kern_synch.c revision 1.106 1 1.106 lukem /* $NetBSD: kern_synch.c,v 1.106 2001/11/12 15:25:16 lukem Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.106 lukem
80 1.106 lukem #include <sys/cdefs.h>
81 1.106 lukem __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.106 2001/11/12 15:25:16 lukem Exp $");
82 1.48 mrg
83 1.52 jonathan #include "opt_ddb.h"
84 1.51 thorpej #include "opt_ktrace.h"
85 1.82 thorpej #include "opt_lockdebug.h"
86 1.83 thorpej #include "opt_multiprocessor.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.26 cgd #include <sys/kernel.h>
93 1.26 cgd #include <sys/buf.h>
94 1.26 cgd #include <sys/signalvar.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.47 mrg
98 1.47 mrg #include <uvm/uvm_extern.h>
99 1.47 mrg
100 1.26 cgd #ifdef KTRACE
101 1.26 cgd #include <sys/ktrace.h>
102 1.26 cgd #endif
103 1.26 cgd
104 1.26 cgd #include <machine/cpu.h>
105 1.34 christos
106 1.26 cgd int lbolt; /* once a second sleep address */
107 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
108 1.26 cgd
109 1.73 thorpej /*
110 1.73 thorpej * The global scheduler state.
111 1.73 thorpej */
112 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
113 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
114 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
115 1.73 thorpej
116 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
117 1.84 thorpej #if defined(MULTIPROCESSOR)
118 1.84 thorpej struct lock kernel_lock;
119 1.84 thorpej #endif
120 1.83 thorpej
121 1.77 thorpej void schedcpu(void *);
122 1.77 thorpej void updatepri(struct proc *);
123 1.77 thorpej void endtsleep(void *);
124 1.34 christos
125 1.77 thorpej __inline void awaken(struct proc *);
126 1.63 thorpej
127 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128 1.68 thorpej
129 1.26 cgd /*
130 1.26 cgd * Force switch among equal priority processes every 100ms.
131 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
132 1.26 cgd */
133 1.26 cgd /* ARGSUSED */
134 1.26 cgd void
135 1.89 sommerfe roundrobin(struct cpu_info *ci)
136 1.26 cgd {
137 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
138 1.26 cgd
139 1.88 sommerfe spc->spc_rrticks = rrticks;
140 1.88 sommerfe
141 1.69 thorpej if (curproc != NULL) {
142 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
143 1.69 thorpej /*
144 1.69 thorpej * The process has already been through a roundrobin
145 1.69 thorpej * without switching and may be hogging the CPU.
146 1.69 thorpej * Indicate that the process should yield.
147 1.69 thorpej */
148 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
149 1.69 thorpej } else
150 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
151 1.69 thorpej }
152 1.87 thorpej need_resched(curcpu());
153 1.26 cgd }
154 1.26 cgd
155 1.26 cgd /*
156 1.26 cgd * Constants for digital decay and forget:
157 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
158 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
159 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
160 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
161 1.26 cgd *
162 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
163 1.26 cgd *
164 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
165 1.26 cgd * That is, the system wants to compute a value of decay such
166 1.26 cgd * that the following for loop:
167 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
168 1.26 cgd * p_estcpu *= decay;
169 1.26 cgd * will compute
170 1.26 cgd * p_estcpu *= 0.1;
171 1.26 cgd * for all values of loadavg:
172 1.26 cgd *
173 1.26 cgd * Mathematically this loop can be expressed by saying:
174 1.26 cgd * decay ** (5 * loadavg) ~= .1
175 1.26 cgd *
176 1.26 cgd * The system computes decay as:
177 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
178 1.26 cgd *
179 1.26 cgd * We wish to prove that the system's computation of decay
180 1.26 cgd * will always fulfill the equation:
181 1.26 cgd * decay ** (5 * loadavg) ~= .1
182 1.26 cgd *
183 1.26 cgd * If we compute b as:
184 1.26 cgd * b = 2 * loadavg
185 1.26 cgd * then
186 1.26 cgd * decay = b / (b + 1)
187 1.26 cgd *
188 1.26 cgd * We now need to prove two things:
189 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
190 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
191 1.26 cgd *
192 1.26 cgd * Facts:
193 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
194 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
195 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
196 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
197 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
198 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
199 1.26 cgd * ln(.1) =~ -2.30
200 1.26 cgd *
201 1.26 cgd * Proof of (1):
202 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
203 1.26 cgd * solving for factor,
204 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
205 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
206 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
207 1.26 cgd *
208 1.26 cgd * Proof of (2):
209 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
210 1.26 cgd * solving for power,
211 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
212 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
213 1.26 cgd *
214 1.26 cgd * Actual power values for the implemented algorithm are as follows:
215 1.26 cgd * loadav: 1 2 3 4
216 1.26 cgd * power: 5.68 10.32 14.94 19.55
217 1.26 cgd */
218 1.26 cgd
219 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
220 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
221 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
222 1.26 cgd
223 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
224 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
225 1.26 cgd
226 1.26 cgd /*
227 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
228 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
229 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
230 1.26 cgd *
231 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
232 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
233 1.26 cgd *
234 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
235 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
236 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
237 1.26 cgd */
238 1.26 cgd #define CCPU_SHIFT 11
239 1.26 cgd
240 1.26 cgd /*
241 1.26 cgd * Recompute process priorities, every hz ticks.
242 1.26 cgd */
243 1.26 cgd /* ARGSUSED */
244 1.26 cgd void
245 1.77 thorpej schedcpu(void *arg)
246 1.26 cgd {
247 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
248 1.71 augustss struct proc *p;
249 1.83 thorpej int s, s1;
250 1.71 augustss unsigned int newcpu;
251 1.66 ross int clkhz;
252 1.26 cgd
253 1.62 thorpej proclist_lock_read();
254 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
255 1.26 cgd /*
256 1.26 cgd * Increment time in/out of memory and sleep time
257 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
258 1.26 cgd * (remember them?) overflow takes 45 days.
259 1.26 cgd */
260 1.26 cgd p->p_swtime++;
261 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
262 1.26 cgd p->p_slptime++;
263 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
264 1.26 cgd /*
265 1.26 cgd * If the process has slept the entire second,
266 1.26 cgd * stop recalculating its priority until it wakes up.
267 1.26 cgd */
268 1.26 cgd if (p->p_slptime > 1)
269 1.26 cgd continue;
270 1.26 cgd s = splstatclock(); /* prevent state changes */
271 1.26 cgd /*
272 1.26 cgd * p_pctcpu is only for ps.
273 1.26 cgd */
274 1.66 ross clkhz = stathz != 0 ? stathz : hz;
275 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
276 1.66 ross p->p_pctcpu += (clkhz == 100)?
277 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
279 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
280 1.26 cgd #else
281 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
282 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
283 1.26 cgd #endif
284 1.26 cgd p->p_cpticks = 0;
285 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
286 1.55 ross p->p_estcpu = newcpu;
287 1.83 thorpej SCHED_LOCK(s1);
288 1.26 cgd resetpriority(p);
289 1.26 cgd if (p->p_priority >= PUSER) {
290 1.72 thorpej if (p->p_stat == SRUN &&
291 1.26 cgd (p->p_flag & P_INMEM) &&
292 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
293 1.43 cgd remrunqueue(p);
294 1.26 cgd p->p_priority = p->p_usrpri;
295 1.26 cgd setrunqueue(p);
296 1.26 cgd } else
297 1.26 cgd p->p_priority = p->p_usrpri;
298 1.26 cgd }
299 1.83 thorpej SCHED_UNLOCK(s1);
300 1.26 cgd splx(s);
301 1.26 cgd }
302 1.61 thorpej proclist_unlock_read();
303 1.47 mrg uvm_meter();
304 1.67 fvdl wakeup((caddr_t)&lbolt);
305 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
306 1.26 cgd }
307 1.26 cgd
308 1.26 cgd /*
309 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
310 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
311 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
312 1.26 cgd */
313 1.26 cgd void
314 1.77 thorpej updatepri(struct proc *p)
315 1.26 cgd {
316 1.83 thorpej unsigned int newcpu;
317 1.83 thorpej fixpt_t loadfac;
318 1.83 thorpej
319 1.83 thorpej SCHED_ASSERT_LOCKED();
320 1.83 thorpej
321 1.83 thorpej newcpu = p->p_estcpu;
322 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
323 1.26 cgd
324 1.26 cgd if (p->p_slptime > 5 * loadfac)
325 1.26 cgd p->p_estcpu = 0;
326 1.26 cgd else {
327 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
328 1.26 cgd while (newcpu && --p->p_slptime)
329 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
330 1.55 ross p->p_estcpu = newcpu;
331 1.26 cgd }
332 1.26 cgd resetpriority(p);
333 1.26 cgd }
334 1.26 cgd
335 1.26 cgd /*
336 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
337 1.26 cgd * lower the priority briefly to allow interrupts, then return.
338 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
339 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
340 1.26 cgd * This priority will typically be 0, or the lowest priority
341 1.26 cgd * that is safe for use on the interrupt stack; it can be made
342 1.26 cgd * higher to block network software interrupts after panics.
343 1.26 cgd */
344 1.26 cgd int safepri;
345 1.26 cgd
346 1.26 cgd /*
347 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
348 1.26 cgd * performed on the specified identifier. The process will then be made
349 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
350 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
351 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
352 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
353 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
354 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
355 1.26 cgd * call should be interrupted by the signal (return EINTR).
356 1.77 thorpej *
357 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
358 1.77 thorpej * interlock will be locked before returning back to the caller
359 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
360 1.77 thorpej * interlock will always be unlocked upon return.
361 1.26 cgd */
362 1.26 cgd int
363 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
364 1.77 thorpej __volatile struct simplelock *interlock)
365 1.26 cgd {
366 1.71 augustss struct proc *p = curproc;
367 1.71 augustss struct slpque *qp;
368 1.77 thorpej int sig, s;
369 1.77 thorpej int catch = priority & PCATCH;
370 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
371 1.26 cgd
372 1.77 thorpej /*
373 1.77 thorpej * XXXSMP
374 1.77 thorpej * This is probably bogus. Figure out what the right
375 1.77 thorpej * thing to do here really is.
376 1.78 sommerfe * Note that not sleeping if ltsleep is called with curproc == NULL
377 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
378 1.78 sommerfe * how shutdown (barely) works.
379 1.77 thorpej */
380 1.78 sommerfe if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
381 1.26 cgd /*
382 1.26 cgd * After a panic, or during autoconfiguration,
383 1.26 cgd * just give interrupts a chance, then just return;
384 1.26 cgd * don't run any other procs or panic below,
385 1.26 cgd * in case this is the idle process and already asleep.
386 1.26 cgd */
387 1.42 cgd s = splhigh();
388 1.26 cgd splx(safepri);
389 1.26 cgd splx(s);
390 1.77 thorpej if (interlock != NULL && relock == 0)
391 1.77 thorpej simple_unlock(interlock);
392 1.26 cgd return (0);
393 1.26 cgd }
394 1.78 sommerfe
395 1.102 thorpej KASSERT(p != NULL);
396 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
397 1.42 cgd
398 1.42 cgd #ifdef KTRACE
399 1.42 cgd if (KTRPOINT(p, KTR_CSW))
400 1.74 sommerfe ktrcsw(p, 1, 0);
401 1.42 cgd #endif
402 1.77 thorpej
403 1.83 thorpej SCHED_LOCK(s);
404 1.42 cgd
405 1.26 cgd #ifdef DIAGNOSTIC
406 1.64 thorpej if (ident == NULL)
407 1.77 thorpej panic("ltsleep: ident == NULL");
408 1.72 thorpej if (p->p_stat != SONPROC)
409 1.77 thorpej panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
410 1.64 thorpej if (p->p_back != NULL)
411 1.77 thorpej panic("ltsleep: p_back != NULL");
412 1.26 cgd #endif
413 1.77 thorpej
414 1.26 cgd p->p_wchan = ident;
415 1.26 cgd p->p_wmesg = wmesg;
416 1.26 cgd p->p_slptime = 0;
417 1.26 cgd p->p_priority = priority & PRIMASK;
418 1.77 thorpej
419 1.73 thorpej qp = SLPQUE(ident);
420 1.26 cgd if (qp->sq_head == 0)
421 1.26 cgd qp->sq_head = p;
422 1.26 cgd else
423 1.26 cgd *qp->sq_tailp = p;
424 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
425 1.77 thorpej
426 1.26 cgd if (timo)
427 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
428 1.77 thorpej
429 1.77 thorpej /*
430 1.77 thorpej * We can now release the interlock; the scheduler_slock
431 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
432 1.77 thorpej * we do the switch.
433 1.77 thorpej *
434 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
435 1.77 thorpej * on the sleep queue, because we might want a more clever
436 1.77 thorpej * data structure for the sleep queues at some point.
437 1.77 thorpej */
438 1.77 thorpej if (interlock != NULL)
439 1.77 thorpej simple_unlock(interlock);
440 1.77 thorpej
441 1.26 cgd /*
442 1.26 cgd * We put ourselves on the sleep queue and start our timeout
443 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
444 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
445 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
446 1.26 cgd * without resuming us, thus we must be ready for sleep
447 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
448 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
449 1.26 cgd */
450 1.26 cgd if (catch) {
451 1.26 cgd p->p_flag |= P_SINTR;
452 1.34 christos if ((sig = CURSIG(p)) != 0) {
453 1.77 thorpej if (p->p_wchan != NULL)
454 1.26 cgd unsleep(p);
455 1.72 thorpej p->p_stat = SONPROC;
456 1.83 thorpej SCHED_UNLOCK(s);
457 1.26 cgd goto resume;
458 1.26 cgd }
459 1.77 thorpej if (p->p_wchan == NULL) {
460 1.26 cgd catch = 0;
461 1.83 thorpej SCHED_UNLOCK(s);
462 1.26 cgd goto resume;
463 1.26 cgd }
464 1.26 cgd } else
465 1.26 cgd sig = 0;
466 1.26 cgd p->p_stat = SSLEEP;
467 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
468 1.77 thorpej
469 1.83 thorpej SCHED_ASSERT_LOCKED();
470 1.74 sommerfe mi_switch(p);
471 1.83 thorpej
472 1.104 chs #if defined(DDB) && !defined(GPROF)
473 1.26 cgd /* handy breakpoint location after process "wakes" */
474 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
475 1.26 cgd #endif
476 1.77 thorpej
477 1.83 thorpej SCHED_ASSERT_UNLOCKED();
478 1.83 thorpej splx(s);
479 1.83 thorpej
480 1.77 thorpej resume:
481 1.76 thorpej KDASSERT(p->p_cpu != NULL);
482 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
483 1.76 thorpej p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
484 1.83 thorpej
485 1.26 cgd p->p_flag &= ~P_SINTR;
486 1.26 cgd if (p->p_flag & P_TIMEOUT) {
487 1.26 cgd p->p_flag &= ~P_TIMEOUT;
488 1.26 cgd if (sig == 0) {
489 1.26 cgd #ifdef KTRACE
490 1.26 cgd if (KTRPOINT(p, KTR_CSW))
491 1.74 sommerfe ktrcsw(p, 0, 0);
492 1.26 cgd #endif
493 1.77 thorpej if (relock && interlock != NULL)
494 1.77 thorpej simple_lock(interlock);
495 1.26 cgd return (EWOULDBLOCK);
496 1.26 cgd }
497 1.26 cgd } else if (timo)
498 1.68 thorpej callout_stop(&p->p_tsleep_ch);
499 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
500 1.26 cgd #ifdef KTRACE
501 1.26 cgd if (KTRPOINT(p, KTR_CSW))
502 1.74 sommerfe ktrcsw(p, 0, 0);
503 1.26 cgd #endif
504 1.77 thorpej if (relock && interlock != NULL)
505 1.77 thorpej simple_lock(interlock);
506 1.98 jdolecek if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
507 1.26 cgd return (EINTR);
508 1.26 cgd return (ERESTART);
509 1.26 cgd }
510 1.26 cgd #ifdef KTRACE
511 1.26 cgd if (KTRPOINT(p, KTR_CSW))
512 1.74 sommerfe ktrcsw(p, 0, 0);
513 1.26 cgd #endif
514 1.77 thorpej if (relock && interlock != NULL)
515 1.77 thorpej simple_lock(interlock);
516 1.26 cgd return (0);
517 1.26 cgd }
518 1.26 cgd
519 1.26 cgd /*
520 1.26 cgd * Implement timeout for tsleep.
521 1.26 cgd * If process hasn't been awakened (wchan non-zero),
522 1.26 cgd * set timeout flag and undo the sleep. If proc
523 1.26 cgd * is stopped, just unsleep so it will remain stopped.
524 1.26 cgd */
525 1.26 cgd void
526 1.77 thorpej endtsleep(void *arg)
527 1.26 cgd {
528 1.71 augustss struct proc *p;
529 1.26 cgd int s;
530 1.26 cgd
531 1.26 cgd p = (struct proc *)arg;
532 1.83 thorpej
533 1.83 thorpej SCHED_LOCK(s);
534 1.26 cgd if (p->p_wchan) {
535 1.26 cgd if (p->p_stat == SSLEEP)
536 1.26 cgd setrunnable(p);
537 1.26 cgd else
538 1.26 cgd unsleep(p);
539 1.26 cgd p->p_flag |= P_TIMEOUT;
540 1.26 cgd }
541 1.83 thorpej SCHED_UNLOCK(s);
542 1.26 cgd }
543 1.26 cgd
544 1.26 cgd /*
545 1.26 cgd * Remove a process from its wait queue
546 1.26 cgd */
547 1.26 cgd void
548 1.77 thorpej unsleep(struct proc *p)
549 1.26 cgd {
550 1.71 augustss struct slpque *qp;
551 1.71 augustss struct proc **hp;
552 1.26 cgd
553 1.83 thorpej SCHED_ASSERT_LOCKED();
554 1.83 thorpej
555 1.26 cgd if (p->p_wchan) {
556 1.73 thorpej hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
557 1.26 cgd while (*hp != p)
558 1.26 cgd hp = &(*hp)->p_forw;
559 1.26 cgd *hp = p->p_forw;
560 1.26 cgd if (qp->sq_tailp == &p->p_forw)
561 1.26 cgd qp->sq_tailp = hp;
562 1.26 cgd p->p_wchan = 0;
563 1.26 cgd }
564 1.26 cgd }
565 1.26 cgd
566 1.26 cgd /*
567 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
568 1.63 thorpej */
569 1.63 thorpej __inline void
570 1.77 thorpej awaken(struct proc *p)
571 1.63 thorpej {
572 1.63 thorpej
573 1.83 thorpej SCHED_ASSERT_LOCKED();
574 1.83 thorpej
575 1.63 thorpej if (p->p_slptime > 1)
576 1.63 thorpej updatepri(p);
577 1.63 thorpej p->p_slptime = 0;
578 1.93 bouyer p->p_stat = SRUN;
579 1.93 bouyer
580 1.93 bouyer /*
581 1.93 bouyer * Since curpriority is a user priority, p->p_priority
582 1.93 bouyer * is always better than curpriority.
583 1.93 bouyer */
584 1.93 bouyer if (p->p_flag & P_INMEM) {
585 1.93 bouyer setrunqueue(p);
586 1.93 bouyer KASSERT(p->p_cpu != NULL);
587 1.93 bouyer need_resched(p->p_cpu);
588 1.93 bouyer } else
589 1.93 bouyer sched_wakeup(&proc0);
590 1.83 thorpej }
591 1.83 thorpej
592 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
593 1.83 thorpej void
594 1.83 thorpej sched_unlock_idle(void)
595 1.83 thorpej {
596 1.83 thorpej
597 1.83 thorpej simple_unlock(&sched_lock);
598 1.63 thorpej }
599 1.63 thorpej
600 1.83 thorpej void
601 1.83 thorpej sched_lock_idle(void)
602 1.83 thorpej {
603 1.83 thorpej
604 1.83 thorpej simple_lock(&sched_lock);
605 1.83 thorpej }
606 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
607 1.83 thorpej
608 1.63 thorpej /*
609 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
610 1.26 cgd */
611 1.83 thorpej
612 1.26 cgd void
613 1.77 thorpej wakeup(void *ident)
614 1.26 cgd {
615 1.83 thorpej int s;
616 1.83 thorpej
617 1.83 thorpej SCHED_ASSERT_UNLOCKED();
618 1.83 thorpej
619 1.83 thorpej SCHED_LOCK(s);
620 1.83 thorpej sched_wakeup(ident);
621 1.83 thorpej SCHED_UNLOCK(s);
622 1.83 thorpej }
623 1.83 thorpej
624 1.83 thorpej void
625 1.83 thorpej sched_wakeup(void *ident)
626 1.83 thorpej {
627 1.71 augustss struct slpque *qp;
628 1.71 augustss struct proc *p, **q;
629 1.26 cgd
630 1.83 thorpej SCHED_ASSERT_LOCKED();
631 1.77 thorpej
632 1.73 thorpej qp = SLPQUE(ident);
633 1.77 thorpej restart:
634 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
635 1.26 cgd #ifdef DIAGNOSTIC
636 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
637 1.26 cgd panic("wakeup");
638 1.26 cgd #endif
639 1.26 cgd if (p->p_wchan == ident) {
640 1.26 cgd p->p_wchan = 0;
641 1.26 cgd *q = p->p_forw;
642 1.26 cgd if (qp->sq_tailp == &p->p_forw)
643 1.26 cgd qp->sq_tailp = q;
644 1.26 cgd if (p->p_stat == SSLEEP) {
645 1.63 thorpej awaken(p);
646 1.26 cgd goto restart;
647 1.26 cgd }
648 1.26 cgd } else
649 1.26 cgd q = &p->p_forw;
650 1.63 thorpej }
651 1.63 thorpej }
652 1.63 thorpej
653 1.63 thorpej /*
654 1.63 thorpej * Make the highest priority process first in line on the specified
655 1.63 thorpej * identifier runnable.
656 1.63 thorpej */
657 1.63 thorpej void
658 1.77 thorpej wakeup_one(void *ident)
659 1.63 thorpej {
660 1.63 thorpej struct slpque *qp;
661 1.63 thorpej struct proc *p, **q;
662 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
663 1.63 thorpej struct proc *best_stopp, **best_stopq;
664 1.63 thorpej int s;
665 1.63 thorpej
666 1.63 thorpej best_sleepp = best_stopp = NULL;
667 1.63 thorpej best_sleepq = best_stopq = NULL;
668 1.63 thorpej
669 1.83 thorpej SCHED_LOCK(s);
670 1.77 thorpej
671 1.73 thorpej qp = SLPQUE(ident);
672 1.77 thorpej
673 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
674 1.63 thorpej #ifdef DIAGNOSTIC
675 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
676 1.63 thorpej panic("wakeup_one");
677 1.63 thorpej #endif
678 1.63 thorpej if (p->p_wchan == ident) {
679 1.63 thorpej if (p->p_stat == SSLEEP) {
680 1.63 thorpej if (best_sleepp == NULL ||
681 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
682 1.63 thorpej best_sleepp = p;
683 1.63 thorpej best_sleepq = q;
684 1.63 thorpej }
685 1.63 thorpej } else {
686 1.63 thorpej if (best_stopp == NULL ||
687 1.63 thorpej p->p_priority < best_stopp->p_priority) {
688 1.63 thorpej best_stopp = p;
689 1.63 thorpej best_stopq = q;
690 1.63 thorpej }
691 1.63 thorpej }
692 1.63 thorpej }
693 1.63 thorpej }
694 1.63 thorpej
695 1.63 thorpej /*
696 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
697 1.63 thorpej * process.
698 1.63 thorpej */
699 1.63 thorpej if (best_sleepp != NULL) {
700 1.63 thorpej p = best_sleepp;
701 1.63 thorpej q = best_sleepq;
702 1.63 thorpej } else {
703 1.63 thorpej p = best_stopp;
704 1.63 thorpej q = best_stopq;
705 1.63 thorpej }
706 1.63 thorpej
707 1.63 thorpej if (p != NULL) {
708 1.77 thorpej p->p_wchan = NULL;
709 1.63 thorpej *q = p->p_forw;
710 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
711 1.63 thorpej qp->sq_tailp = q;
712 1.63 thorpej if (p->p_stat == SSLEEP)
713 1.63 thorpej awaken(p);
714 1.26 cgd }
715 1.83 thorpej SCHED_UNLOCK(s);
716 1.26 cgd }
717 1.26 cgd
718 1.26 cgd /*
719 1.69 thorpej * General yield call. Puts the current process back on its run queue and
720 1.69 thorpej * performs a voluntary context switch.
721 1.69 thorpej */
722 1.69 thorpej void
723 1.77 thorpej yield(void)
724 1.69 thorpej {
725 1.69 thorpej struct proc *p = curproc;
726 1.69 thorpej int s;
727 1.69 thorpej
728 1.83 thorpej SCHED_LOCK(s);
729 1.69 thorpej p->p_priority = p->p_usrpri;
730 1.93 bouyer p->p_stat = SRUN;
731 1.93 bouyer setrunqueue(p);
732 1.69 thorpej p->p_stats->p_ru.ru_nvcsw++;
733 1.74 sommerfe mi_switch(p);
734 1.83 thorpej SCHED_ASSERT_UNLOCKED();
735 1.69 thorpej splx(s);
736 1.69 thorpej }
737 1.69 thorpej
738 1.69 thorpej /*
739 1.69 thorpej * General preemption call. Puts the current process back on its run queue
740 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
741 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
742 1.69 thorpej * criteria.
743 1.69 thorpej */
744 1.69 thorpej void
745 1.77 thorpej preempt(struct proc *newp)
746 1.69 thorpej {
747 1.69 thorpej struct proc *p = curproc;
748 1.69 thorpej int s;
749 1.69 thorpej
750 1.69 thorpej /*
751 1.69 thorpej * XXX Switching to a specific process is not supported yet.
752 1.69 thorpej */
753 1.69 thorpej if (newp != NULL)
754 1.69 thorpej panic("preempt: cpu_preempt not yet implemented");
755 1.69 thorpej
756 1.83 thorpej SCHED_LOCK(s);
757 1.69 thorpej p->p_priority = p->p_usrpri;
758 1.93 bouyer p->p_stat = SRUN;
759 1.93 bouyer setrunqueue(p);
760 1.69 thorpej p->p_stats->p_ru.ru_nivcsw++;
761 1.74 sommerfe mi_switch(p);
762 1.83 thorpej SCHED_ASSERT_UNLOCKED();
763 1.69 thorpej splx(s);
764 1.69 thorpej }
765 1.69 thorpej
766 1.69 thorpej /*
767 1.72 thorpej * The machine independent parts of context switch.
768 1.86 thorpej * Must be called at splsched() (no higher!) and with
769 1.86 thorpej * the sched_lock held.
770 1.26 cgd */
771 1.26 cgd void
772 1.77 thorpej mi_switch(struct proc *p)
773 1.26 cgd {
774 1.76 thorpej struct schedstate_percpu *spc;
775 1.71 augustss struct rlimit *rlim;
776 1.71 augustss long s, u;
777 1.26 cgd struct timeval tv;
778 1.85 sommerfe #if defined(MULTIPROCESSOR)
779 1.85 sommerfe int hold_count;
780 1.85 sommerfe #endif
781 1.26 cgd
782 1.83 thorpej SCHED_ASSERT_LOCKED();
783 1.83 thorpej
784 1.85 sommerfe #if defined(MULTIPROCESSOR)
785 1.90 sommerfe /*
786 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
787 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
788 1.90 sommerfe * selects a new process and removes it from the run queue.
789 1.90 sommerfe */
790 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
791 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
792 1.85 sommerfe #endif
793 1.85 sommerfe
794 1.76 thorpej KDASSERT(p->p_cpu != NULL);
795 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
796 1.76 thorpej
797 1.76 thorpej spc = &p->p_cpu->ci_schedstate;
798 1.76 thorpej
799 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
800 1.82 thorpej spinlock_switchcheck();
801 1.82 thorpej #endif
802 1.54 chs #ifdef LOCKDEBUG
803 1.81 thorpej simple_lock_switchcheck();
804 1.50 fvdl #endif
805 1.81 thorpej
806 1.26 cgd /*
807 1.26 cgd * Compute the amount of time during which the current
808 1.26 cgd * process was running, and add that to its total so far.
809 1.26 cgd */
810 1.26 cgd microtime(&tv);
811 1.73 thorpej u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
812 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
813 1.26 cgd if (u < 0) {
814 1.26 cgd u += 1000000;
815 1.26 cgd s--;
816 1.26 cgd } else if (u >= 1000000) {
817 1.26 cgd u -= 1000000;
818 1.26 cgd s++;
819 1.26 cgd }
820 1.26 cgd p->p_rtime.tv_usec = u;
821 1.26 cgd p->p_rtime.tv_sec = s;
822 1.26 cgd
823 1.26 cgd /*
824 1.26 cgd * Check if the process exceeds its cpu resource allocation.
825 1.26 cgd * If over max, kill it. In any case, if it has run for more
826 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
827 1.26 cgd */
828 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
829 1.26 cgd if (s >= rlim->rlim_cur) {
830 1.100 sommerfe /*
831 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
832 1.100 sommerfe * use sched_psignal.
833 1.100 sommerfe */
834 1.26 cgd if (s >= rlim->rlim_max)
835 1.100 sommerfe sched_psignal(p, SIGKILL);
836 1.26 cgd else {
837 1.100 sommerfe sched_psignal(p, SIGXCPU);
838 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
839 1.26 cgd rlim->rlim_cur += 5;
840 1.26 cgd }
841 1.26 cgd }
842 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
843 1.77 thorpej p->p_nice == NZERO) {
844 1.39 ws p->p_nice = autoniceval + NZERO;
845 1.26 cgd resetpriority(p);
846 1.26 cgd }
847 1.69 thorpej
848 1.69 thorpej /*
849 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
850 1.69 thorpej * scheduling flags.
851 1.69 thorpej */
852 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
853 1.26 cgd
854 1.26 cgd /*
855 1.76 thorpej * Pick a new current process and switch to it. When we
856 1.76 thorpej * run again, we'll return back here.
857 1.26 cgd */
858 1.47 mrg uvmexp.swtch++;
859 1.26 cgd cpu_switch(p);
860 1.76 thorpej
861 1.76 thorpej /*
862 1.83 thorpej * Make sure that MD code released the scheduler lock before
863 1.83 thorpej * resuming us.
864 1.83 thorpej */
865 1.83 thorpej SCHED_ASSERT_UNLOCKED();
866 1.83 thorpej
867 1.83 thorpej /*
868 1.76 thorpej * We're running again; record our new start time. We might
869 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
870 1.76 thorpej * schedstate_percpu pointer.
871 1.76 thorpej */
872 1.76 thorpej KDASSERT(p->p_cpu != NULL);
873 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
874 1.76 thorpej microtime(&p->p_cpu->ci_schedstate.spc_runtime);
875 1.85 sommerfe
876 1.85 sommerfe #if defined(MULTIPROCESSOR)
877 1.90 sommerfe /*
878 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
879 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
880 1.90 sommerfe * we reacquire the interlock.
881 1.90 sommerfe */
882 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
883 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
884 1.85 sommerfe #endif
885 1.26 cgd }
886 1.26 cgd
887 1.26 cgd /*
888 1.26 cgd * Initialize the (doubly-linked) run queues
889 1.26 cgd * to be empty.
890 1.26 cgd */
891 1.26 cgd void
892 1.26 cgd rqinit()
893 1.26 cgd {
894 1.71 augustss int i;
895 1.26 cgd
896 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
897 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
898 1.73 thorpej (struct proc *)&sched_qs[i];
899 1.26 cgd }
900 1.26 cgd
901 1.26 cgd /*
902 1.26 cgd * Change process state to be runnable,
903 1.26 cgd * placing it on the run queue if it is in memory,
904 1.26 cgd * and awakening the swapper if it isn't in memory.
905 1.26 cgd */
906 1.26 cgd void
907 1.77 thorpej setrunnable(struct proc *p)
908 1.26 cgd {
909 1.26 cgd
910 1.83 thorpej SCHED_ASSERT_LOCKED();
911 1.83 thorpej
912 1.26 cgd switch (p->p_stat) {
913 1.26 cgd case 0:
914 1.26 cgd case SRUN:
915 1.72 thorpej case SONPROC:
916 1.26 cgd case SZOMB:
917 1.60 thorpej case SDEAD:
918 1.26 cgd default:
919 1.26 cgd panic("setrunnable");
920 1.26 cgd case SSTOP:
921 1.33 mycroft /*
922 1.33 mycroft * If we're being traced (possibly because someone attached us
923 1.33 mycroft * while we were stopped), check for a signal from the debugger.
924 1.33 mycroft */
925 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
926 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
927 1.101 thorpej CHECKSIGS(p);
928 1.53 mycroft }
929 1.26 cgd case SSLEEP:
930 1.26 cgd unsleep(p); /* e.g. when sending signals */
931 1.26 cgd break;
932 1.26 cgd
933 1.26 cgd case SIDL:
934 1.26 cgd break;
935 1.26 cgd }
936 1.93 bouyer p->p_stat = SRUN;
937 1.93 bouyer if (p->p_flag & P_INMEM)
938 1.93 bouyer setrunqueue(p);
939 1.93 bouyer
940 1.26 cgd if (p->p_slptime > 1)
941 1.26 cgd updatepri(p);
942 1.26 cgd p->p_slptime = 0;
943 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
944 1.83 thorpej sched_wakeup((caddr_t)&proc0);
945 1.76 thorpej else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
946 1.76 thorpej /*
947 1.76 thorpej * XXXSMP
948 1.87 thorpej * This is not exactly right. Since p->p_cpu persists
949 1.87 thorpej * across a context switch, this gives us some sort
950 1.87 thorpej * of processor affinity. But we need to figure out
951 1.87 thorpej * at what point it's better to reschedule on a different
952 1.87 thorpej * CPU than the last one.
953 1.76 thorpej */
954 1.87 thorpej need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
955 1.76 thorpej }
956 1.26 cgd }
957 1.26 cgd
958 1.26 cgd /*
959 1.26 cgd * Compute the priority of a process when running in user mode.
960 1.26 cgd * Arrange to reschedule if the resulting priority is better
961 1.26 cgd * than that of the current process.
962 1.26 cgd */
963 1.26 cgd void
964 1.77 thorpej resetpriority(struct proc *p)
965 1.26 cgd {
966 1.71 augustss unsigned int newpriority;
967 1.26 cgd
968 1.83 thorpej SCHED_ASSERT_LOCKED();
969 1.83 thorpej
970 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
971 1.26 cgd newpriority = min(newpriority, MAXPRI);
972 1.26 cgd p->p_usrpri = newpriority;
973 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
974 1.76 thorpej /*
975 1.76 thorpej * XXXSMP
976 1.76 thorpej * Same applies as in setrunnable() above.
977 1.76 thorpej */
978 1.87 thorpej need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
979 1.76 thorpej }
980 1.55 ross }
981 1.55 ross
982 1.55 ross /*
983 1.56 ross * We adjust the priority of the current process. The priority of a process
984 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
985 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
986 1.56 ross * will compute a different value each time p_estcpu increases. This can
987 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
988 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
989 1.56 ross * when the process is running (linearly), and decays away exponentially, at
990 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
991 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
992 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
993 1.56 ross * processes which haven't run much recently, and to round-robin among other
994 1.56 ross * processes.
995 1.55 ross */
996 1.55 ross
997 1.55 ross void
998 1.77 thorpej schedclock(struct proc *p)
999 1.55 ross {
1000 1.83 thorpej int s;
1001 1.77 thorpej
1002 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1003 1.83 thorpej
1004 1.83 thorpej SCHED_LOCK(s);
1005 1.55 ross resetpriority(p);
1006 1.83 thorpej SCHED_UNLOCK(s);
1007 1.83 thorpej
1008 1.55 ross if (p->p_priority >= PUSER)
1009 1.55 ross p->p_priority = p->p_usrpri;
1010 1.26 cgd }
1011 1.94 bouyer
1012 1.94 bouyer void
1013 1.94 bouyer suspendsched()
1014 1.94 bouyer {
1015 1.97 enami struct proc *p;
1016 1.97 enami int s;
1017 1.94 bouyer
1018 1.94 bouyer /*
1019 1.97 enami * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1020 1.94 bouyer */
1021 1.95 thorpej proclist_lock_read();
1022 1.95 thorpej SCHED_LOCK(s);
1023 1.95 thorpej for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
1024 1.97 enami if ((p->p_flag & P_SYSTEM) != 0)
1025 1.94 bouyer continue;
1026 1.97 enami switch (p->p_stat) {
1027 1.97 enami case SRUN:
1028 1.97 enami if ((p->p_flag & P_INMEM) != 0)
1029 1.97 enami remrunqueue(p);
1030 1.97 enami /* FALLTHROUGH */
1031 1.97 enami case SSLEEP:
1032 1.97 enami p->p_stat = SSTOP;
1033 1.97 enami break;
1034 1.97 enami case SONPROC:
1035 1.97 enami /*
1036 1.97 enami * XXX SMP: we need to deal with processes on
1037 1.97 enami * others CPU !
1038 1.97 enami */
1039 1.97 enami break;
1040 1.97 enami default:
1041 1.97 enami break;
1042 1.94 bouyer }
1043 1.94 bouyer }
1044 1.94 bouyer SCHED_UNLOCK(s);
1045 1.97 enami proclist_unlock_read();
1046 1.94 bouyer }
1047