kern_synch.c revision 1.118 1 1.118 thorpej /* $NetBSD: kern_synch.c,v 1.118 2002/12/29 02:08:39 thorpej Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.106 lukem
80 1.106 lukem #include <sys/cdefs.h>
81 1.118 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.118 2002/12/29 02:08:39 thorpej Exp $");
82 1.48 mrg
83 1.52 jonathan #include "opt_ddb.h"
84 1.51 thorpej #include "opt_ktrace.h"
85 1.109 yamt #include "opt_kstack.h"
86 1.82 thorpej #include "opt_lockdebug.h"
87 1.83 thorpej #include "opt_multiprocessor.h"
88 1.110 briggs #include "opt_perfctrs.h"
89 1.26 cgd
90 1.26 cgd #include <sys/param.h>
91 1.26 cgd #include <sys/systm.h>
92 1.68 thorpej #include <sys/callout.h>
93 1.26 cgd #include <sys/proc.h>
94 1.26 cgd #include <sys/kernel.h>
95 1.26 cgd #include <sys/buf.h>
96 1.111 briggs #if defined(PERFCTRS)
97 1.110 briggs #include <sys/pmc.h>
98 1.111 briggs #endif
99 1.26 cgd #include <sys/signalvar.h>
100 1.26 cgd #include <sys/resourcevar.h>
101 1.55 ross #include <sys/sched.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.26 cgd #ifdef KTRACE
106 1.26 cgd #include <sys/ktrace.h>
107 1.26 cgd #endif
108 1.26 cgd
109 1.26 cgd #include <machine/cpu.h>
110 1.34 christos
111 1.26 cgd int lbolt; /* once a second sleep address */
112 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
113 1.26 cgd
114 1.73 thorpej /*
115 1.73 thorpej * The global scheduler state.
116 1.73 thorpej */
117 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
118 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
119 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
120 1.73 thorpej
121 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
122 1.83 thorpej
123 1.77 thorpej void schedcpu(void *);
124 1.77 thorpej void updatepri(struct proc *);
125 1.77 thorpej void endtsleep(void *);
126 1.34 christos
127 1.77 thorpej __inline void awaken(struct proc *);
128 1.63 thorpej
129 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
130 1.68 thorpej
131 1.26 cgd /*
132 1.26 cgd * Force switch among equal priority processes every 100ms.
133 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 1.26 cgd */
135 1.26 cgd /* ARGSUSED */
136 1.26 cgd void
137 1.89 sommerfe roundrobin(struct cpu_info *ci)
138 1.26 cgd {
139 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
140 1.26 cgd
141 1.88 sommerfe spc->spc_rrticks = rrticks;
142 1.88 sommerfe
143 1.69 thorpej if (curproc != NULL) {
144 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
145 1.69 thorpej /*
146 1.69 thorpej * The process has already been through a roundrobin
147 1.69 thorpej * without switching and may be hogging the CPU.
148 1.69 thorpej * Indicate that the process should yield.
149 1.69 thorpej */
150 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
151 1.69 thorpej } else
152 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
153 1.69 thorpej }
154 1.87 thorpej need_resched(curcpu());
155 1.26 cgd }
156 1.26 cgd
157 1.26 cgd /*
158 1.26 cgd * Constants for digital decay and forget:
159 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
160 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
162 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
163 1.26 cgd *
164 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
165 1.26 cgd *
166 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 1.26 cgd * That is, the system wants to compute a value of decay such
168 1.26 cgd * that the following for loop:
169 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
170 1.26 cgd * p_estcpu *= decay;
171 1.26 cgd * will compute
172 1.26 cgd * p_estcpu *= 0.1;
173 1.26 cgd * for all values of loadavg:
174 1.26 cgd *
175 1.26 cgd * Mathematically this loop can be expressed by saying:
176 1.26 cgd * decay ** (5 * loadavg) ~= .1
177 1.26 cgd *
178 1.26 cgd * The system computes decay as:
179 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
180 1.26 cgd *
181 1.26 cgd * We wish to prove that the system's computation of decay
182 1.26 cgd * will always fulfill the equation:
183 1.26 cgd * decay ** (5 * loadavg) ~= .1
184 1.26 cgd *
185 1.26 cgd * If we compute b as:
186 1.26 cgd * b = 2 * loadavg
187 1.26 cgd * then
188 1.26 cgd * decay = b / (b + 1)
189 1.26 cgd *
190 1.26 cgd * We now need to prove two things:
191 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 1.26 cgd *
194 1.26 cgd * Facts:
195 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
196 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
199 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 1.26 cgd * ln(.1) =~ -2.30
202 1.26 cgd *
203 1.26 cgd * Proof of (1):
204 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 1.26 cgd * solving for factor,
206 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
207 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 1.26 cgd *
210 1.26 cgd * Proof of (2):
211 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 1.26 cgd * solving for power,
213 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
214 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 1.26 cgd *
216 1.26 cgd * Actual power values for the implemented algorithm are as follows:
217 1.26 cgd * loadav: 1 2 3 4
218 1.26 cgd * power: 5.68 10.32 14.94 19.55
219 1.26 cgd */
220 1.26 cgd
221 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
223 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224 1.26 cgd
225 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227 1.26 cgd
228 1.26 cgd /*
229 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 1.26 cgd *
233 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 1.26 cgd *
236 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
237 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
239 1.26 cgd */
240 1.26 cgd #define CCPU_SHIFT 11
241 1.26 cgd
242 1.26 cgd /*
243 1.26 cgd * Recompute process priorities, every hz ticks.
244 1.26 cgd */
245 1.26 cgd /* ARGSUSED */
246 1.26 cgd void
247 1.77 thorpej schedcpu(void *arg)
248 1.26 cgd {
249 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 1.71 augustss struct proc *p;
251 1.83 thorpej int s, s1;
252 1.71 augustss unsigned int newcpu;
253 1.66 ross int clkhz;
254 1.26 cgd
255 1.62 thorpej proclist_lock_read();
256 1.112 matt LIST_FOREACH(p, &allproc, p_list) {
257 1.26 cgd /*
258 1.26 cgd * Increment time in/out of memory and sleep time
259 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
260 1.26 cgd * (remember them?) overflow takes 45 days.
261 1.26 cgd */
262 1.26 cgd p->p_swtime++;
263 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
264 1.26 cgd p->p_slptime++;
265 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
266 1.26 cgd /*
267 1.26 cgd * If the process has slept the entire second,
268 1.26 cgd * stop recalculating its priority until it wakes up.
269 1.26 cgd */
270 1.26 cgd if (p->p_slptime > 1)
271 1.26 cgd continue;
272 1.26 cgd s = splstatclock(); /* prevent state changes */
273 1.26 cgd /*
274 1.26 cgd * p_pctcpu is only for ps.
275 1.26 cgd */
276 1.66 ross clkhz = stathz != 0 ? stathz : hz;
277 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
278 1.66 ross p->p_pctcpu += (clkhz == 100)?
279 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
280 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
281 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
282 1.26 cgd #else
283 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
284 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
285 1.26 cgd #endif
286 1.26 cgd p->p_cpticks = 0;
287 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
288 1.55 ross p->p_estcpu = newcpu;
289 1.83 thorpej SCHED_LOCK(s1);
290 1.26 cgd resetpriority(p);
291 1.26 cgd if (p->p_priority >= PUSER) {
292 1.72 thorpej if (p->p_stat == SRUN &&
293 1.26 cgd (p->p_flag & P_INMEM) &&
294 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
295 1.43 cgd remrunqueue(p);
296 1.26 cgd p->p_priority = p->p_usrpri;
297 1.26 cgd setrunqueue(p);
298 1.26 cgd } else
299 1.26 cgd p->p_priority = p->p_usrpri;
300 1.26 cgd }
301 1.83 thorpej SCHED_UNLOCK(s1);
302 1.26 cgd splx(s);
303 1.26 cgd }
304 1.61 thorpej proclist_unlock_read();
305 1.47 mrg uvm_meter();
306 1.67 fvdl wakeup((caddr_t)&lbolt);
307 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
308 1.26 cgd }
309 1.26 cgd
310 1.26 cgd /*
311 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
312 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
313 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
314 1.26 cgd */
315 1.26 cgd void
316 1.77 thorpej updatepri(struct proc *p)
317 1.26 cgd {
318 1.83 thorpej unsigned int newcpu;
319 1.83 thorpej fixpt_t loadfac;
320 1.83 thorpej
321 1.83 thorpej SCHED_ASSERT_LOCKED();
322 1.83 thorpej
323 1.83 thorpej newcpu = p->p_estcpu;
324 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
325 1.26 cgd
326 1.26 cgd if (p->p_slptime > 5 * loadfac)
327 1.26 cgd p->p_estcpu = 0;
328 1.26 cgd else {
329 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
330 1.26 cgd while (newcpu && --p->p_slptime)
331 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
332 1.55 ross p->p_estcpu = newcpu;
333 1.26 cgd }
334 1.26 cgd resetpriority(p);
335 1.26 cgd }
336 1.26 cgd
337 1.26 cgd /*
338 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
339 1.26 cgd * lower the priority briefly to allow interrupts, then return.
340 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
341 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
342 1.26 cgd * This priority will typically be 0, or the lowest priority
343 1.26 cgd * that is safe for use on the interrupt stack; it can be made
344 1.26 cgd * higher to block network software interrupts after panics.
345 1.26 cgd */
346 1.26 cgd int safepri;
347 1.26 cgd
348 1.26 cgd /*
349 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
350 1.26 cgd * performed on the specified identifier. The process will then be made
351 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
352 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
353 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
354 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
355 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
356 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
357 1.26 cgd * call should be interrupted by the signal (return EINTR).
358 1.77 thorpej *
359 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
360 1.77 thorpej * interlock will be locked before returning back to the caller
361 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
362 1.77 thorpej * interlock will always be unlocked upon return.
363 1.26 cgd */
364 1.26 cgd int
365 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
366 1.77 thorpej __volatile struct simplelock *interlock)
367 1.26 cgd {
368 1.71 augustss struct proc *p = curproc;
369 1.71 augustss struct slpque *qp;
370 1.77 thorpej int sig, s;
371 1.77 thorpej int catch = priority & PCATCH;
372 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
373 1.26 cgd
374 1.77 thorpej /*
375 1.77 thorpej * XXXSMP
376 1.77 thorpej * This is probably bogus. Figure out what the right
377 1.77 thorpej * thing to do here really is.
378 1.78 sommerfe * Note that not sleeping if ltsleep is called with curproc == NULL
379 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
380 1.78 sommerfe * how shutdown (barely) works.
381 1.77 thorpej */
382 1.78 sommerfe if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
383 1.26 cgd /*
384 1.26 cgd * After a panic, or during autoconfiguration,
385 1.26 cgd * just give interrupts a chance, then just return;
386 1.26 cgd * don't run any other procs or panic below,
387 1.26 cgd * in case this is the idle process and already asleep.
388 1.26 cgd */
389 1.42 cgd s = splhigh();
390 1.26 cgd splx(safepri);
391 1.26 cgd splx(s);
392 1.77 thorpej if (interlock != NULL && relock == 0)
393 1.77 thorpej simple_unlock(interlock);
394 1.26 cgd return (0);
395 1.26 cgd }
396 1.78 sommerfe
397 1.102 thorpej KASSERT(p != NULL);
398 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
399 1.42 cgd
400 1.42 cgd #ifdef KTRACE
401 1.42 cgd if (KTRPOINT(p, KTR_CSW))
402 1.74 sommerfe ktrcsw(p, 1, 0);
403 1.42 cgd #endif
404 1.77 thorpej
405 1.83 thorpej SCHED_LOCK(s);
406 1.42 cgd
407 1.26 cgd #ifdef DIAGNOSTIC
408 1.64 thorpej if (ident == NULL)
409 1.77 thorpej panic("ltsleep: ident == NULL");
410 1.72 thorpej if (p->p_stat != SONPROC)
411 1.77 thorpej panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
412 1.64 thorpej if (p->p_back != NULL)
413 1.77 thorpej panic("ltsleep: p_back != NULL");
414 1.26 cgd #endif
415 1.77 thorpej
416 1.26 cgd p->p_wchan = ident;
417 1.26 cgd p->p_wmesg = wmesg;
418 1.26 cgd p->p_slptime = 0;
419 1.26 cgd p->p_priority = priority & PRIMASK;
420 1.77 thorpej
421 1.73 thorpej qp = SLPQUE(ident);
422 1.26 cgd if (qp->sq_head == 0)
423 1.26 cgd qp->sq_head = p;
424 1.26 cgd else
425 1.26 cgd *qp->sq_tailp = p;
426 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
427 1.77 thorpej
428 1.26 cgd if (timo)
429 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
430 1.77 thorpej
431 1.77 thorpej /*
432 1.77 thorpej * We can now release the interlock; the scheduler_slock
433 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
434 1.77 thorpej * we do the switch.
435 1.77 thorpej *
436 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
437 1.77 thorpej * on the sleep queue, because we might want a more clever
438 1.77 thorpej * data structure for the sleep queues at some point.
439 1.77 thorpej */
440 1.77 thorpej if (interlock != NULL)
441 1.77 thorpej simple_unlock(interlock);
442 1.77 thorpej
443 1.26 cgd /*
444 1.26 cgd * We put ourselves on the sleep queue and start our timeout
445 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
446 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
447 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
448 1.26 cgd * without resuming us, thus we must be ready for sleep
449 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
450 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
451 1.26 cgd */
452 1.26 cgd if (catch) {
453 1.26 cgd p->p_flag |= P_SINTR;
454 1.34 christos if ((sig = CURSIG(p)) != 0) {
455 1.77 thorpej if (p->p_wchan != NULL)
456 1.26 cgd unsleep(p);
457 1.72 thorpej p->p_stat = SONPROC;
458 1.83 thorpej SCHED_UNLOCK(s);
459 1.26 cgd goto resume;
460 1.26 cgd }
461 1.77 thorpej if (p->p_wchan == NULL) {
462 1.26 cgd catch = 0;
463 1.83 thorpej SCHED_UNLOCK(s);
464 1.26 cgd goto resume;
465 1.26 cgd }
466 1.26 cgd } else
467 1.26 cgd sig = 0;
468 1.26 cgd p->p_stat = SSLEEP;
469 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
470 1.77 thorpej
471 1.83 thorpej SCHED_ASSERT_LOCKED();
472 1.113 gmcgarry mi_switch(p, NULL);
473 1.83 thorpej
474 1.104 chs #if defined(DDB) && !defined(GPROF)
475 1.26 cgd /* handy breakpoint location after process "wakes" */
476 1.107 kleink __asm(".globl bpendtsleep ; bpendtsleep:");
477 1.26 cgd #endif
478 1.77 thorpej
479 1.83 thorpej SCHED_ASSERT_UNLOCKED();
480 1.83 thorpej splx(s);
481 1.83 thorpej
482 1.77 thorpej resume:
483 1.76 thorpej KDASSERT(p->p_cpu != NULL);
484 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
485 1.76 thorpej p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
486 1.83 thorpej
487 1.26 cgd p->p_flag &= ~P_SINTR;
488 1.26 cgd if (p->p_flag & P_TIMEOUT) {
489 1.26 cgd p->p_flag &= ~P_TIMEOUT;
490 1.26 cgd if (sig == 0) {
491 1.26 cgd #ifdef KTRACE
492 1.26 cgd if (KTRPOINT(p, KTR_CSW))
493 1.74 sommerfe ktrcsw(p, 0, 0);
494 1.26 cgd #endif
495 1.77 thorpej if (relock && interlock != NULL)
496 1.77 thorpej simple_lock(interlock);
497 1.26 cgd return (EWOULDBLOCK);
498 1.26 cgd }
499 1.26 cgd } else if (timo)
500 1.68 thorpej callout_stop(&p->p_tsleep_ch);
501 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
502 1.26 cgd #ifdef KTRACE
503 1.26 cgd if (KTRPOINT(p, KTR_CSW))
504 1.74 sommerfe ktrcsw(p, 0, 0);
505 1.26 cgd #endif
506 1.77 thorpej if (relock && interlock != NULL)
507 1.77 thorpej simple_lock(interlock);
508 1.98 jdolecek if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
509 1.26 cgd return (EINTR);
510 1.26 cgd return (ERESTART);
511 1.26 cgd }
512 1.26 cgd #ifdef KTRACE
513 1.26 cgd if (KTRPOINT(p, KTR_CSW))
514 1.74 sommerfe ktrcsw(p, 0, 0);
515 1.26 cgd #endif
516 1.77 thorpej if (relock && interlock != NULL)
517 1.77 thorpej simple_lock(interlock);
518 1.26 cgd return (0);
519 1.26 cgd }
520 1.26 cgd
521 1.26 cgd /*
522 1.26 cgd * Implement timeout for tsleep.
523 1.26 cgd * If process hasn't been awakened (wchan non-zero),
524 1.26 cgd * set timeout flag and undo the sleep. If proc
525 1.26 cgd * is stopped, just unsleep so it will remain stopped.
526 1.26 cgd */
527 1.26 cgd void
528 1.77 thorpej endtsleep(void *arg)
529 1.26 cgd {
530 1.71 augustss struct proc *p;
531 1.26 cgd int s;
532 1.26 cgd
533 1.26 cgd p = (struct proc *)arg;
534 1.83 thorpej
535 1.83 thorpej SCHED_LOCK(s);
536 1.26 cgd if (p->p_wchan) {
537 1.26 cgd if (p->p_stat == SSLEEP)
538 1.26 cgd setrunnable(p);
539 1.26 cgd else
540 1.26 cgd unsleep(p);
541 1.26 cgd p->p_flag |= P_TIMEOUT;
542 1.26 cgd }
543 1.83 thorpej SCHED_UNLOCK(s);
544 1.26 cgd }
545 1.26 cgd
546 1.26 cgd /*
547 1.26 cgd * Remove a process from its wait queue
548 1.26 cgd */
549 1.26 cgd void
550 1.77 thorpej unsleep(struct proc *p)
551 1.26 cgd {
552 1.71 augustss struct slpque *qp;
553 1.71 augustss struct proc **hp;
554 1.26 cgd
555 1.83 thorpej SCHED_ASSERT_LOCKED();
556 1.83 thorpej
557 1.26 cgd if (p->p_wchan) {
558 1.73 thorpej hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
559 1.26 cgd while (*hp != p)
560 1.26 cgd hp = &(*hp)->p_forw;
561 1.26 cgd *hp = p->p_forw;
562 1.26 cgd if (qp->sq_tailp == &p->p_forw)
563 1.26 cgd qp->sq_tailp = hp;
564 1.26 cgd p->p_wchan = 0;
565 1.26 cgd }
566 1.26 cgd }
567 1.26 cgd
568 1.26 cgd /*
569 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
570 1.63 thorpej */
571 1.63 thorpej __inline void
572 1.77 thorpej awaken(struct proc *p)
573 1.63 thorpej {
574 1.63 thorpej
575 1.83 thorpej SCHED_ASSERT_LOCKED();
576 1.83 thorpej
577 1.63 thorpej if (p->p_slptime > 1)
578 1.63 thorpej updatepri(p);
579 1.63 thorpej p->p_slptime = 0;
580 1.93 bouyer p->p_stat = SRUN;
581 1.93 bouyer
582 1.93 bouyer /*
583 1.93 bouyer * Since curpriority is a user priority, p->p_priority
584 1.93 bouyer * is always better than curpriority.
585 1.118 thorpej *
586 1.118 thorpej * XXX See affinity comment in setrunnable().
587 1.93 bouyer */
588 1.93 bouyer if (p->p_flag & P_INMEM) {
589 1.93 bouyer setrunqueue(p);
590 1.93 bouyer KASSERT(p->p_cpu != NULL);
591 1.93 bouyer need_resched(p->p_cpu);
592 1.93 bouyer } else
593 1.93 bouyer sched_wakeup(&proc0);
594 1.83 thorpej }
595 1.83 thorpej
596 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
597 1.83 thorpej void
598 1.83 thorpej sched_unlock_idle(void)
599 1.83 thorpej {
600 1.83 thorpej
601 1.83 thorpej simple_unlock(&sched_lock);
602 1.63 thorpej }
603 1.63 thorpej
604 1.83 thorpej void
605 1.83 thorpej sched_lock_idle(void)
606 1.83 thorpej {
607 1.83 thorpej
608 1.83 thorpej simple_lock(&sched_lock);
609 1.83 thorpej }
610 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
611 1.83 thorpej
612 1.63 thorpej /*
613 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
614 1.26 cgd */
615 1.83 thorpej
616 1.26 cgd void
617 1.77 thorpej wakeup(void *ident)
618 1.26 cgd {
619 1.83 thorpej int s;
620 1.83 thorpej
621 1.83 thorpej SCHED_ASSERT_UNLOCKED();
622 1.83 thorpej
623 1.83 thorpej SCHED_LOCK(s);
624 1.83 thorpej sched_wakeup(ident);
625 1.83 thorpej SCHED_UNLOCK(s);
626 1.83 thorpej }
627 1.83 thorpej
628 1.83 thorpej void
629 1.83 thorpej sched_wakeup(void *ident)
630 1.83 thorpej {
631 1.71 augustss struct slpque *qp;
632 1.71 augustss struct proc *p, **q;
633 1.26 cgd
634 1.83 thorpej SCHED_ASSERT_LOCKED();
635 1.77 thorpej
636 1.73 thorpej qp = SLPQUE(ident);
637 1.77 thorpej restart:
638 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
639 1.26 cgd #ifdef DIAGNOSTIC
640 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
641 1.26 cgd panic("wakeup");
642 1.26 cgd #endif
643 1.26 cgd if (p->p_wchan == ident) {
644 1.26 cgd p->p_wchan = 0;
645 1.26 cgd *q = p->p_forw;
646 1.26 cgd if (qp->sq_tailp == &p->p_forw)
647 1.26 cgd qp->sq_tailp = q;
648 1.26 cgd if (p->p_stat == SSLEEP) {
649 1.63 thorpej awaken(p);
650 1.26 cgd goto restart;
651 1.26 cgd }
652 1.26 cgd } else
653 1.26 cgd q = &p->p_forw;
654 1.63 thorpej }
655 1.63 thorpej }
656 1.63 thorpej
657 1.63 thorpej /*
658 1.63 thorpej * Make the highest priority process first in line on the specified
659 1.63 thorpej * identifier runnable.
660 1.63 thorpej */
661 1.63 thorpej void
662 1.77 thorpej wakeup_one(void *ident)
663 1.63 thorpej {
664 1.63 thorpej struct slpque *qp;
665 1.63 thorpej struct proc *p, **q;
666 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
667 1.63 thorpej struct proc *best_stopp, **best_stopq;
668 1.63 thorpej int s;
669 1.63 thorpej
670 1.63 thorpej best_sleepp = best_stopp = NULL;
671 1.63 thorpej best_sleepq = best_stopq = NULL;
672 1.63 thorpej
673 1.83 thorpej SCHED_LOCK(s);
674 1.77 thorpej
675 1.73 thorpej qp = SLPQUE(ident);
676 1.77 thorpej
677 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
678 1.63 thorpej #ifdef DIAGNOSTIC
679 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
680 1.63 thorpej panic("wakeup_one");
681 1.63 thorpej #endif
682 1.63 thorpej if (p->p_wchan == ident) {
683 1.63 thorpej if (p->p_stat == SSLEEP) {
684 1.63 thorpej if (best_sleepp == NULL ||
685 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
686 1.63 thorpej best_sleepp = p;
687 1.63 thorpej best_sleepq = q;
688 1.63 thorpej }
689 1.63 thorpej } else {
690 1.63 thorpej if (best_stopp == NULL ||
691 1.63 thorpej p->p_priority < best_stopp->p_priority) {
692 1.63 thorpej best_stopp = p;
693 1.63 thorpej best_stopq = q;
694 1.63 thorpej }
695 1.63 thorpej }
696 1.63 thorpej }
697 1.63 thorpej }
698 1.63 thorpej
699 1.63 thorpej /*
700 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
701 1.63 thorpej * process.
702 1.63 thorpej */
703 1.63 thorpej if (best_sleepp != NULL) {
704 1.63 thorpej p = best_sleepp;
705 1.63 thorpej q = best_sleepq;
706 1.63 thorpej } else {
707 1.63 thorpej p = best_stopp;
708 1.63 thorpej q = best_stopq;
709 1.63 thorpej }
710 1.63 thorpej
711 1.63 thorpej if (p != NULL) {
712 1.77 thorpej p->p_wchan = NULL;
713 1.63 thorpej *q = p->p_forw;
714 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
715 1.63 thorpej qp->sq_tailp = q;
716 1.63 thorpej if (p->p_stat == SSLEEP)
717 1.63 thorpej awaken(p);
718 1.26 cgd }
719 1.83 thorpej SCHED_UNLOCK(s);
720 1.117 gmcgarry }
721 1.117 gmcgarry
722 1.117 gmcgarry /*
723 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
724 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
725 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
726 1.117 gmcgarry */
727 1.117 gmcgarry void
728 1.117 gmcgarry yield(void)
729 1.117 gmcgarry {
730 1.117 gmcgarry struct proc *p = curproc;
731 1.117 gmcgarry int s;
732 1.117 gmcgarry
733 1.117 gmcgarry SCHED_LOCK(s);
734 1.117 gmcgarry p->p_priority = p->p_usrpri;
735 1.117 gmcgarry p->p_stat = SRUN;
736 1.117 gmcgarry setrunqueue(p);
737 1.117 gmcgarry p->p_stats->p_ru.ru_nvcsw++;
738 1.117 gmcgarry mi_switch(p, NULL);
739 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
740 1.117 gmcgarry splx(s);
741 1.69 thorpej }
742 1.69 thorpej
743 1.69 thorpej /*
744 1.69 thorpej * General preemption call. Puts the current process back on its run queue
745 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
746 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
747 1.69 thorpej * criteria.
748 1.69 thorpej */
749 1.69 thorpej void
750 1.77 thorpej preempt(struct proc *newp)
751 1.69 thorpej {
752 1.69 thorpej struct proc *p = curproc;
753 1.69 thorpej int s;
754 1.69 thorpej
755 1.83 thorpej SCHED_LOCK(s);
756 1.69 thorpej p->p_priority = p->p_usrpri;
757 1.93 bouyer p->p_stat = SRUN;
758 1.93 bouyer setrunqueue(p);
759 1.69 thorpej p->p_stats->p_ru.ru_nivcsw++;
760 1.113 gmcgarry mi_switch(p, newp);
761 1.83 thorpej SCHED_ASSERT_UNLOCKED();
762 1.69 thorpej splx(s);
763 1.69 thorpej }
764 1.69 thorpej
765 1.69 thorpej /*
766 1.72 thorpej * The machine independent parts of context switch.
767 1.86 thorpej * Must be called at splsched() (no higher!) and with
768 1.86 thorpej * the sched_lock held.
769 1.26 cgd */
770 1.26 cgd void
771 1.113 gmcgarry mi_switch(struct proc *p, struct proc *newp)
772 1.26 cgd {
773 1.76 thorpej struct schedstate_percpu *spc;
774 1.71 augustss struct rlimit *rlim;
775 1.71 augustss long s, u;
776 1.26 cgd struct timeval tv;
777 1.85 sommerfe #if defined(MULTIPROCESSOR)
778 1.85 sommerfe int hold_count;
779 1.85 sommerfe #endif
780 1.26 cgd
781 1.83 thorpej SCHED_ASSERT_LOCKED();
782 1.83 thorpej
783 1.85 sommerfe #if defined(MULTIPROCESSOR)
784 1.90 sommerfe /*
785 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
786 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
787 1.90 sommerfe * selects a new process and removes it from the run queue.
788 1.90 sommerfe */
789 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
790 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
791 1.85 sommerfe #endif
792 1.85 sommerfe
793 1.76 thorpej KDASSERT(p->p_cpu != NULL);
794 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
795 1.113 gmcgarry KDASSERT(newp == NULL);
796 1.113 gmcgarry
797 1.76 thorpej spc = &p->p_cpu->ci_schedstate;
798 1.76 thorpej
799 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
800 1.82 thorpej spinlock_switchcheck();
801 1.82 thorpej #endif
802 1.54 chs #ifdef LOCKDEBUG
803 1.81 thorpej simple_lock_switchcheck();
804 1.50 fvdl #endif
805 1.81 thorpej
806 1.26 cgd /*
807 1.26 cgd * Compute the amount of time during which the current
808 1.113 gmcgarry * process was running.
809 1.26 cgd */
810 1.26 cgd microtime(&tv);
811 1.73 thorpej u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
812 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
813 1.26 cgd if (u < 0) {
814 1.26 cgd u += 1000000;
815 1.26 cgd s--;
816 1.26 cgd } else if (u >= 1000000) {
817 1.26 cgd u -= 1000000;
818 1.26 cgd s++;
819 1.26 cgd }
820 1.114 gmcgarry p->p_rtime.tv_usec = u;
821 1.114 gmcgarry p->p_rtime.tv_sec = s;
822 1.26 cgd
823 1.26 cgd /*
824 1.26 cgd * Check if the process exceeds its cpu resource allocation.
825 1.26 cgd * If over max, kill it. In any case, if it has run for more
826 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
827 1.26 cgd */
828 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
829 1.26 cgd if (s >= rlim->rlim_cur) {
830 1.100 sommerfe /*
831 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
832 1.100 sommerfe * use sched_psignal.
833 1.100 sommerfe */
834 1.26 cgd if (s >= rlim->rlim_max)
835 1.100 sommerfe sched_psignal(p, SIGKILL);
836 1.26 cgd else {
837 1.100 sommerfe sched_psignal(p, SIGXCPU);
838 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
839 1.26 cgd rlim->rlim_cur += 5;
840 1.26 cgd }
841 1.26 cgd }
842 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
843 1.77 thorpej p->p_nice == NZERO) {
844 1.39 ws p->p_nice = autoniceval + NZERO;
845 1.26 cgd resetpriority(p);
846 1.26 cgd }
847 1.69 thorpej
848 1.69 thorpej /*
849 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
850 1.69 thorpej * scheduling flags.
851 1.69 thorpej */
852 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
853 1.109 yamt
854 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
855 1.109 yamt kstack_check_magic(p);
856 1.109 yamt #endif
857 1.26 cgd
858 1.113 gmcgarry /*
859 1.114 gmcgarry * If we are using h/w performance counters, save context.
860 1.113 gmcgarry */
861 1.114 gmcgarry #if PERFCTRS
862 1.114 gmcgarry if (PMC_ENABLED(p))
863 1.114 gmcgarry pmc_save_context(p);
864 1.110 briggs #endif
865 1.113 gmcgarry
866 1.113 gmcgarry /*
867 1.114 gmcgarry * Switch to the new current process. When we
868 1.114 gmcgarry * run again, we'll return back here.
869 1.113 gmcgarry */
870 1.114 gmcgarry uvmexp.swtch++;
871 1.114 gmcgarry cpu_switch(p, NULL);
872 1.110 briggs
873 1.110 briggs /*
874 1.114 gmcgarry * If we are using h/w performance counters, restore context.
875 1.26 cgd */
876 1.114 gmcgarry #if PERFCTRS
877 1.114 gmcgarry if (PMC_ENABLED(p))
878 1.114 gmcgarry pmc_restore_context(p);
879 1.114 gmcgarry #endif
880 1.110 briggs
881 1.110 briggs /*
882 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
883 1.114 gmcgarry * resuming us.
884 1.110 briggs */
885 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
886 1.83 thorpej
887 1.83 thorpej /*
888 1.76 thorpej * We're running again; record our new start time. We might
889 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
890 1.76 thorpej * schedstate_percpu pointer.
891 1.76 thorpej */
892 1.76 thorpej KDASSERT(p->p_cpu != NULL);
893 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
894 1.76 thorpej microtime(&p->p_cpu->ci_schedstate.spc_runtime);
895 1.85 sommerfe
896 1.85 sommerfe #if defined(MULTIPROCESSOR)
897 1.90 sommerfe /*
898 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
899 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
900 1.90 sommerfe * we reacquire the interlock.
901 1.90 sommerfe */
902 1.90 sommerfe if (p->p_flag & P_BIGLOCK)
903 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
904 1.85 sommerfe #endif
905 1.26 cgd }
906 1.26 cgd
907 1.26 cgd /*
908 1.26 cgd * Initialize the (doubly-linked) run queues
909 1.26 cgd * to be empty.
910 1.26 cgd */
911 1.26 cgd void
912 1.26 cgd rqinit()
913 1.26 cgd {
914 1.71 augustss int i;
915 1.26 cgd
916 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
917 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
918 1.73 thorpej (struct proc *)&sched_qs[i];
919 1.26 cgd }
920 1.26 cgd
921 1.26 cgd /*
922 1.26 cgd * Change process state to be runnable,
923 1.26 cgd * placing it on the run queue if it is in memory,
924 1.26 cgd * and awakening the swapper if it isn't in memory.
925 1.26 cgd */
926 1.26 cgd void
927 1.77 thorpej setrunnable(struct proc *p)
928 1.26 cgd {
929 1.26 cgd
930 1.83 thorpej SCHED_ASSERT_LOCKED();
931 1.83 thorpej
932 1.26 cgd switch (p->p_stat) {
933 1.26 cgd case 0:
934 1.26 cgd case SRUN:
935 1.72 thorpej case SONPROC:
936 1.26 cgd case SZOMB:
937 1.60 thorpej case SDEAD:
938 1.26 cgd default:
939 1.26 cgd panic("setrunnable");
940 1.26 cgd case SSTOP:
941 1.33 mycroft /*
942 1.33 mycroft * If we're being traced (possibly because someone attached us
943 1.33 mycroft * while we were stopped), check for a signal from the debugger.
944 1.33 mycroft */
945 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
946 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
947 1.101 thorpej CHECKSIGS(p);
948 1.53 mycroft }
949 1.26 cgd case SSLEEP:
950 1.26 cgd unsleep(p); /* e.g. when sending signals */
951 1.26 cgd break;
952 1.26 cgd
953 1.26 cgd case SIDL:
954 1.26 cgd break;
955 1.26 cgd }
956 1.93 bouyer p->p_stat = SRUN;
957 1.93 bouyer if (p->p_flag & P_INMEM)
958 1.93 bouyer setrunqueue(p);
959 1.93 bouyer
960 1.26 cgd if (p->p_slptime > 1)
961 1.26 cgd updatepri(p);
962 1.26 cgd p->p_slptime = 0;
963 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
964 1.83 thorpej sched_wakeup((caddr_t)&proc0);
965 1.76 thorpej else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
966 1.76 thorpej /*
967 1.76 thorpej * XXXSMP
968 1.87 thorpej * This is not exactly right. Since p->p_cpu persists
969 1.87 thorpej * across a context switch, this gives us some sort
970 1.87 thorpej * of processor affinity. But we need to figure out
971 1.87 thorpej * at what point it's better to reschedule on a different
972 1.87 thorpej * CPU than the last one.
973 1.76 thorpej */
974 1.87 thorpej need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
975 1.76 thorpej }
976 1.26 cgd }
977 1.26 cgd
978 1.26 cgd /*
979 1.26 cgd * Compute the priority of a process when running in user mode.
980 1.26 cgd * Arrange to reschedule if the resulting priority is better
981 1.26 cgd * than that of the current process.
982 1.26 cgd */
983 1.26 cgd void
984 1.77 thorpej resetpriority(struct proc *p)
985 1.26 cgd {
986 1.71 augustss unsigned int newpriority;
987 1.26 cgd
988 1.83 thorpej SCHED_ASSERT_LOCKED();
989 1.83 thorpej
990 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
991 1.26 cgd newpriority = min(newpriority, MAXPRI);
992 1.26 cgd p->p_usrpri = newpriority;
993 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
994 1.76 thorpej /*
995 1.76 thorpej * XXXSMP
996 1.76 thorpej * Same applies as in setrunnable() above.
997 1.76 thorpej */
998 1.87 thorpej need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
999 1.76 thorpej }
1000 1.55 ross }
1001 1.55 ross
1002 1.55 ross /*
1003 1.56 ross * We adjust the priority of the current process. The priority of a process
1004 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1005 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1006 1.56 ross * will compute a different value each time p_estcpu increases. This can
1007 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1008 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
1009 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1010 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1011 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1012 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1013 1.56 ross * processes which haven't run much recently, and to round-robin among other
1014 1.56 ross * processes.
1015 1.55 ross */
1016 1.55 ross
1017 1.55 ross void
1018 1.77 thorpej schedclock(struct proc *p)
1019 1.55 ross {
1020 1.83 thorpej int s;
1021 1.77 thorpej
1022 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1023 1.83 thorpej
1024 1.83 thorpej SCHED_LOCK(s);
1025 1.55 ross resetpriority(p);
1026 1.83 thorpej SCHED_UNLOCK(s);
1027 1.83 thorpej
1028 1.55 ross if (p->p_priority >= PUSER)
1029 1.55 ross p->p_priority = p->p_usrpri;
1030 1.26 cgd }
1031 1.94 bouyer
1032 1.94 bouyer void
1033 1.94 bouyer suspendsched()
1034 1.94 bouyer {
1035 1.97 enami struct proc *p;
1036 1.97 enami int s;
1037 1.94 bouyer
1038 1.94 bouyer /*
1039 1.97 enami * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1040 1.94 bouyer */
1041 1.95 thorpej proclist_lock_read();
1042 1.95 thorpej SCHED_LOCK(s);
1043 1.113 gmcgarry LIST_FOREACH(p, &allproc, p_list) {
1044 1.97 enami if ((p->p_flag & P_SYSTEM) != 0)
1045 1.94 bouyer continue;
1046 1.97 enami switch (p->p_stat) {
1047 1.97 enami case SRUN:
1048 1.97 enami if ((p->p_flag & P_INMEM) != 0)
1049 1.97 enami remrunqueue(p);
1050 1.97 enami /* FALLTHROUGH */
1051 1.97 enami case SSLEEP:
1052 1.97 enami p->p_stat = SSTOP;
1053 1.97 enami break;
1054 1.97 enami case SONPROC:
1055 1.97 enami /*
1056 1.97 enami * XXX SMP: we need to deal with processes on
1057 1.97 enami * others CPU !
1058 1.97 enami */
1059 1.97 enami break;
1060 1.97 enami default:
1061 1.97 enami break;
1062 1.94 bouyer }
1063 1.94 bouyer }
1064 1.94 bouyer SCHED_UNLOCK(s);
1065 1.97 enami proclist_unlock_read();
1066 1.94 bouyer }
1067 1.113 gmcgarry
1068 1.113 gmcgarry /*
1069 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1070 1.113 gmcgarry * routines can override these.
1071 1.113 gmcgarry */
1072 1.113 gmcgarry
1073 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1074 1.115 nisimura
1075 1.115 nisimura /*
1076 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1077 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1078 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1079 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1080 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1081 1.115 nisimura * available queues.
1082 1.115 nisimura */
1083 1.113 gmcgarry
1084 1.113 gmcgarry void
1085 1.113 gmcgarry setrunqueue(struct proc *p)
1086 1.113 gmcgarry {
1087 1.113 gmcgarry struct prochd *rq;
1088 1.113 gmcgarry struct proc *prev;
1089 1.113 gmcgarry int whichq;
1090 1.113 gmcgarry
1091 1.113 gmcgarry #ifdef DIAGNOSTIC
1092 1.113 gmcgarry if (p->p_back != NULL || p->p_wchan != NULL || p->p_stat != SRUN)
1093 1.113 gmcgarry panic("setrunqueue");
1094 1.113 gmcgarry #endif
1095 1.113 gmcgarry whichq = p->p_priority / 4;
1096 1.113 gmcgarry sched_whichqs |= (1<<whichq);
1097 1.113 gmcgarry rq = &sched_qs[whichq];
1098 1.113 gmcgarry prev = rq->ph_rlink;
1099 1.113 gmcgarry p->p_forw = (struct proc *)rq;
1100 1.113 gmcgarry rq->ph_rlink = p;
1101 1.113 gmcgarry prev->p_forw = p;
1102 1.113 gmcgarry p->p_back = prev;
1103 1.113 gmcgarry }
1104 1.113 gmcgarry
1105 1.113 gmcgarry void
1106 1.113 gmcgarry remrunqueue(struct proc *p)
1107 1.113 gmcgarry {
1108 1.113 gmcgarry struct proc *prev, *next;
1109 1.113 gmcgarry int whichq;
1110 1.113 gmcgarry
1111 1.113 gmcgarry whichq = p->p_priority / 4;
1112 1.113 gmcgarry #ifdef DIAGNOSTIC
1113 1.113 gmcgarry if (((sched_whichqs & (1<<whichq)) == 0))
1114 1.113 gmcgarry panic("remrunqueue");
1115 1.113 gmcgarry #endif
1116 1.113 gmcgarry prev = p->p_back;
1117 1.113 gmcgarry p->p_back = NULL;
1118 1.113 gmcgarry next = p->p_forw;
1119 1.113 gmcgarry prev->p_forw = next;
1120 1.113 gmcgarry next->p_back = prev;
1121 1.113 gmcgarry if (prev == next)
1122 1.113 gmcgarry sched_whichqs &= ~(1<<whichq);
1123 1.113 gmcgarry }
1124 1.113 gmcgarry
1125 1.113 gmcgarry #endif
1126