kern_synch.c revision 1.107.8.2 1 1.107.8.2 gehenna /* $NetBSD: kern_synch.c,v 1.107.8.2 2002/07/15 10:36:35 gehenna Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.106 lukem
80 1.106 lukem #include <sys/cdefs.h>
81 1.107.8.2 gehenna __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.107.8.2 2002/07/15 10:36:35 gehenna Exp $");
82 1.48 mrg
83 1.52 jonathan #include "opt_ddb.h"
84 1.51 thorpej #include "opt_ktrace.h"
85 1.107.8.2 gehenna #include "opt_kstack.h"
86 1.82 thorpej #include "opt_lockdebug.h"
87 1.83 thorpej #include "opt_multiprocessor.h"
88 1.26 cgd
89 1.26 cgd #include <sys/param.h>
90 1.26 cgd #include <sys/systm.h>
91 1.68 thorpej #include <sys/callout.h>
92 1.26 cgd #include <sys/proc.h>
93 1.26 cgd #include <sys/kernel.h>
94 1.26 cgd #include <sys/buf.h>
95 1.26 cgd #include <sys/signalvar.h>
96 1.26 cgd #include <sys/resourcevar.h>
97 1.55 ross #include <sys/sched.h>
98 1.47 mrg
99 1.47 mrg #include <uvm/uvm_extern.h>
100 1.47 mrg
101 1.26 cgd #ifdef KTRACE
102 1.26 cgd #include <sys/ktrace.h>
103 1.26 cgd #endif
104 1.26 cgd
105 1.26 cgd #include <machine/cpu.h>
106 1.34 christos
107 1.26 cgd int lbolt; /* once a second sleep address */
108 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
109 1.26 cgd
110 1.73 thorpej /*
111 1.73 thorpej * The global scheduler state.
112 1.73 thorpej */
113 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
114 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
115 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
116 1.73 thorpej
117 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
118 1.83 thorpej
119 1.77 thorpej void schedcpu(void *);
120 1.77 thorpej void updatepri(struct proc *);
121 1.77 thorpej void endtsleep(void *);
122 1.34 christos
123 1.77 thorpej __inline void awaken(struct proc *);
124 1.63 thorpej
125 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
126 1.68 thorpej
127 1.26 cgd /*
128 1.26 cgd * Force switch among equal priority processes every 100ms.
129 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
130 1.26 cgd */
131 1.26 cgd /* ARGSUSED */
132 1.26 cgd void
133 1.89 sommerfe roundrobin(struct cpu_info *ci)
134 1.26 cgd {
135 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
136 1.26 cgd
137 1.88 sommerfe spc->spc_rrticks = rrticks;
138 1.88 sommerfe
139 1.69 thorpej if (curproc != NULL) {
140 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
141 1.69 thorpej /*
142 1.69 thorpej * The process has already been through a roundrobin
143 1.69 thorpej * without switching and may be hogging the CPU.
144 1.69 thorpej * Indicate that the process should yield.
145 1.69 thorpej */
146 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
147 1.69 thorpej } else
148 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
149 1.69 thorpej }
150 1.87 thorpej need_resched(curcpu());
151 1.26 cgd }
152 1.26 cgd
153 1.26 cgd /*
154 1.26 cgd * Constants for digital decay and forget:
155 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
156 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
157 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
158 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
159 1.26 cgd *
160 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
161 1.26 cgd *
162 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
163 1.26 cgd * That is, the system wants to compute a value of decay such
164 1.26 cgd * that the following for loop:
165 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
166 1.26 cgd * p_estcpu *= decay;
167 1.26 cgd * will compute
168 1.26 cgd * p_estcpu *= 0.1;
169 1.26 cgd * for all values of loadavg:
170 1.26 cgd *
171 1.26 cgd * Mathematically this loop can be expressed by saying:
172 1.26 cgd * decay ** (5 * loadavg) ~= .1
173 1.26 cgd *
174 1.26 cgd * The system computes decay as:
175 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
176 1.26 cgd *
177 1.26 cgd * We wish to prove that the system's computation of decay
178 1.26 cgd * will always fulfill the equation:
179 1.26 cgd * decay ** (5 * loadavg) ~= .1
180 1.26 cgd *
181 1.26 cgd * If we compute b as:
182 1.26 cgd * b = 2 * loadavg
183 1.26 cgd * then
184 1.26 cgd * decay = b / (b + 1)
185 1.26 cgd *
186 1.26 cgd * We now need to prove two things:
187 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
188 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
189 1.26 cgd *
190 1.26 cgd * Facts:
191 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
192 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
193 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
194 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
195 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
196 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
197 1.26 cgd * ln(.1) =~ -2.30
198 1.26 cgd *
199 1.26 cgd * Proof of (1):
200 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
201 1.26 cgd * solving for factor,
202 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
203 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
204 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
205 1.26 cgd *
206 1.26 cgd * Proof of (2):
207 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
208 1.26 cgd * solving for power,
209 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
210 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
211 1.26 cgd *
212 1.26 cgd * Actual power values for the implemented algorithm are as follows:
213 1.26 cgd * loadav: 1 2 3 4
214 1.26 cgd * power: 5.68 10.32 14.94 19.55
215 1.26 cgd */
216 1.26 cgd
217 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
218 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
219 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
220 1.26 cgd
221 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
222 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
223 1.26 cgd
224 1.26 cgd /*
225 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
226 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
227 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
228 1.26 cgd *
229 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
230 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
231 1.26 cgd *
232 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
233 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
234 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
235 1.26 cgd */
236 1.26 cgd #define CCPU_SHIFT 11
237 1.26 cgd
238 1.26 cgd /*
239 1.26 cgd * Recompute process priorities, every hz ticks.
240 1.26 cgd */
241 1.26 cgd /* ARGSUSED */
242 1.26 cgd void
243 1.77 thorpej schedcpu(void *arg)
244 1.26 cgd {
245 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
246 1.71 augustss struct proc *p;
247 1.83 thorpej int s, s1;
248 1.71 augustss unsigned int newcpu;
249 1.66 ross int clkhz;
250 1.26 cgd
251 1.62 thorpej proclist_lock_read();
252 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
253 1.26 cgd /*
254 1.26 cgd * Increment time in/out of memory and sleep time
255 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
256 1.26 cgd * (remember them?) overflow takes 45 days.
257 1.26 cgd */
258 1.26 cgd p->p_swtime++;
259 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
260 1.26 cgd p->p_slptime++;
261 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
262 1.26 cgd /*
263 1.26 cgd * If the process has slept the entire second,
264 1.26 cgd * stop recalculating its priority until it wakes up.
265 1.26 cgd */
266 1.26 cgd if (p->p_slptime > 1)
267 1.26 cgd continue;
268 1.26 cgd s = splstatclock(); /* prevent state changes */
269 1.26 cgd /*
270 1.26 cgd * p_pctcpu is only for ps.
271 1.26 cgd */
272 1.66 ross clkhz = stathz != 0 ? stathz : hz;
273 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
274 1.66 ross p->p_pctcpu += (clkhz == 100)?
275 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
276 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
277 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
278 1.26 cgd #else
279 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
280 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
281 1.26 cgd #endif
282 1.26 cgd p->p_cpticks = 0;
283 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
284 1.55 ross p->p_estcpu = newcpu;
285 1.83 thorpej SCHED_LOCK(s1);
286 1.26 cgd resetpriority(p);
287 1.26 cgd if (p->p_priority >= PUSER) {
288 1.72 thorpej if (p->p_stat == SRUN &&
289 1.26 cgd (p->p_flag & P_INMEM) &&
290 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
291 1.43 cgd remrunqueue(p);
292 1.26 cgd p->p_priority = p->p_usrpri;
293 1.26 cgd setrunqueue(p);
294 1.26 cgd } else
295 1.26 cgd p->p_priority = p->p_usrpri;
296 1.26 cgd }
297 1.83 thorpej SCHED_UNLOCK(s1);
298 1.26 cgd splx(s);
299 1.26 cgd }
300 1.61 thorpej proclist_unlock_read();
301 1.47 mrg uvm_meter();
302 1.67 fvdl wakeup((caddr_t)&lbolt);
303 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
304 1.26 cgd }
305 1.26 cgd
306 1.26 cgd /*
307 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
308 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
309 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
310 1.26 cgd */
311 1.26 cgd void
312 1.77 thorpej updatepri(struct proc *p)
313 1.26 cgd {
314 1.83 thorpej unsigned int newcpu;
315 1.83 thorpej fixpt_t loadfac;
316 1.83 thorpej
317 1.83 thorpej SCHED_ASSERT_LOCKED();
318 1.83 thorpej
319 1.83 thorpej newcpu = p->p_estcpu;
320 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
321 1.26 cgd
322 1.26 cgd if (p->p_slptime > 5 * loadfac)
323 1.26 cgd p->p_estcpu = 0;
324 1.26 cgd else {
325 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
326 1.26 cgd while (newcpu && --p->p_slptime)
327 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
328 1.55 ross p->p_estcpu = newcpu;
329 1.26 cgd }
330 1.26 cgd resetpriority(p);
331 1.26 cgd }
332 1.26 cgd
333 1.26 cgd /*
334 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
335 1.26 cgd * lower the priority briefly to allow interrupts, then return.
336 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
337 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
338 1.26 cgd * This priority will typically be 0, or the lowest priority
339 1.26 cgd * that is safe for use on the interrupt stack; it can be made
340 1.26 cgd * higher to block network software interrupts after panics.
341 1.26 cgd */
342 1.26 cgd int safepri;
343 1.26 cgd
344 1.26 cgd /*
345 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
346 1.26 cgd * performed on the specified identifier. The process will then be made
347 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
348 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
349 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
350 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
351 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
352 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
353 1.26 cgd * call should be interrupted by the signal (return EINTR).
354 1.77 thorpej *
355 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
356 1.77 thorpej * interlock will be locked before returning back to the caller
357 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
358 1.77 thorpej * interlock will always be unlocked upon return.
359 1.26 cgd */
360 1.26 cgd int
361 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
362 1.77 thorpej __volatile struct simplelock *interlock)
363 1.26 cgd {
364 1.71 augustss struct proc *p = curproc;
365 1.71 augustss struct slpque *qp;
366 1.77 thorpej int sig, s;
367 1.77 thorpej int catch = priority & PCATCH;
368 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
369 1.26 cgd
370 1.77 thorpej /*
371 1.77 thorpej * XXXSMP
372 1.77 thorpej * This is probably bogus. Figure out what the right
373 1.77 thorpej * thing to do here really is.
374 1.78 sommerfe * Note that not sleeping if ltsleep is called with curproc == NULL
375 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
376 1.78 sommerfe * how shutdown (barely) works.
377 1.77 thorpej */
378 1.78 sommerfe if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
379 1.26 cgd /*
380 1.26 cgd * After a panic, or during autoconfiguration,
381 1.26 cgd * just give interrupts a chance, then just return;
382 1.26 cgd * don't run any other procs or panic below,
383 1.26 cgd * in case this is the idle process and already asleep.
384 1.26 cgd */
385 1.42 cgd s = splhigh();
386 1.26 cgd splx(safepri);
387 1.26 cgd splx(s);
388 1.77 thorpej if (interlock != NULL && relock == 0)
389 1.77 thorpej simple_unlock(interlock);
390 1.26 cgd return (0);
391 1.26 cgd }
392 1.78 sommerfe
393 1.102 thorpej KASSERT(p != NULL);
394 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
395 1.42 cgd
396 1.42 cgd #ifdef KTRACE
397 1.42 cgd if (KTRPOINT(p, KTR_CSW))
398 1.74 sommerfe ktrcsw(p, 1, 0);
399 1.42 cgd #endif
400 1.77 thorpej
401 1.83 thorpej SCHED_LOCK(s);
402 1.42 cgd
403 1.26 cgd #ifdef DIAGNOSTIC
404 1.64 thorpej if (ident == NULL)
405 1.77 thorpej panic("ltsleep: ident == NULL");
406 1.72 thorpej if (p->p_stat != SONPROC)
407 1.77 thorpej panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
408 1.64 thorpej if (p->p_back != NULL)
409 1.77 thorpej panic("ltsleep: p_back != NULL");
410 1.26 cgd #endif
411 1.77 thorpej
412 1.26 cgd p->p_wchan = ident;
413 1.26 cgd p->p_wmesg = wmesg;
414 1.26 cgd p->p_slptime = 0;
415 1.26 cgd p->p_priority = priority & PRIMASK;
416 1.77 thorpej
417 1.73 thorpej qp = SLPQUE(ident);
418 1.26 cgd if (qp->sq_head == 0)
419 1.26 cgd qp->sq_head = p;
420 1.26 cgd else
421 1.26 cgd *qp->sq_tailp = p;
422 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
423 1.77 thorpej
424 1.26 cgd if (timo)
425 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
426 1.77 thorpej
427 1.77 thorpej /*
428 1.77 thorpej * We can now release the interlock; the scheduler_slock
429 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
430 1.77 thorpej * we do the switch.
431 1.77 thorpej *
432 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
433 1.77 thorpej * on the sleep queue, because we might want a more clever
434 1.77 thorpej * data structure for the sleep queues at some point.
435 1.77 thorpej */
436 1.77 thorpej if (interlock != NULL)
437 1.77 thorpej simple_unlock(interlock);
438 1.77 thorpej
439 1.26 cgd /*
440 1.26 cgd * We put ourselves on the sleep queue and start our timeout
441 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
442 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
443 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
444 1.26 cgd * without resuming us, thus we must be ready for sleep
445 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
446 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
447 1.26 cgd */
448 1.26 cgd if (catch) {
449 1.26 cgd p->p_flag |= P_SINTR;
450 1.34 christos if ((sig = CURSIG(p)) != 0) {
451 1.77 thorpej if (p->p_wchan != NULL)
452 1.26 cgd unsleep(p);
453 1.72 thorpej p->p_stat = SONPROC;
454 1.83 thorpej SCHED_UNLOCK(s);
455 1.26 cgd goto resume;
456 1.26 cgd }
457 1.77 thorpej if (p->p_wchan == NULL) {
458 1.26 cgd catch = 0;
459 1.83 thorpej SCHED_UNLOCK(s);
460 1.26 cgd goto resume;
461 1.26 cgd }
462 1.26 cgd } else
463 1.26 cgd sig = 0;
464 1.26 cgd p->p_stat = SSLEEP;
465 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
466 1.77 thorpej
467 1.83 thorpej SCHED_ASSERT_LOCKED();
468 1.74 sommerfe mi_switch(p);
469 1.83 thorpej
470 1.104 chs #if defined(DDB) && !defined(GPROF)
471 1.26 cgd /* handy breakpoint location after process "wakes" */
472 1.107 kleink __asm(".globl bpendtsleep ; bpendtsleep:");
473 1.26 cgd #endif
474 1.77 thorpej
475 1.83 thorpej SCHED_ASSERT_UNLOCKED();
476 1.83 thorpej splx(s);
477 1.83 thorpej
478 1.77 thorpej resume:
479 1.76 thorpej KDASSERT(p->p_cpu != NULL);
480 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
481 1.76 thorpej p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
482 1.83 thorpej
483 1.26 cgd p->p_flag &= ~P_SINTR;
484 1.26 cgd if (p->p_flag & P_TIMEOUT) {
485 1.26 cgd p->p_flag &= ~P_TIMEOUT;
486 1.26 cgd if (sig == 0) {
487 1.26 cgd #ifdef KTRACE
488 1.26 cgd if (KTRPOINT(p, KTR_CSW))
489 1.74 sommerfe ktrcsw(p, 0, 0);
490 1.26 cgd #endif
491 1.77 thorpej if (relock && interlock != NULL)
492 1.77 thorpej simple_lock(interlock);
493 1.26 cgd return (EWOULDBLOCK);
494 1.26 cgd }
495 1.26 cgd } else if (timo)
496 1.68 thorpej callout_stop(&p->p_tsleep_ch);
497 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
498 1.26 cgd #ifdef KTRACE
499 1.26 cgd if (KTRPOINT(p, KTR_CSW))
500 1.74 sommerfe ktrcsw(p, 0, 0);
501 1.26 cgd #endif
502 1.77 thorpej if (relock && interlock != NULL)
503 1.77 thorpej simple_lock(interlock);
504 1.98 jdolecek if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
505 1.26 cgd return (EINTR);
506 1.26 cgd return (ERESTART);
507 1.26 cgd }
508 1.26 cgd #ifdef KTRACE
509 1.26 cgd if (KTRPOINT(p, KTR_CSW))
510 1.74 sommerfe ktrcsw(p, 0, 0);
511 1.26 cgd #endif
512 1.77 thorpej if (relock && interlock != NULL)
513 1.77 thorpej simple_lock(interlock);
514 1.26 cgd return (0);
515 1.26 cgd }
516 1.26 cgd
517 1.26 cgd /*
518 1.26 cgd * Implement timeout for tsleep.
519 1.26 cgd * If process hasn't been awakened (wchan non-zero),
520 1.26 cgd * set timeout flag and undo the sleep. If proc
521 1.26 cgd * is stopped, just unsleep so it will remain stopped.
522 1.26 cgd */
523 1.26 cgd void
524 1.77 thorpej endtsleep(void *arg)
525 1.26 cgd {
526 1.71 augustss struct proc *p;
527 1.26 cgd int s;
528 1.26 cgd
529 1.26 cgd p = (struct proc *)arg;
530 1.83 thorpej
531 1.83 thorpej SCHED_LOCK(s);
532 1.26 cgd if (p->p_wchan) {
533 1.26 cgd if (p->p_stat == SSLEEP)
534 1.26 cgd setrunnable(p);
535 1.26 cgd else
536 1.26 cgd unsleep(p);
537 1.26 cgd p->p_flag |= P_TIMEOUT;
538 1.26 cgd }
539 1.83 thorpej SCHED_UNLOCK(s);
540 1.26 cgd }
541 1.26 cgd
542 1.26 cgd /*
543 1.26 cgd * Remove a process from its wait queue
544 1.26 cgd */
545 1.26 cgd void
546 1.77 thorpej unsleep(struct proc *p)
547 1.26 cgd {
548 1.71 augustss struct slpque *qp;
549 1.71 augustss struct proc **hp;
550 1.26 cgd
551 1.83 thorpej SCHED_ASSERT_LOCKED();
552 1.83 thorpej
553 1.26 cgd if (p->p_wchan) {
554 1.73 thorpej hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
555 1.26 cgd while (*hp != p)
556 1.26 cgd hp = &(*hp)->p_forw;
557 1.26 cgd *hp = p->p_forw;
558 1.26 cgd if (qp->sq_tailp == &p->p_forw)
559 1.26 cgd qp->sq_tailp = hp;
560 1.26 cgd p->p_wchan = 0;
561 1.26 cgd }
562 1.26 cgd }
563 1.26 cgd
564 1.26 cgd /*
565 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
566 1.63 thorpej */
567 1.63 thorpej __inline void
568 1.77 thorpej awaken(struct proc *p)
569 1.63 thorpej {
570 1.63 thorpej
571 1.83 thorpej SCHED_ASSERT_LOCKED();
572 1.83 thorpej
573 1.63 thorpej if (p->p_slptime > 1)
574 1.63 thorpej updatepri(p);
575 1.63 thorpej p->p_slptime = 0;
576 1.93 bouyer p->p_stat = SRUN;
577 1.93 bouyer
578 1.93 bouyer /*
579 1.93 bouyer * Since curpriority is a user priority, p->p_priority
580 1.93 bouyer * is always better than curpriority.
581 1.93 bouyer */
582 1.93 bouyer if (p->p_flag & P_INMEM) {
583 1.93 bouyer setrunqueue(p);
584 1.93 bouyer KASSERT(p->p_cpu != NULL);
585 1.93 bouyer need_resched(p->p_cpu);
586 1.93 bouyer } else
587 1.93 bouyer sched_wakeup(&proc0);
588 1.83 thorpej }
589 1.83 thorpej
590 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
591 1.83 thorpej void
592 1.83 thorpej sched_unlock_idle(void)
593 1.83 thorpej {
594 1.83 thorpej
595 1.83 thorpej simple_unlock(&sched_lock);
596 1.63 thorpej }
597 1.63 thorpej
598 1.83 thorpej void
599 1.83 thorpej sched_lock_idle(void)
600 1.83 thorpej {
601 1.83 thorpej
602 1.83 thorpej simple_lock(&sched_lock);
603 1.83 thorpej }
604 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
605 1.83 thorpej
606 1.63 thorpej /*
607 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
608 1.26 cgd */
609 1.83 thorpej
610 1.26 cgd void
611 1.77 thorpej wakeup(void *ident)
612 1.26 cgd {
613 1.83 thorpej int s;
614 1.83 thorpej
615 1.83 thorpej SCHED_ASSERT_UNLOCKED();
616 1.83 thorpej
617 1.83 thorpej SCHED_LOCK(s);
618 1.83 thorpej sched_wakeup(ident);
619 1.83 thorpej SCHED_UNLOCK(s);
620 1.83 thorpej }
621 1.83 thorpej
622 1.83 thorpej void
623 1.83 thorpej sched_wakeup(void *ident)
624 1.83 thorpej {
625 1.71 augustss struct slpque *qp;
626 1.71 augustss struct proc *p, **q;
627 1.26 cgd
628 1.83 thorpej SCHED_ASSERT_LOCKED();
629 1.77 thorpej
630 1.73 thorpej qp = SLPQUE(ident);
631 1.77 thorpej restart:
632 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
633 1.26 cgd #ifdef DIAGNOSTIC
634 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
635 1.26 cgd panic("wakeup");
636 1.26 cgd #endif
637 1.26 cgd if (p->p_wchan == ident) {
638 1.26 cgd p->p_wchan = 0;
639 1.26 cgd *q = p->p_forw;
640 1.26 cgd if (qp->sq_tailp == &p->p_forw)
641 1.26 cgd qp->sq_tailp = q;
642 1.26 cgd if (p->p_stat == SSLEEP) {
643 1.63 thorpej awaken(p);
644 1.26 cgd goto restart;
645 1.26 cgd }
646 1.26 cgd } else
647 1.26 cgd q = &p->p_forw;
648 1.63 thorpej }
649 1.63 thorpej }
650 1.63 thorpej
651 1.63 thorpej /*
652 1.63 thorpej * Make the highest priority process first in line on the specified
653 1.63 thorpej * identifier runnable.
654 1.63 thorpej */
655 1.63 thorpej void
656 1.77 thorpej wakeup_one(void *ident)
657 1.63 thorpej {
658 1.63 thorpej struct slpque *qp;
659 1.63 thorpej struct proc *p, **q;
660 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
661 1.63 thorpej struct proc *best_stopp, **best_stopq;
662 1.63 thorpej int s;
663 1.63 thorpej
664 1.63 thorpej best_sleepp = best_stopp = NULL;
665 1.63 thorpej best_sleepq = best_stopq = NULL;
666 1.63 thorpej
667 1.83 thorpej SCHED_LOCK(s);
668 1.77 thorpej
669 1.73 thorpej qp = SLPQUE(ident);
670 1.77 thorpej
671 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
672 1.63 thorpej #ifdef DIAGNOSTIC
673 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
674 1.63 thorpej panic("wakeup_one");
675 1.63 thorpej #endif
676 1.63 thorpej if (p->p_wchan == ident) {
677 1.63 thorpej if (p->p_stat == SSLEEP) {
678 1.63 thorpej if (best_sleepp == NULL ||
679 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
680 1.63 thorpej best_sleepp = p;
681 1.63 thorpej best_sleepq = q;
682 1.63 thorpej }
683 1.63 thorpej } else {
684 1.63 thorpej if (best_stopp == NULL ||
685 1.63 thorpej p->p_priority < best_stopp->p_priority) {
686 1.63 thorpej best_stopp = p;
687 1.63 thorpej best_stopq = q;
688 1.63 thorpej }
689 1.63 thorpej }
690 1.63 thorpej }
691 1.63 thorpej }
692 1.63 thorpej
693 1.63 thorpej /*
694 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
695 1.63 thorpej * process.
696 1.63 thorpej */
697 1.63 thorpej if (best_sleepp != NULL) {
698 1.63 thorpej p = best_sleepp;
699 1.63 thorpej q = best_sleepq;
700 1.63 thorpej } else {
701 1.63 thorpej p = best_stopp;
702 1.63 thorpej q = best_stopq;
703 1.63 thorpej }
704 1.63 thorpej
705 1.63 thorpej if (p != NULL) {
706 1.77 thorpej p->p_wchan = NULL;
707 1.63 thorpej *q = p->p_forw;
708 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
709 1.63 thorpej qp->sq_tailp = q;
710 1.63 thorpej if (p->p_stat == SSLEEP)
711 1.63 thorpej awaken(p);
712 1.26 cgd }
713 1.83 thorpej SCHED_UNLOCK(s);
714 1.26 cgd }
715 1.26 cgd
716 1.26 cgd /*
717 1.69 thorpej * General yield call. Puts the current process back on its run queue and
718 1.69 thorpej * performs a voluntary context switch.
719 1.69 thorpej */
720 1.69 thorpej void
721 1.77 thorpej yield(void)
722 1.69 thorpej {
723 1.69 thorpej struct proc *p = curproc;
724 1.69 thorpej int s;
725 1.69 thorpej
726 1.83 thorpej SCHED_LOCK(s);
727 1.69 thorpej p->p_priority = p->p_usrpri;
728 1.93 bouyer p->p_stat = SRUN;
729 1.93 bouyer setrunqueue(p);
730 1.69 thorpej p->p_stats->p_ru.ru_nvcsw++;
731 1.74 sommerfe mi_switch(p);
732 1.83 thorpej SCHED_ASSERT_UNLOCKED();
733 1.69 thorpej splx(s);
734 1.69 thorpej }
735 1.69 thorpej
736 1.69 thorpej /*
737 1.69 thorpej * General preemption call. Puts the current process back on its run queue
738 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
739 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
740 1.69 thorpej * criteria.
741 1.69 thorpej */
742 1.69 thorpej void
743 1.77 thorpej preempt(struct proc *newp)
744 1.69 thorpej {
745 1.69 thorpej struct proc *p = curproc;
746 1.69 thorpej int s;
747 1.69 thorpej
748 1.69 thorpej /*
749 1.69 thorpej * XXX Switching to a specific process is not supported yet.
750 1.69 thorpej */
751 1.69 thorpej if (newp != NULL)
752 1.69 thorpej panic("preempt: cpu_preempt not yet implemented");
753 1.69 thorpej
754 1.83 thorpej SCHED_LOCK(s);
755 1.69 thorpej p->p_priority = p->p_usrpri;
756 1.93 bouyer p->p_stat = SRUN;
757 1.93 bouyer setrunqueue(p);
758 1.69 thorpej p->p_stats->p_ru.ru_nivcsw++;
759 1.74 sommerfe mi_switch(p);
760 1.83 thorpej SCHED_ASSERT_UNLOCKED();
761 1.69 thorpej splx(s);
762 1.69 thorpej }
763 1.69 thorpej
764 1.69 thorpej /*
765 1.72 thorpej * The machine independent parts of context switch.
766 1.86 thorpej * Must be called at splsched() (no higher!) and with
767 1.86 thorpej * the sched_lock held.
768 1.26 cgd */
769 1.26 cgd void
770 1.77 thorpej mi_switch(struct proc *p)
771 1.26 cgd {
772 1.76 thorpej struct schedstate_percpu *spc;
773 1.71 augustss struct rlimit *rlim;
774 1.71 augustss long s, u;
775 1.26 cgd struct timeval tv;
776 1.85 sommerfe #if defined(MULTIPROCESSOR)
777 1.85 sommerfe int hold_count;
778 1.85 sommerfe #endif
779 1.26 cgd
780 1.83 thorpej SCHED_ASSERT_LOCKED();
781 1.83 thorpej
782 1.85 sommerfe #if defined(MULTIPROCESSOR)
783 1.90 sommerfe /*
784 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
785 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
786 1.90 sommerfe * selects a new process and removes it from the run queue.
787 1.90 sommerfe */
788 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
789 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
790 1.85 sommerfe #endif
791 1.85 sommerfe
792 1.76 thorpej KDASSERT(p->p_cpu != NULL);
793 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
794 1.76 thorpej
795 1.76 thorpej spc = &p->p_cpu->ci_schedstate;
796 1.76 thorpej
797 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
798 1.82 thorpej spinlock_switchcheck();
799 1.82 thorpej #endif
800 1.54 chs #ifdef LOCKDEBUG
801 1.81 thorpej simple_lock_switchcheck();
802 1.50 fvdl #endif
803 1.81 thorpej
804 1.26 cgd /*
805 1.26 cgd * Compute the amount of time during which the current
806 1.26 cgd * process was running, and add that to its total so far.
807 1.26 cgd */
808 1.26 cgd microtime(&tv);
809 1.73 thorpej u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
810 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
811 1.26 cgd if (u < 0) {
812 1.26 cgd u += 1000000;
813 1.26 cgd s--;
814 1.26 cgd } else if (u >= 1000000) {
815 1.26 cgd u -= 1000000;
816 1.26 cgd s++;
817 1.26 cgd }
818 1.26 cgd p->p_rtime.tv_usec = u;
819 1.26 cgd p->p_rtime.tv_sec = s;
820 1.26 cgd
821 1.26 cgd /*
822 1.26 cgd * Check if the process exceeds its cpu resource allocation.
823 1.26 cgd * If over max, kill it. In any case, if it has run for more
824 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
825 1.26 cgd */
826 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
827 1.26 cgd if (s >= rlim->rlim_cur) {
828 1.100 sommerfe /*
829 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
830 1.100 sommerfe * use sched_psignal.
831 1.100 sommerfe */
832 1.26 cgd if (s >= rlim->rlim_max)
833 1.100 sommerfe sched_psignal(p, SIGKILL);
834 1.26 cgd else {
835 1.100 sommerfe sched_psignal(p, SIGXCPU);
836 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
837 1.26 cgd rlim->rlim_cur += 5;
838 1.26 cgd }
839 1.26 cgd }
840 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
841 1.77 thorpej p->p_nice == NZERO) {
842 1.39 ws p->p_nice = autoniceval + NZERO;
843 1.26 cgd resetpriority(p);
844 1.26 cgd }
845 1.69 thorpej
846 1.69 thorpej /*
847 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
848 1.69 thorpej * scheduling flags.
849 1.69 thorpej */
850 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
851 1.107.8.2 gehenna
852 1.107.8.2 gehenna #ifdef KSTACK_CHECK_MAGIC
853 1.107.8.2 gehenna kstack_check_magic(p);
854 1.107.8.2 gehenna #endif
855 1.26 cgd
856 1.26 cgd /*
857 1.76 thorpej * Pick a new current process and switch to it. When we
858 1.76 thorpej * run again, we'll return back here.
859 1.26 cgd */
860 1.47 mrg uvmexp.swtch++;
861 1.26 cgd cpu_switch(p);
862 1.76 thorpej
863 1.76 thorpej /*
864 1.83 thorpej * Make sure that MD code released the scheduler lock before
865 1.83 thorpej * resuming us.
866 1.83 thorpej */
867 1.83 thorpej SCHED_ASSERT_UNLOCKED();
868 1.83 thorpej
869 1.83 thorpej /*
870 1.76 thorpej * We're running again; record our new start time. We might
871 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
872 1.76 thorpej * schedstate_percpu pointer.
873 1.76 thorpej */
874 1.76 thorpej KDASSERT(p->p_cpu != NULL);
875 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
876 1.76 thorpej microtime(&p->p_cpu->ci_schedstate.spc_runtime);
877 1.85 sommerfe
878 1.85 sommerfe #if defined(MULTIPROCESSOR)
879 1.90 sommerfe /*
880 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
881 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
882 1.90 sommerfe * we reacquire the interlock.
883 1.90 sommerfe */
884 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
885 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
886 1.85 sommerfe #endif
887 1.26 cgd }
888 1.26 cgd
889 1.26 cgd /*
890 1.26 cgd * Initialize the (doubly-linked) run queues
891 1.26 cgd * to be empty.
892 1.26 cgd */
893 1.26 cgd void
894 1.26 cgd rqinit()
895 1.26 cgd {
896 1.71 augustss int i;
897 1.26 cgd
898 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
899 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
900 1.73 thorpej (struct proc *)&sched_qs[i];
901 1.26 cgd }
902 1.26 cgd
903 1.26 cgd /*
904 1.26 cgd * Change process state to be runnable,
905 1.26 cgd * placing it on the run queue if it is in memory,
906 1.26 cgd * and awakening the swapper if it isn't in memory.
907 1.26 cgd */
908 1.26 cgd void
909 1.77 thorpej setrunnable(struct proc *p)
910 1.26 cgd {
911 1.26 cgd
912 1.83 thorpej SCHED_ASSERT_LOCKED();
913 1.83 thorpej
914 1.26 cgd switch (p->p_stat) {
915 1.26 cgd case 0:
916 1.26 cgd case SRUN:
917 1.72 thorpej case SONPROC:
918 1.26 cgd case SZOMB:
919 1.60 thorpej case SDEAD:
920 1.26 cgd default:
921 1.26 cgd panic("setrunnable");
922 1.26 cgd case SSTOP:
923 1.33 mycroft /*
924 1.33 mycroft * If we're being traced (possibly because someone attached us
925 1.33 mycroft * while we were stopped), check for a signal from the debugger.
926 1.33 mycroft */
927 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
928 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
929 1.101 thorpej CHECKSIGS(p);
930 1.53 mycroft }
931 1.26 cgd case SSLEEP:
932 1.26 cgd unsleep(p); /* e.g. when sending signals */
933 1.26 cgd break;
934 1.26 cgd
935 1.26 cgd case SIDL:
936 1.26 cgd break;
937 1.26 cgd }
938 1.93 bouyer p->p_stat = SRUN;
939 1.93 bouyer if (p->p_flag & P_INMEM)
940 1.93 bouyer setrunqueue(p);
941 1.93 bouyer
942 1.26 cgd if (p->p_slptime > 1)
943 1.26 cgd updatepri(p);
944 1.26 cgd p->p_slptime = 0;
945 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
946 1.83 thorpej sched_wakeup((caddr_t)&proc0);
947 1.76 thorpej else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
948 1.76 thorpej /*
949 1.76 thorpej * XXXSMP
950 1.87 thorpej * This is not exactly right. Since p->p_cpu persists
951 1.87 thorpej * across a context switch, this gives us some sort
952 1.87 thorpej * of processor affinity. But we need to figure out
953 1.87 thorpej * at what point it's better to reschedule on a different
954 1.87 thorpej * CPU than the last one.
955 1.76 thorpej */
956 1.87 thorpej need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
957 1.76 thorpej }
958 1.26 cgd }
959 1.26 cgd
960 1.26 cgd /*
961 1.26 cgd * Compute the priority of a process when running in user mode.
962 1.26 cgd * Arrange to reschedule if the resulting priority is better
963 1.26 cgd * than that of the current process.
964 1.26 cgd */
965 1.26 cgd void
966 1.77 thorpej resetpriority(struct proc *p)
967 1.26 cgd {
968 1.71 augustss unsigned int newpriority;
969 1.26 cgd
970 1.83 thorpej SCHED_ASSERT_LOCKED();
971 1.83 thorpej
972 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
973 1.26 cgd newpriority = min(newpriority, MAXPRI);
974 1.26 cgd p->p_usrpri = newpriority;
975 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
976 1.76 thorpej /*
977 1.76 thorpej * XXXSMP
978 1.76 thorpej * Same applies as in setrunnable() above.
979 1.76 thorpej */
980 1.87 thorpej need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
981 1.76 thorpej }
982 1.55 ross }
983 1.55 ross
984 1.55 ross /*
985 1.56 ross * We adjust the priority of the current process. The priority of a process
986 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
987 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
988 1.56 ross * will compute a different value each time p_estcpu increases. This can
989 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
990 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
991 1.56 ross * when the process is running (linearly), and decays away exponentially, at
992 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
993 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
994 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
995 1.56 ross * processes which haven't run much recently, and to round-robin among other
996 1.56 ross * processes.
997 1.55 ross */
998 1.55 ross
999 1.55 ross void
1000 1.77 thorpej schedclock(struct proc *p)
1001 1.55 ross {
1002 1.83 thorpej int s;
1003 1.77 thorpej
1004 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1005 1.83 thorpej
1006 1.83 thorpej SCHED_LOCK(s);
1007 1.55 ross resetpriority(p);
1008 1.83 thorpej SCHED_UNLOCK(s);
1009 1.83 thorpej
1010 1.55 ross if (p->p_priority >= PUSER)
1011 1.55 ross p->p_priority = p->p_usrpri;
1012 1.26 cgd }
1013 1.94 bouyer
1014 1.94 bouyer void
1015 1.94 bouyer suspendsched()
1016 1.94 bouyer {
1017 1.97 enami struct proc *p;
1018 1.97 enami int s;
1019 1.94 bouyer
1020 1.94 bouyer /*
1021 1.97 enami * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1022 1.94 bouyer */
1023 1.95 thorpej proclist_lock_read();
1024 1.95 thorpej SCHED_LOCK(s);
1025 1.95 thorpej for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
1026 1.97 enami if ((p->p_flag & P_SYSTEM) != 0)
1027 1.94 bouyer continue;
1028 1.97 enami switch (p->p_stat) {
1029 1.97 enami case SRUN:
1030 1.97 enami if ((p->p_flag & P_INMEM) != 0)
1031 1.97 enami remrunqueue(p);
1032 1.97 enami /* FALLTHROUGH */
1033 1.97 enami case SSLEEP:
1034 1.97 enami p->p_stat = SSTOP;
1035 1.97 enami break;
1036 1.97 enami case SONPROC:
1037 1.97 enami /*
1038 1.97 enami * XXX SMP: we need to deal with processes on
1039 1.97 enami * others CPU !
1040 1.97 enami */
1041 1.97 enami break;
1042 1.97 enami default:
1043 1.97 enami break;
1044 1.94 bouyer }
1045 1.94 bouyer }
1046 1.94 bouyer SCHED_UNLOCK(s);
1047 1.97 enami proclist_unlock_read();
1048 1.94 bouyer }
1049