       1.26       cgd 		u += 1000000;
    815       1.26       cgd 		s--;
    816       1.26       cgd 	} else if (u >= 1000000) {
    817       1.26       cgd 		u -= 1000000;
    818       1.26       cgd 		s++;
    819       1.26       cgd 	}
    820       1.26       cgd 	p->p_rtime.tv_usec = u;
    821       1.26       cgd 	p->p_rtime.tv_sec = s;
    822       1.26       cgd 
    823       1.26       cgd 	/*
    824       1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    825       1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    826       1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    827       1.26       cgd 	 */
    828       1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    829       1.26       cgd 	if (s >= rlim->rlim_cur) {
    830      1.100  sommerfe 		/*
    831      1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    832      1.100  sommerfe 		 * use sched_psignal.
    833      1.100  sommerfe 		 */
    834       1.26       cgd 		if (s >= rlim->rlim_max)
    835      1.100  sommerfe 			sched_psignal(p, SIGKILL);
    836       1.26       cgd 		else {
    837      1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    838       1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    839       1.26       cgd 				rlim->rlim_cur += 5;
    840       1.26       cgd 		}
    841       1.26       cgd 	}
    842       1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    843       1.77   thorpej 	    p->p_nice == NZERO) {
    844       1.39        ws 		p->p_nice = autoniceval + NZERO;
    845       1.26       cgd 		resetpriority(p);
    846       1.26       cgd 	}
    847       1.69   thorpej 
    848       1.69   thorpej 	/*
    849       1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    850       1.69   thorpej 	 * scheduling flags.
    851       1.69   thorpej 	 */
    852       1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    853       1.26       cgd 
    854       1.26       cgd 	/*
    855       1.76   thorpej 	 * Pick a new current process and switch to it.  When we
    856       1.76   thorpej 	 * run again, we'll return back here.
    857       1.26       cgd 	 */
    858       1.47       mrg 	uvmexp.swtch++;
    859       1.26       cgd 	cpu_switch(p);
    860       1.76   thorpej 
    861       1.76   thorpej 	/*
    862       1.83   thorpej 	 * Make sure that MD code released the scheduler lock before
    863       1.83   thorpej 	 * resuming us.
    864       1.83   thorpej 	 */
    865       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    866       1.83   thorpej 
    867       1.83   thorpej 	/*
    868       1.76   thorpej 	 * We're running again; record our new start time.  We might
    869       1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    870       1.76   thorpej 	 * schedstate_percpu pointer.
    871       1.76   thorpej 	 */
    872       1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    873       1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    874       1.76   thorpej 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    875       1.85  sommerfe 
    876       1.85  sommerfe #if defined(MULTIPROCESSOR)
    877       1.90  sommerfe 	/*
    878       1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    879       1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    880       1.90  sommerfe 	 * we reacquire the interlock.
    881       1.90  sommerfe 	 */
    882       1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    883       1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    884       1.85  sommerfe #endif
    885       1.26       cgd }
    886       1.26       cgd 
    887       1.26       cgd /*
    888       1.26       cgd  * Initialize the (doubly-linked) run queues
    889       1.26       cgd  * to be empty.
    890       1.26       cgd  */
    891       1.26       cgd void
    892       1.26       cgd rqinit()
    893       1.26       cgd {
    894       1.71  augustss 	int i;
    895       1.26       cgd 
    896       1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    897       1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    898       1.73   thorpej 		    (struct proc *)&sched_qs[i];
    899       1.26       cgd }
    900       1.26       cgd 
    901       1.26       cgd /*
    902       1.26       cgd  * Change process state to be runnable,
    903       1.26       cgd  * placing it on the run queue if it is in memory,
    904       1.26       cgd  * and awakening the swapper if it isn't in memory.
    905       1.26       cgd  */
    906       1.26       cgd void
    907       1.77   thorpej setrunnable(struct proc *p)
    908       1.26       cgd {
    909       1.26       cgd 
    910       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    911       1.83   thorpej 
    912       1.26       cgd 	switch (p->p_stat) {
    913       1.26       cgd 	case 0:
    914       1.26       cgd 	case SRUN:
    915       1.72   thorpej 	case SONPROC:
    916       1.26       cgd 	case SZOMB:
    917       1.60   thorpej 	case SDEAD:
    918       1.26       cgd 	default:
    919       1.26       cgd 		panic("setrunnable");
    920       1.26       cgd 	case SSTOP:
    921       1.33   mycroft 		/*
    922       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    923       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    924       1.33   mycroft 		 */
    925       1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    926       1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    927      1.101   thorpej 			CHECKSIGS(p);
    928       1.53   mycroft 		}
    929       1.26       cgd 	case SSLEEP:
    930       1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    931       1.26       cgd 		break;
    932       1.26       cgd 
    933       1.26       cgd 	case SIDL:
    934       1.26       cgd 		break;
    935       1.26       cgd 	}
    936       1.93    bouyer 	p->p_stat = SRUN;
    937       1.93    bouyer 	if (p->p_flag & P_INMEM)
    938       1.93    bouyer 		setrunqueue(p);
    939       1.93    bouyer 
    940       1.26       cgd 	if (p->p_slptime > 1)
    941       1.26       cgd 		updatepri(p);
    942       1.26       cgd 	p->p_slptime = 0;
    943       1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    944       1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
    945       1.76   thorpej 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    946       1.76   thorpej 		/*
    947       1.76   thorpej 		 * XXXSMP
    948       1.87   thorpej 		 * This is not exactly right.  Since p->p_cpu persists
    949       1.87   thorpej 		 * across a context switch, this gives us some sort
    950       1.87   thorpej 		 * of processor affinity.  But we need to figure out
    951       1.87   thorpej 		 * at what point it's better to reschedule on a different
    952       1.87   thorpej 		 * CPU than the last one.
    953       1.76   thorpej 		 */
    954       1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    955       1.76   thorpej 	}
    956       1.26       cgd }
    957       1.26       cgd 
    958       1.26       cgd /*
    959       1.26       cgd  * Compute the priority of a process when running in user mode.
    960       1.26       cgd  * Arrange to reschedule if the resulting priority is better
    961       1.26       cgd  * than that of the current process.
    962       1.26       cgd  */
    963       1.26       cgd void
    964       1.77   thorpej resetpriority(struct proc *p)
    965       1.26       cgd {
    966       1.71  augustss 	unsigned int newpriority;
    967       1.26       cgd 
    968       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    969       1.83   thorpej 
    970       1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    971       1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    972       1.26       cgd 	p->p_usrpri = newpriority;
    973       1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    974       1.76   thorpej 		/*
    975       1.76   thorpej 		 * XXXSMP
    976       1.76   thorpej 		 * Same applies as in setrunnable() above.
    977       1.76   thorpej 		 */
    978       1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    979       1.76   thorpej 	}
    980       1.55      ross }
    981       1.55      ross 
    982       1.55      ross /*
    983       1.56      ross  * We adjust the priority of the current process.  The priority of a process
    984       1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    985       1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    986       1.56      ross  * will compute a different value each time p_estcpu increases. This can
    987       1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    988       1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
    989       1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    990       1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    991       1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
    992       1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    993       1.56      ross  * processes which haven't run much recently, and to round-robin among other
    994       1.56      ross  * processes.
    995       1.55      ross  */
    996       1.55      ross 
    997       1.55      ross void
    998       1.77   thorpej schedclock(struct proc *p)
    999       1.55      ross {
   1000       1.83   thorpej 	int s;
   1001       1.77   thorpej 
   1002       1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1003       1.83   thorpej 
   1004       1.83   thorpej 	SCHED_LOCK(s);
   1005       1.55      ross 	resetpriority(p);
   1006       1.83   thorpej 	SCHED_UNLOCK(s);
   1007       1.83   thorpej 
   1008       1.55      ross 	if (p->p_priority >= PUSER)
   1009       1.55      ross 		p->p_priority = p->p_usrpri;
   1010       1.26       cgd }
   1011       1.94    bouyer 
   1012       1.94    bouyer void
   1013       1.94    bouyer suspendsched()
   1014       1.94    bouyer {
   1015       1.97     enami 	struct proc *p;
   1016       1.97     enami 	int s;
   1017       1.94    bouyer 
   1018       1.94    bouyer 	/*
   1019       1.97     enami 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1020       1.94    bouyer 	 */
   1021       1.95   thorpej 	proclist_lock_read();
   1022       1.95   thorpej 	SCHED_LOCK(s);
   1023       1.95   thorpej 	for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
   1024       1.97     enami 		if ((p->p_flag & P_SYSTEM) != 0)
   1025       1.94    bouyer 			continue;
   1026       1.97     enami 		switch (p->p_stat) {
   1027       1.97     enami 		case SRUN:
   1028       1.97     enami 			if ((p->p_flag & P_INMEM) != 0)
   1029       1.97     enami 				remrunqueue(p);
   1030       1.97     enami 			/* FALLTHROUGH */
   1031       1.97     enami 		case SSLEEP:
   1032       1.97     enami 			p->p_stat = SSTOP;
   1033       1.97     enami 			break;
   1034       1.97     enami 		case SONPROC:
   1035       1.97     enami 			/*
   1036       1.97     enami 			 * XXX SMP: we need to deal with processes on
   1037       1.97     enami 			 * others CPU !
   1038       1.97     enami 			 */
   1039       1.97     enami 			break;
   1040       1.97     enami 		default:
   1041       1.97     enami 			break;
   1042       1.94    bouyer 		}
   1043       1.94    bouyer 	}
   1044       1.94    bouyer 	SCHED_UNLOCK(s);
   1045       1.97     enami 	proclist_unlock_read();
   1046       1.94    bouyer }
   1047