Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.117
      1  1.117  gmcgarry /*	$NetBSD: kern_synch.c,v 1.117 2002/12/21 23:52:06 gmcgarry Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4   1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.63   thorpej  * NASA Ames Research Center.
     10   1.63   thorpej  *
     11   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12   1.63   thorpej  * modification, are permitted provided that the following conditions
     13   1.63   thorpej  * are met:
     14   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20   1.63   thorpej  *    must display the following acknowledgement:
     21   1.63   thorpej  *	This product includes software developed by the NetBSD
     22   1.63   thorpej  *	Foundation, Inc. and its contributors.
     23   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25   1.63   thorpej  *    from this software without specific prior written permission.
     26   1.63   thorpej  *
     27   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38   1.63   thorpej  */
     39   1.26       cgd 
     40   1.26       cgd /*-
     41   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44   1.26       cgd  * All or some portions of this file are derived from material licensed
     45   1.26       cgd  * to the University of California by American Telephone and Telegraph
     46   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48   1.26       cgd  *
     49   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50   1.26       cgd  * modification, are permitted provided that the following conditions
     51   1.26       cgd  * are met:
     52   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57   1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58   1.26       cgd  *    must display the following acknowledgement:
     59   1.26       cgd  *	This product includes software developed by the University of
     60   1.26       cgd  *	California, Berkeley and its contributors.
     61   1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62   1.26       cgd  *    may be used to endorse or promote products derived from this software
     63   1.26       cgd  *    without specific prior written permission.
     64   1.26       cgd  *
     65   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75   1.26       cgd  * SUCH DAMAGE.
     76   1.26       cgd  *
     77   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78   1.26       cgd  */
     79  1.106     lukem 
     80  1.106     lukem #include <sys/cdefs.h>
     81  1.117  gmcgarry __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.117 2002/12/21 23:52:06 gmcgarry Exp $");
     82   1.48       mrg 
     83   1.52  jonathan #include "opt_ddb.h"
     84   1.51   thorpej #include "opt_ktrace.h"
     85  1.109      yamt #include "opt_kstack.h"
     86   1.82   thorpej #include "opt_lockdebug.h"
     87   1.83   thorpej #include "opt_multiprocessor.h"
     88  1.110    briggs #include "opt_perfctrs.h"
     89   1.26       cgd 
     90   1.26       cgd #include <sys/param.h>
     91   1.26       cgd #include <sys/systm.h>
     92   1.68   thorpej #include <sys/callout.h>
     93   1.26       cgd #include <sys/proc.h>
     94   1.26       cgd #include <sys/kernel.h>
     95   1.26       cgd #include <sys/buf.h>
     96  1.111    briggs #if defined(PERFCTRS)
     97  1.110    briggs #include <sys/pmc.h>
     98  1.111    briggs #endif
     99   1.26       cgd #include <sys/signalvar.h>
    100   1.26       cgd #include <sys/resourcevar.h>
    101   1.55      ross #include <sys/sched.h>
    102   1.47       mrg 
    103   1.47       mrg #include <uvm/uvm_extern.h>
    104   1.47       mrg 
    105   1.26       cgd #ifdef KTRACE
    106   1.26       cgd #include <sys/ktrace.h>
    107   1.26       cgd #endif
    108   1.26       cgd 
    109   1.26       cgd #include <machine/cpu.h>
    110   1.34  christos 
    111   1.26       cgd int	lbolt;			/* once a second sleep address */
    112   1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113   1.26       cgd 
    114   1.73   thorpej /*
    115   1.73   thorpej  * The global scheduler state.
    116   1.73   thorpej  */
    117   1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    118   1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    119   1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    120   1.73   thorpej 
    121   1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    122   1.83   thorpej 
    123   1.77   thorpej void schedcpu(void *);
    124   1.77   thorpej void updatepri(struct proc *);
    125   1.77   thorpej void endtsleep(void *);
    126   1.34  christos 
    127   1.77   thorpej __inline void awaken(struct proc *);
    128   1.63   thorpej 
    129   1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    130   1.68   thorpej 
    131   1.26       cgd /*
    132   1.26       cgd  * Force switch among equal priority processes every 100ms.
    133   1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    134   1.26       cgd  */
    135   1.26       cgd /* ARGSUSED */
    136   1.26       cgd void
    137   1.89  sommerfe roundrobin(struct cpu_info *ci)
    138   1.26       cgd {
    139   1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    140   1.26       cgd 
    141   1.88  sommerfe 	spc->spc_rrticks = rrticks;
    142   1.88  sommerfe 
    143   1.69   thorpej 	if (curproc != NULL) {
    144   1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    145   1.69   thorpej 			/*
    146   1.69   thorpej 			 * The process has already been through a roundrobin
    147   1.69   thorpej 			 * without switching and may be hogging the CPU.
    148   1.69   thorpej 			 * Indicate that the process should yield.
    149   1.69   thorpej 			 */
    150   1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151   1.69   thorpej 		} else
    152   1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    153   1.69   thorpej 	}
    154   1.87   thorpej 	need_resched(curcpu());
    155   1.26       cgd }
    156   1.26       cgd 
    157   1.26       cgd /*
    158   1.26       cgd  * Constants for digital decay and forget:
    159   1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    160   1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    161   1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    162   1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    163   1.26       cgd  *
    164   1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    165   1.26       cgd  *
    166   1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    167   1.26       cgd  * That is, the system wants to compute a value of decay such
    168   1.26       cgd  * that the following for loop:
    169   1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    170   1.26       cgd  * 		p_estcpu *= decay;
    171   1.26       cgd  * will compute
    172   1.26       cgd  * 	p_estcpu *= 0.1;
    173   1.26       cgd  * for all values of loadavg:
    174   1.26       cgd  *
    175   1.26       cgd  * Mathematically this loop can be expressed by saying:
    176   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    177   1.26       cgd  *
    178   1.26       cgd  * The system computes decay as:
    179   1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    180   1.26       cgd  *
    181   1.26       cgd  * We wish to prove that the system's computation of decay
    182   1.26       cgd  * will always fulfill the equation:
    183   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    184   1.26       cgd  *
    185   1.26       cgd  * If we compute b as:
    186   1.26       cgd  * 	b = 2 * loadavg
    187   1.26       cgd  * then
    188   1.26       cgd  * 	decay = b / (b + 1)
    189   1.26       cgd  *
    190   1.26       cgd  * We now need to prove two things:
    191   1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    192   1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    193   1.26       cgd  *
    194   1.26       cgd  * Facts:
    195   1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    196   1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    197   1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    198   1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    199   1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    200   1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    201   1.26       cgd  *         ln(.1) =~ -2.30
    202   1.26       cgd  *
    203   1.26       cgd  * Proof of (1):
    204   1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    205   1.26       cgd  *	solving for factor,
    206   1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    207   1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    208   1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    209   1.26       cgd  *
    210   1.26       cgd  * Proof of (2):
    211   1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    212   1.26       cgd  *	solving for power,
    213   1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    214   1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    215   1.26       cgd  *
    216   1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    217   1.26       cgd  *      loadav: 1       2       3       4
    218   1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    219   1.26       cgd  */
    220   1.26       cgd 
    221   1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    222   1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    223   1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    224   1.26       cgd 
    225   1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    226   1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    227   1.26       cgd 
    228   1.26       cgd /*
    229   1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    230   1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    231   1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    232   1.26       cgd  *
    233   1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    234   1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    235   1.26       cgd  *
    236   1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    237   1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    238   1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    239   1.26       cgd  */
    240   1.26       cgd #define	CCPU_SHIFT	11
    241   1.26       cgd 
    242   1.26       cgd /*
    243   1.26       cgd  * Recompute process priorities, every hz ticks.
    244   1.26       cgd  */
    245   1.26       cgd /* ARGSUSED */
    246   1.26       cgd void
    247   1.77   thorpej schedcpu(void *arg)
    248   1.26       cgd {
    249   1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    250   1.71  augustss 	struct proc *p;
    251   1.83   thorpej 	int s, s1;
    252   1.71  augustss 	unsigned int newcpu;
    253   1.66      ross 	int clkhz;
    254   1.26       cgd 
    255   1.62   thorpej 	proclist_lock_read();
    256  1.112      matt 	LIST_FOREACH(p, &allproc, p_list) {
    257   1.26       cgd 		/*
    258   1.26       cgd 		 * Increment time in/out of memory and sleep time
    259   1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    260   1.26       cgd 		 * (remember them?) overflow takes 45 days.
    261   1.26       cgd 		 */
    262   1.26       cgd 		p->p_swtime++;
    263   1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    264   1.26       cgd 			p->p_slptime++;
    265   1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    266   1.26       cgd 		/*
    267   1.26       cgd 		 * If the process has slept the entire second,
    268   1.26       cgd 		 * stop recalculating its priority until it wakes up.
    269   1.26       cgd 		 */
    270   1.26       cgd 		if (p->p_slptime > 1)
    271   1.26       cgd 			continue;
    272   1.26       cgd 		s = splstatclock();	/* prevent state changes */
    273   1.26       cgd 		/*
    274   1.26       cgd 		 * p_pctcpu is only for ps.
    275   1.26       cgd 		 */
    276   1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    277   1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    278   1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    279   1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    280   1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    281   1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    282   1.26       cgd #else
    283   1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    284   1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    285   1.26       cgd #endif
    286   1.26       cgd 		p->p_cpticks = 0;
    287   1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    288   1.55      ross 		p->p_estcpu = newcpu;
    289   1.83   thorpej 		SCHED_LOCK(s1);
    290   1.26       cgd 		resetpriority(p);
    291   1.26       cgd 		if (p->p_priority >= PUSER) {
    292   1.72   thorpej 			if (p->p_stat == SRUN &&
    293   1.26       cgd 			    (p->p_flag & P_INMEM) &&
    294   1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    295   1.43       cgd 				remrunqueue(p);
    296   1.26       cgd 				p->p_priority = p->p_usrpri;
    297   1.26       cgd 				setrunqueue(p);
    298   1.26       cgd 			} else
    299   1.26       cgd 				p->p_priority = p->p_usrpri;
    300   1.26       cgd 		}
    301   1.83   thorpej 		SCHED_UNLOCK(s1);
    302   1.26       cgd 		splx(s);
    303   1.26       cgd 	}
    304   1.61   thorpej 	proclist_unlock_read();
    305   1.47       mrg 	uvm_meter();
    306   1.67      fvdl 	wakeup((caddr_t)&lbolt);
    307   1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    308   1.26       cgd }
    309   1.26       cgd 
    310   1.26       cgd /*
    311   1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    312   1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    313   1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    314   1.26       cgd  */
    315   1.26       cgd void
    316   1.77   thorpej updatepri(struct proc *p)
    317   1.26       cgd {
    318   1.83   thorpej 	unsigned int newcpu;
    319   1.83   thorpej 	fixpt_t loadfac;
    320   1.83   thorpej 
    321   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    322   1.83   thorpej 
    323   1.83   thorpej 	newcpu = p->p_estcpu;
    324   1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    325   1.26       cgd 
    326   1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    327   1.26       cgd 		p->p_estcpu = 0;
    328   1.26       cgd 	else {
    329   1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    330   1.26       cgd 		while (newcpu && --p->p_slptime)
    331   1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    332   1.55      ross 		p->p_estcpu = newcpu;
    333   1.26       cgd 	}
    334   1.26       cgd 	resetpriority(p);
    335   1.26       cgd }
    336   1.26       cgd 
    337   1.26       cgd /*
    338   1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    339   1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    340   1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    341   1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    342   1.26       cgd  * This priority will typically be 0, or the lowest priority
    343   1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    344   1.26       cgd  * higher to block network software interrupts after panics.
    345   1.26       cgd  */
    346   1.26       cgd int safepri;
    347   1.26       cgd 
    348   1.26       cgd /*
    349   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    350   1.26       cgd  * performed on the specified identifier.  The process will then be made
    351   1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    352   1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    353   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    354   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    355   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    356   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    357   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    358   1.77   thorpej  *
    359  1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    360   1.77   thorpej  * interlock will be locked before returning back to the caller
    361   1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    362   1.77   thorpej  * interlock will always be unlocked upon return.
    363   1.26       cgd  */
    364   1.26       cgd int
    365   1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    366   1.77   thorpej     __volatile struct simplelock *interlock)
    367   1.26       cgd {
    368   1.71  augustss 	struct proc *p = curproc;
    369   1.71  augustss 	struct slpque *qp;
    370   1.77   thorpej 	int sig, s;
    371   1.77   thorpej 	int catch = priority & PCATCH;
    372   1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    373   1.26       cgd 
    374   1.77   thorpej 	/*
    375   1.77   thorpej 	 * XXXSMP
    376   1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    377   1.77   thorpej 	 * thing to do here really is.
    378   1.78  sommerfe 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    379   1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    380   1.78  sommerfe 	 * how shutdown (barely) works.
    381   1.77   thorpej 	 */
    382   1.78  sommerfe 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    383   1.26       cgd 		/*
    384   1.26       cgd 		 * After a panic, or during autoconfiguration,
    385   1.26       cgd 		 * just give interrupts a chance, then just return;
    386   1.26       cgd 		 * don't run any other procs or panic below,
    387   1.26       cgd 		 * in case this is the idle process and already asleep.
    388   1.26       cgd 		 */
    389   1.42       cgd 		s = splhigh();
    390   1.26       cgd 		splx(safepri);
    391   1.26       cgd 		splx(s);
    392   1.77   thorpej 		if (interlock != NULL && relock == 0)
    393   1.77   thorpej 			simple_unlock(interlock);
    394   1.26       cgd 		return (0);
    395   1.26       cgd 	}
    396   1.78  sommerfe 
    397  1.102   thorpej 	KASSERT(p != NULL);
    398  1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    399   1.42       cgd 
    400   1.42       cgd #ifdef KTRACE
    401   1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    402   1.74  sommerfe 		ktrcsw(p, 1, 0);
    403   1.42       cgd #endif
    404   1.77   thorpej 
    405   1.83   thorpej 	SCHED_LOCK(s);
    406   1.42       cgd 
    407   1.26       cgd #ifdef DIAGNOSTIC
    408   1.64   thorpej 	if (ident == NULL)
    409   1.77   thorpej 		panic("ltsleep: ident == NULL");
    410   1.72   thorpej 	if (p->p_stat != SONPROC)
    411   1.77   thorpej 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    412   1.64   thorpej 	if (p->p_back != NULL)
    413   1.77   thorpej 		panic("ltsleep: p_back != NULL");
    414   1.26       cgd #endif
    415   1.77   thorpej 
    416   1.26       cgd 	p->p_wchan = ident;
    417   1.26       cgd 	p->p_wmesg = wmesg;
    418   1.26       cgd 	p->p_slptime = 0;
    419   1.26       cgd 	p->p_priority = priority & PRIMASK;
    420   1.77   thorpej 
    421   1.73   thorpej 	qp = SLPQUE(ident);
    422   1.26       cgd 	if (qp->sq_head == 0)
    423   1.26       cgd 		qp->sq_head = p;
    424   1.26       cgd 	else
    425   1.26       cgd 		*qp->sq_tailp = p;
    426   1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    427   1.77   thorpej 
    428   1.26       cgd 	if (timo)
    429   1.68   thorpej 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    430   1.77   thorpej 
    431   1.77   thorpej 	/*
    432   1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    433   1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    434   1.77   thorpej 	 * we do the switch.
    435   1.77   thorpej 	 *
    436   1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    437   1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    438   1.77   thorpej 	 * data structure for the sleep queues at some point.
    439   1.77   thorpej 	 */
    440   1.77   thorpej 	if (interlock != NULL)
    441   1.77   thorpej 		simple_unlock(interlock);
    442   1.77   thorpej 
    443   1.26       cgd 	/*
    444   1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    445   1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    446   1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    447   1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    448   1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    449   1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    450   1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    451   1.26       cgd 	 */
    452   1.26       cgd 	if (catch) {
    453   1.26       cgd 		p->p_flag |= P_SINTR;
    454   1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    455   1.77   thorpej 			if (p->p_wchan != NULL)
    456   1.26       cgd 				unsleep(p);
    457   1.72   thorpej 			p->p_stat = SONPROC;
    458   1.83   thorpej 			SCHED_UNLOCK(s);
    459   1.26       cgd 			goto resume;
    460   1.26       cgd 		}
    461   1.77   thorpej 		if (p->p_wchan == NULL) {
    462   1.26       cgd 			catch = 0;
    463   1.83   thorpej 			SCHED_UNLOCK(s);
    464   1.26       cgd 			goto resume;
    465   1.26       cgd 		}
    466   1.26       cgd 	} else
    467   1.26       cgd 		sig = 0;
    468   1.26       cgd 	p->p_stat = SSLEEP;
    469   1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    470   1.77   thorpej 
    471   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    472  1.113  gmcgarry 	mi_switch(p, NULL);
    473   1.83   thorpej 
    474  1.104       chs #if	defined(DDB) && !defined(GPROF)
    475   1.26       cgd 	/* handy breakpoint location after process "wakes" */
    476  1.107    kleink 	__asm(".globl bpendtsleep ; bpendtsleep:");
    477   1.26       cgd #endif
    478   1.77   thorpej 
    479   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    480   1.83   thorpej 	splx(s);
    481   1.83   thorpej 
    482   1.77   thorpej  resume:
    483   1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    484   1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    485   1.76   thorpej 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    486   1.83   thorpej 
    487   1.26       cgd 	p->p_flag &= ~P_SINTR;
    488   1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    489   1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    490   1.26       cgd 		if (sig == 0) {
    491   1.26       cgd #ifdef KTRACE
    492   1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    493   1.74  sommerfe 				ktrcsw(p, 0, 0);
    494   1.26       cgd #endif
    495   1.77   thorpej 			if (relock && interlock != NULL)
    496   1.77   thorpej 				simple_lock(interlock);
    497   1.26       cgd 			return (EWOULDBLOCK);
    498   1.26       cgd 		}
    499   1.26       cgd 	} else if (timo)
    500   1.68   thorpej 		callout_stop(&p->p_tsleep_ch);
    501   1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    502   1.26       cgd #ifdef KTRACE
    503   1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    504   1.74  sommerfe 			ktrcsw(p, 0, 0);
    505   1.26       cgd #endif
    506   1.77   thorpej 		if (relock && interlock != NULL)
    507   1.77   thorpej 			simple_lock(interlock);
    508   1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    509   1.26       cgd 			return (EINTR);
    510   1.26       cgd 		return (ERESTART);
    511   1.26       cgd 	}
    512   1.26       cgd #ifdef KTRACE
    513   1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    514   1.74  sommerfe 		ktrcsw(p, 0, 0);
    515   1.26       cgd #endif
    516   1.77   thorpej 	if (relock && interlock != NULL)
    517   1.77   thorpej 		simple_lock(interlock);
    518   1.26       cgd 	return (0);
    519   1.26       cgd }
    520   1.26       cgd 
    521   1.26       cgd /*
    522   1.26       cgd  * Implement timeout for tsleep.
    523   1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    524   1.26       cgd  * set timeout flag and undo the sleep.  If proc
    525   1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    526   1.26       cgd  */
    527   1.26       cgd void
    528   1.77   thorpej endtsleep(void *arg)
    529   1.26       cgd {
    530   1.71  augustss 	struct proc *p;
    531   1.26       cgd 	int s;
    532   1.26       cgd 
    533   1.26       cgd 	p = (struct proc *)arg;
    534   1.83   thorpej 
    535   1.83   thorpej 	SCHED_LOCK(s);
    536   1.26       cgd 	if (p->p_wchan) {
    537   1.26       cgd 		if (p->p_stat == SSLEEP)
    538   1.26       cgd 			setrunnable(p);
    539   1.26       cgd 		else
    540   1.26       cgd 			unsleep(p);
    541   1.26       cgd 		p->p_flag |= P_TIMEOUT;
    542   1.26       cgd 	}
    543   1.83   thorpej 	SCHED_UNLOCK(s);
    544   1.26       cgd }
    545   1.26       cgd 
    546   1.26       cgd /*
    547   1.26       cgd  * Remove a process from its wait queue
    548   1.26       cgd  */
    549   1.26       cgd void
    550   1.77   thorpej unsleep(struct proc *p)
    551   1.26       cgd {
    552   1.71  augustss 	struct slpque *qp;
    553   1.71  augustss 	struct proc **hp;
    554   1.26       cgd 
    555   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    556   1.83   thorpej 
    557   1.26       cgd 	if (p->p_wchan) {
    558   1.73   thorpej 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    559   1.26       cgd 		while (*hp != p)
    560   1.26       cgd 			hp = &(*hp)->p_forw;
    561   1.26       cgd 		*hp = p->p_forw;
    562   1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    563   1.26       cgd 			qp->sq_tailp = hp;
    564   1.26       cgd 		p->p_wchan = 0;
    565   1.26       cgd 	}
    566   1.26       cgd }
    567   1.26       cgd 
    568   1.26       cgd /*
    569   1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    570   1.63   thorpej  */
    571   1.63   thorpej __inline void
    572   1.77   thorpej awaken(struct proc *p)
    573   1.63   thorpej {
    574   1.63   thorpej 
    575   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    576   1.83   thorpej 
    577   1.63   thorpej 	if (p->p_slptime > 1)
    578   1.63   thorpej 		updatepri(p);
    579   1.63   thorpej 	p->p_slptime = 0;
    580   1.93    bouyer 	p->p_stat = SRUN;
    581   1.93    bouyer 
    582   1.93    bouyer 	/*
    583   1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    584   1.93    bouyer 	 * is always better than curpriority.
    585   1.93    bouyer 	 */
    586   1.93    bouyer 	if (p->p_flag & P_INMEM) {
    587   1.93    bouyer 		setrunqueue(p);
    588   1.93    bouyer 		KASSERT(p->p_cpu != NULL);
    589   1.93    bouyer 		need_resched(p->p_cpu);
    590   1.93    bouyer 	} else
    591   1.93    bouyer 		sched_wakeup(&proc0);
    592   1.83   thorpej }
    593   1.83   thorpej 
    594   1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    595   1.83   thorpej void
    596   1.83   thorpej sched_unlock_idle(void)
    597   1.83   thorpej {
    598   1.83   thorpej 
    599   1.83   thorpej 	simple_unlock(&sched_lock);
    600   1.63   thorpej }
    601   1.63   thorpej 
    602   1.83   thorpej void
    603   1.83   thorpej sched_lock_idle(void)
    604   1.83   thorpej {
    605   1.83   thorpej 
    606   1.83   thorpej 	simple_lock(&sched_lock);
    607   1.83   thorpej }
    608   1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    609   1.83   thorpej 
    610   1.63   thorpej /*
    611   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    612   1.26       cgd  */
    613   1.83   thorpej 
    614   1.26       cgd void
    615   1.77   thorpej wakeup(void *ident)
    616   1.26       cgd {
    617   1.83   thorpej 	int s;
    618   1.83   thorpej 
    619   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    620   1.83   thorpej 
    621   1.83   thorpej 	SCHED_LOCK(s);
    622   1.83   thorpej 	sched_wakeup(ident);
    623   1.83   thorpej 	SCHED_UNLOCK(s);
    624   1.83   thorpej }
    625   1.83   thorpej 
    626   1.83   thorpej void
    627   1.83   thorpej sched_wakeup(void *ident)
    628   1.83   thorpej {
    629   1.71  augustss 	struct slpque *qp;
    630   1.71  augustss 	struct proc *p, **q;
    631   1.26       cgd 
    632   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    633   1.77   thorpej 
    634   1.73   thorpej 	qp = SLPQUE(ident);
    635   1.77   thorpej  restart:
    636   1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    637   1.26       cgd #ifdef DIAGNOSTIC
    638   1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    639   1.26       cgd 			panic("wakeup");
    640   1.26       cgd #endif
    641   1.26       cgd 		if (p->p_wchan == ident) {
    642   1.26       cgd 			p->p_wchan = 0;
    643   1.26       cgd 			*q = p->p_forw;
    644   1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    645   1.26       cgd 				qp->sq_tailp = q;
    646   1.26       cgd 			if (p->p_stat == SSLEEP) {
    647   1.63   thorpej 				awaken(p);
    648   1.26       cgd 				goto restart;
    649   1.26       cgd 			}
    650   1.26       cgd 		} else
    651   1.26       cgd 			q = &p->p_forw;
    652   1.63   thorpej 	}
    653   1.63   thorpej }
    654   1.63   thorpej 
    655   1.63   thorpej /*
    656   1.63   thorpej  * Make the highest priority process first in line on the specified
    657   1.63   thorpej  * identifier runnable.
    658   1.63   thorpej  */
    659   1.63   thorpej void
    660   1.77   thorpej wakeup_one(void *ident)
    661   1.63   thorpej {
    662   1.63   thorpej 	struct slpque *qp;
    663   1.63   thorpej 	struct proc *p, **q;
    664   1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    665   1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    666   1.63   thorpej 	int s;
    667   1.63   thorpej 
    668   1.63   thorpej 	best_sleepp = best_stopp = NULL;
    669   1.63   thorpej 	best_sleepq = best_stopq = NULL;
    670   1.63   thorpej 
    671   1.83   thorpej 	SCHED_LOCK(s);
    672   1.77   thorpej 
    673   1.73   thorpej 	qp = SLPQUE(ident);
    674   1.77   thorpej 
    675   1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    676   1.63   thorpej #ifdef DIAGNOSTIC
    677   1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    678   1.63   thorpej 			panic("wakeup_one");
    679   1.63   thorpej #endif
    680   1.63   thorpej 		if (p->p_wchan == ident) {
    681   1.63   thorpej 			if (p->p_stat == SSLEEP) {
    682   1.63   thorpej 				if (best_sleepp == NULL ||
    683   1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    684   1.63   thorpej 					best_sleepp = p;
    685   1.63   thorpej 					best_sleepq = q;
    686   1.63   thorpej 				}
    687   1.63   thorpej 			} else {
    688   1.63   thorpej 				if (best_stopp == NULL ||
    689   1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    690   1.63   thorpej 					best_stopp = p;
    691   1.63   thorpej 					best_stopq = q;
    692   1.63   thorpej 				}
    693   1.63   thorpej 			}
    694   1.63   thorpej 		}
    695   1.63   thorpej 	}
    696   1.63   thorpej 
    697   1.63   thorpej 	/*
    698   1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    699   1.63   thorpej 	 * process.
    700   1.63   thorpej 	 */
    701   1.63   thorpej 	if (best_sleepp != NULL) {
    702   1.63   thorpej 		p = best_sleepp;
    703   1.63   thorpej 		q = best_sleepq;
    704   1.63   thorpej 	} else {
    705   1.63   thorpej 		p = best_stopp;
    706   1.63   thorpej 		q = best_stopq;
    707   1.63   thorpej 	}
    708   1.63   thorpej 
    709   1.63   thorpej 	if (p != NULL) {
    710   1.77   thorpej 		p->p_wchan = NULL;
    711   1.63   thorpej 		*q = p->p_forw;
    712   1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    713   1.63   thorpej 			qp->sq_tailp = q;
    714   1.63   thorpej 		if (p->p_stat == SSLEEP)
    715   1.63   thorpej 			awaken(p);
    716   1.26       cgd 	}
    717   1.83   thorpej 	SCHED_UNLOCK(s);
    718  1.117  gmcgarry }
    719  1.117  gmcgarry 
    720  1.117  gmcgarry /*
    721  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    722  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    723  1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    724  1.117  gmcgarry  */
    725  1.117  gmcgarry void
    726  1.117  gmcgarry yield(void)
    727  1.117  gmcgarry {
    728  1.117  gmcgarry 	struct proc *p = curproc;
    729  1.117  gmcgarry 	int s;
    730  1.117  gmcgarry 
    731  1.117  gmcgarry 	SCHED_LOCK(s);
    732  1.117  gmcgarry 	p->p_priority = p->p_usrpri;
    733  1.117  gmcgarry 	p->p_stat = SRUN;
    734  1.117  gmcgarry 	setrunqueue(p);
    735  1.117  gmcgarry 	p->p_stats->p_ru.ru_nvcsw++;
    736  1.117  gmcgarry 	mi_switch(p, NULL);
    737  1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    738  1.117  gmcgarry 	splx(s);
    739   1.69   thorpej }
    740   1.69   thorpej 
    741   1.69   thorpej /*
    742   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    743   1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    744   1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    745   1.69   thorpej  * criteria.
    746   1.69   thorpej  */
    747   1.69   thorpej void
    748   1.77   thorpej preempt(struct proc *newp)
    749   1.69   thorpej {
    750   1.69   thorpej 	struct proc *p = curproc;
    751   1.69   thorpej 	int s;
    752   1.69   thorpej 
    753   1.83   thorpej 	SCHED_LOCK(s);
    754   1.69   thorpej 	p->p_priority = p->p_usrpri;
    755   1.93    bouyer 	p->p_stat = SRUN;
    756   1.93    bouyer 	setrunqueue(p);
    757   1.69   thorpej 	p->p_stats->p_ru.ru_nivcsw++;
    758  1.113  gmcgarry 	mi_switch(p, newp);
    759   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    760   1.69   thorpej 	splx(s);
    761   1.69   thorpej }
    762   1.69   thorpej 
    763   1.69   thorpej /*
    764   1.72   thorpej  * The machine independent parts of context switch.
    765   1.86   thorpej  * Must be called at splsched() (no higher!) and with
    766   1.86   thorpej  * the sched_lock held.
    767   1.26       cgd  */
    768   1.26       cgd void
    769  1.113  gmcgarry mi_switch(struct proc *p, struct proc *newp)
    770   1.26       cgd {
    771   1.76   thorpej 	struct schedstate_percpu *spc;
    772   1.71  augustss 	struct rlimit *rlim;
    773   1.71  augustss 	long s, u;
    774   1.26       cgd 	struct timeval tv;
    775   1.85  sommerfe #if defined(MULTIPROCESSOR)
    776   1.85  sommerfe 	int hold_count;
    777   1.85  sommerfe #endif
    778   1.26       cgd 
    779   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    780   1.83   thorpej 
    781   1.85  sommerfe #if defined(MULTIPROCESSOR)
    782   1.90  sommerfe 	/*
    783   1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    784   1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    785   1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    786   1.90  sommerfe 	 */
    787   1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    788   1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    789   1.85  sommerfe #endif
    790   1.85  sommerfe 
    791   1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    792   1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    793  1.113  gmcgarry 	KDASSERT(newp == NULL);
    794  1.113  gmcgarry 
    795   1.76   thorpej 	spc = &p->p_cpu->ci_schedstate;
    796   1.76   thorpej 
    797   1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    798   1.82   thorpej 	spinlock_switchcheck();
    799   1.82   thorpej #endif
    800   1.54       chs #ifdef LOCKDEBUG
    801   1.81   thorpej 	simple_lock_switchcheck();
    802   1.50      fvdl #endif
    803   1.81   thorpej 
    804   1.26       cgd 	/*
    805   1.26       cgd 	 * Compute the amount of time during which the current
    806  1.113  gmcgarry 	 * process was running.
    807   1.26       cgd 	 */
    808   1.26       cgd 	microtime(&tv);
    809   1.73   thorpej 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    810   1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    811   1.26       cgd 	if (u < 0) {
    812   1.26       cgd 		u += 1000000;
    813   1.26       cgd 		s--;
    814   1.26       cgd 	} else if (u >= 1000000) {
    815   1.26       cgd 		u -= 1000000;
    816   1.26       cgd 		s++;
    817   1.26       cgd 	}
    818  1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    819  1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    820   1.26       cgd 
    821   1.26       cgd 	/*
    822   1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    823   1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    824   1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    825   1.26       cgd 	 */
    826   1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    827   1.26       cgd 	if (s >= rlim->rlim_cur) {
    828  1.100  sommerfe 		/*
    829  1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    830  1.100  sommerfe 		 * use sched_psignal.
    831  1.100  sommerfe 		 */
    832   1.26       cgd 		if (s >= rlim->rlim_max)
    833  1.100  sommerfe 			sched_psignal(p, SIGKILL);
    834   1.26       cgd 		else {
    835  1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    836   1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    837   1.26       cgd 				rlim->rlim_cur += 5;
    838   1.26       cgd 		}
    839   1.26       cgd 	}
    840   1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    841   1.77   thorpej 	    p->p_nice == NZERO) {
    842   1.39        ws 		p->p_nice = autoniceval + NZERO;
    843   1.26       cgd 		resetpriority(p);
    844   1.26       cgd 	}
    845   1.69   thorpej 
    846   1.69   thorpej 	/*
    847   1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    848   1.69   thorpej 	 * scheduling flags.
    849   1.69   thorpej 	 */
    850   1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    851  1.109      yamt 
    852  1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    853  1.109      yamt 	kstack_check_magic(p);
    854  1.109      yamt #endif
    855   1.26       cgd 
    856  1.113  gmcgarry 	/*
    857  1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    858  1.113  gmcgarry 	 */
    859  1.114  gmcgarry #if PERFCTRS
    860  1.114  gmcgarry 	if (PMC_ENABLED(p))
    861  1.114  gmcgarry 		pmc_save_context(p);
    862  1.110    briggs #endif
    863  1.113  gmcgarry 
    864  1.113  gmcgarry 	/*
    865  1.114  gmcgarry 	 * Switch to the new current process.  When we
    866  1.114  gmcgarry 	 * run again, we'll return back here.
    867  1.113  gmcgarry 	 */
    868  1.114  gmcgarry 	uvmexp.swtch++;
    869  1.114  gmcgarry 	cpu_switch(p, NULL);
    870  1.110    briggs 
    871  1.110    briggs 	/*
    872  1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
    873   1.26       cgd 	 */
    874  1.114  gmcgarry #if PERFCTRS
    875  1.114  gmcgarry 	if (PMC_ENABLED(p))
    876  1.114  gmcgarry 		pmc_restore_context(p);
    877  1.114  gmcgarry #endif
    878  1.110    briggs 
    879  1.110    briggs 	/*
    880  1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
    881  1.114  gmcgarry 	 * resuming us.
    882  1.110    briggs 	 */
    883  1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    884   1.83   thorpej 
    885   1.83   thorpej 	/*
    886   1.76   thorpej 	 * We're running again; record our new start time.  We might
    887   1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    888   1.76   thorpej 	 * schedstate_percpu pointer.
    889   1.76   thorpej 	 */
    890   1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    891   1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    892   1.76   thorpej 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    893   1.85  sommerfe 
    894   1.85  sommerfe #if defined(MULTIPROCESSOR)
    895   1.90  sommerfe 	/*
    896   1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    897   1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    898   1.90  sommerfe 	 * we reacquire the interlock.
    899   1.90  sommerfe 	 */
    900   1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    901   1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    902   1.85  sommerfe #endif
    903   1.26       cgd }
    904   1.26       cgd 
    905   1.26       cgd /*
    906   1.26       cgd  * Initialize the (doubly-linked) run queues
    907   1.26       cgd  * to be empty.
    908   1.26       cgd  */
    909   1.26       cgd void
    910   1.26       cgd rqinit()
    911   1.26       cgd {
    912   1.71  augustss 	int i;
    913   1.26       cgd 
    914   1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    915   1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    916   1.73   thorpej 		    (struct proc *)&sched_qs[i];
    917   1.26       cgd }
    918   1.26       cgd 
    919   1.26       cgd /*
    920   1.26       cgd  * Change process state to be runnable,
    921   1.26       cgd  * placing it on the run queue if it is in memory,
    922   1.26       cgd  * and awakening the swapper if it isn't in memory.
    923   1.26       cgd  */
    924   1.26       cgd void
    925   1.77   thorpej setrunnable(struct proc *p)
    926   1.26       cgd {
    927   1.26       cgd 
    928   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    929   1.83   thorpej 
    930   1.26       cgd 	switch (p->p_stat) {
    931   1.26       cgd 	case 0:
    932   1.26       cgd 	case SRUN:
    933   1.72   thorpej 	case SONPROC:
    934   1.26       cgd 	case SZOMB:
    935   1.60   thorpej 	case SDEAD:
    936   1.26       cgd 	default:
    937   1.26       cgd 		panic("setrunnable");
    938   1.26       cgd 	case SSTOP:
    939   1.33   mycroft 		/*
    940   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    941   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    942   1.33   mycroft 		 */
    943   1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    944   1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    945  1.101   thorpej 			CHECKSIGS(p);
    946   1.53   mycroft 		}
    947   1.26       cgd 	case SSLEEP:
    948   1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    949   1.26       cgd 		break;
    950   1.26       cgd 
    951   1.26       cgd 	case SIDL:
    952   1.26       cgd 		break;
    953   1.26       cgd 	}
    954   1.93    bouyer 	p->p_stat = SRUN;
    955   1.93    bouyer 	if (p->p_flag & P_INMEM)
    956   1.93    bouyer 		setrunqueue(p);
    957   1.93    bouyer 
    958   1.26       cgd 	if (p->p_slptime > 1)
    959   1.26       cgd 		updatepri(p);
    960   1.26       cgd 	p->p_slptime = 0;
    961   1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    962   1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
    963   1.76   thorpej 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    964   1.76   thorpej 		/*
    965   1.76   thorpej 		 * XXXSMP
    966   1.87   thorpej 		 * This is not exactly right.  Since p->p_cpu persists
    967   1.87   thorpej 		 * across a context switch, this gives us some sort
    968   1.87   thorpej 		 * of processor affinity.  But we need to figure out
    969   1.87   thorpej 		 * at what point it's better to reschedule on a different
    970   1.87   thorpej 		 * CPU than the last one.
    971   1.76   thorpej 		 */
    972   1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    973   1.76   thorpej 	}
    974   1.26       cgd }
    975   1.26       cgd 
    976   1.26       cgd /*
    977   1.26       cgd  * Compute the priority of a process when running in user mode.
    978   1.26       cgd  * Arrange to reschedule if the resulting priority is better
    979   1.26       cgd  * than that of the current process.
    980   1.26       cgd  */
    981   1.26       cgd void
    982   1.77   thorpej resetpriority(struct proc *p)
    983   1.26       cgd {
    984   1.71  augustss 	unsigned int newpriority;
    985   1.26       cgd 
    986   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    987   1.83   thorpej 
    988   1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    989   1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    990   1.26       cgd 	p->p_usrpri = newpriority;
    991   1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    992   1.76   thorpej 		/*
    993   1.76   thorpej 		 * XXXSMP
    994   1.76   thorpej 		 * Same applies as in setrunnable() above.
    995   1.76   thorpej 		 */
    996   1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    997   1.76   thorpej 	}
    998   1.55      ross }
    999   1.55      ross 
   1000   1.55      ross /*
   1001   1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1002   1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1003   1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1004   1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1005   1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1006   1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1007   1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1008   1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1009   1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1010   1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1011   1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1012   1.56      ross  * processes.
   1013   1.55      ross  */
   1014   1.55      ross 
   1015   1.55      ross void
   1016   1.77   thorpej schedclock(struct proc *p)
   1017   1.55      ross {
   1018   1.83   thorpej 	int s;
   1019   1.77   thorpej 
   1020   1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1021   1.83   thorpej 
   1022   1.83   thorpej 	SCHED_LOCK(s);
   1023   1.55      ross 	resetpriority(p);
   1024   1.83   thorpej 	SCHED_UNLOCK(s);
   1025   1.83   thorpej 
   1026   1.55      ross 	if (p->p_priority >= PUSER)
   1027   1.55      ross 		p->p_priority = p->p_usrpri;
   1028   1.26       cgd }
   1029   1.94    bouyer 
   1030   1.94    bouyer void
   1031   1.94    bouyer suspendsched()
   1032   1.94    bouyer {
   1033   1.97     enami 	struct proc *p;
   1034   1.97     enami 	int s;
   1035   1.94    bouyer 
   1036   1.94    bouyer 	/*
   1037   1.97     enami 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1038   1.94    bouyer 	 */
   1039   1.95   thorpej 	proclist_lock_read();
   1040   1.95   thorpej 	SCHED_LOCK(s);
   1041  1.113  gmcgarry 	LIST_FOREACH(p, &allproc, p_list) {
   1042   1.97     enami 		if ((p->p_flag & P_SYSTEM) != 0)
   1043   1.94    bouyer 			continue;
   1044   1.97     enami 		switch (p->p_stat) {
   1045   1.97     enami 		case SRUN:
   1046   1.97     enami 			if ((p->p_flag & P_INMEM) != 0)
   1047   1.97     enami 				remrunqueue(p);
   1048   1.97     enami 			/* FALLTHROUGH */
   1049   1.97     enami 		case SSLEEP:
   1050   1.97     enami 			p->p_stat = SSTOP;
   1051   1.97     enami 			break;
   1052   1.97     enami 		case SONPROC:
   1053   1.97     enami 			/*
   1054   1.97     enami 			 * XXX SMP: we need to deal with processes on
   1055   1.97     enami 			 * others CPU !
   1056   1.97     enami 			 */
   1057   1.97     enami 			break;
   1058   1.97     enami 		default:
   1059   1.97     enami 			break;
   1060   1.94    bouyer 		}
   1061   1.94    bouyer 	}
   1062   1.94    bouyer 	SCHED_UNLOCK(s);
   1063   1.97     enami 	proclist_unlock_read();
   1064   1.94    bouyer }
   1065  1.113  gmcgarry 
   1066  1.113  gmcgarry /*
   1067  1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1068  1.113  gmcgarry  * routines can override these.
   1069  1.113  gmcgarry  */
   1070  1.113  gmcgarry 
   1071  1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1072  1.115  nisimura 
   1073  1.115  nisimura /*
   1074  1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1075  1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1076  1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1077  1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1078  1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1079  1.115  nisimura  * available queues.
   1080  1.115  nisimura  */
   1081  1.113  gmcgarry 
   1082  1.113  gmcgarry void
   1083  1.113  gmcgarry setrunqueue(struct proc *p)
   1084  1.113  gmcgarry {
   1085  1.113  gmcgarry 	struct prochd *rq;
   1086  1.113  gmcgarry 	struct proc *prev;
   1087  1.113  gmcgarry 	int whichq;
   1088  1.113  gmcgarry 
   1089  1.113  gmcgarry #ifdef DIAGNOSTIC
   1090  1.113  gmcgarry 	if (p->p_back != NULL || p->p_wchan != NULL || p->p_stat != SRUN)
   1091  1.113  gmcgarry 		panic("setrunqueue");
   1092  1.113  gmcgarry #endif
   1093  1.113  gmcgarry 	whichq = p->p_priority / 4;
   1094  1.113  gmcgarry 	sched_whichqs |= (1<<whichq);
   1095  1.113  gmcgarry 	rq = &sched_qs[whichq];
   1096  1.113  gmcgarry 	prev = rq->ph_rlink;
   1097  1.113  gmcgarry 	p->p_forw = (struct proc *)rq;
   1098  1.113  gmcgarry 	rq->ph_rlink = p;
   1099  1.113  gmcgarry 	prev->p_forw = p;
   1100  1.113  gmcgarry 	p->p_back = prev;
   1101  1.113  gmcgarry }
   1102  1.113  gmcgarry 
   1103  1.113  gmcgarry void
   1104  1.113  gmcgarry remrunqueue(struct proc *p)
   1105  1.113  gmcgarry {
   1106  1.113  gmcgarry 	struct proc *prev, *next;
   1107  1.113  gmcgarry 	int whichq;
   1108  1.113  gmcgarry 
   1109  1.113  gmcgarry 	whichq = p->p_priority / 4;
   1110  1.113  gmcgarry #ifdef DIAGNOSTIC
   1111  1.113  gmcgarry 	if (((sched_whichqs & (1<<whichq)) == 0))
   1112  1.113  gmcgarry 		panic("remrunqueue");
   1113  1.113  gmcgarry #endif
   1114  1.113  gmcgarry 	prev = p->p_back;
   1115  1.113  gmcgarry 	p->p_back = NULL;
   1116  1.113  gmcgarry 	next = p->p_forw;
   1117  1.113  gmcgarry 	prev->p_forw = next;
   1118  1.113  gmcgarry 	next->p_back = prev;
   1119  1.113  gmcgarry 	if (prev == next)
   1120  1.113  gmcgarry 		sched_whichqs &= ~(1<<whichq);
   1121  1.113  gmcgarry }
   1122  1.113  gmcgarry 
   1123  1.113  gmcgarry #endif
   1124