kern_synch.c revision 1.129 1 1.129 nathanw /* $NetBSD: kern_synch.c,v 1.129 2003/06/26 02:08:19 nathanw Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.106 lukem
80 1.106 lukem #include <sys/cdefs.h>
81 1.129 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.129 2003/06/26 02:08:19 nathanw Exp $");
82 1.48 mrg
83 1.52 jonathan #include "opt_ddb.h"
84 1.51 thorpej #include "opt_ktrace.h"
85 1.109 yamt #include "opt_kstack.h"
86 1.82 thorpej #include "opt_lockdebug.h"
87 1.83 thorpej #include "opt_multiprocessor.h"
88 1.110 briggs #include "opt_perfctrs.h"
89 1.26 cgd
90 1.26 cgd #include <sys/param.h>
91 1.26 cgd #include <sys/systm.h>
92 1.68 thorpej #include <sys/callout.h>
93 1.26 cgd #include <sys/proc.h>
94 1.26 cgd #include <sys/kernel.h>
95 1.26 cgd #include <sys/buf.h>
96 1.111 briggs #if defined(PERFCTRS)
97 1.110 briggs #include <sys/pmc.h>
98 1.111 briggs #endif
99 1.26 cgd #include <sys/signalvar.h>
100 1.26 cgd #include <sys/resourcevar.h>
101 1.55 ross #include <sys/sched.h>
102 1.122 thorpej #include <sys/sa.h>
103 1.122 thorpej #include <sys/savar.h>
104 1.47 mrg
105 1.47 mrg #include <uvm/uvm_extern.h>
106 1.47 mrg
107 1.26 cgd #ifdef KTRACE
108 1.26 cgd #include <sys/ktrace.h>
109 1.26 cgd #endif
110 1.26 cgd
111 1.26 cgd #include <machine/cpu.h>
112 1.34 christos
113 1.26 cgd int lbolt; /* once a second sleep address */
114 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
115 1.26 cgd
116 1.73 thorpej /*
117 1.73 thorpej * The global scheduler state.
118 1.73 thorpej */
119 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
120 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
121 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
122 1.73 thorpej
123 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
124 1.83 thorpej
125 1.77 thorpej void schedcpu(void *);
126 1.122 thorpej void updatepri(struct lwp *);
127 1.77 thorpej void endtsleep(void *);
128 1.34 christos
129 1.122 thorpej __inline void awaken(struct lwp *);
130 1.63 thorpej
131 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
132 1.68 thorpej
133 1.122 thorpej
134 1.122 thorpej
135 1.26 cgd /*
136 1.26 cgd * Force switch among equal priority processes every 100ms.
137 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
138 1.26 cgd */
139 1.26 cgd /* ARGSUSED */
140 1.26 cgd void
141 1.89 sommerfe roundrobin(struct cpu_info *ci)
142 1.26 cgd {
143 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
144 1.26 cgd
145 1.88 sommerfe spc->spc_rrticks = rrticks;
146 1.88 sommerfe
147 1.122 thorpej if (curlwp != NULL) {
148 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
149 1.69 thorpej /*
150 1.69 thorpej * The process has already been through a roundrobin
151 1.69 thorpej * without switching and may be hogging the CPU.
152 1.69 thorpej * Indicate that the process should yield.
153 1.69 thorpej */
154 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
155 1.69 thorpej } else
156 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
157 1.69 thorpej }
158 1.87 thorpej need_resched(curcpu());
159 1.26 cgd }
160 1.26 cgd
161 1.26 cgd /*
162 1.26 cgd * Constants for digital decay and forget:
163 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
164 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
165 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
166 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
167 1.26 cgd *
168 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
169 1.26 cgd *
170 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
171 1.26 cgd * That is, the system wants to compute a value of decay such
172 1.26 cgd * that the following for loop:
173 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
174 1.26 cgd * p_estcpu *= decay;
175 1.26 cgd * will compute
176 1.26 cgd * p_estcpu *= 0.1;
177 1.26 cgd * for all values of loadavg:
178 1.26 cgd *
179 1.26 cgd * Mathematically this loop can be expressed by saying:
180 1.26 cgd * decay ** (5 * loadavg) ~= .1
181 1.26 cgd *
182 1.26 cgd * The system computes decay as:
183 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
184 1.26 cgd *
185 1.26 cgd * We wish to prove that the system's computation of decay
186 1.26 cgd * will always fulfill the equation:
187 1.26 cgd * decay ** (5 * loadavg) ~= .1
188 1.26 cgd *
189 1.26 cgd * If we compute b as:
190 1.26 cgd * b = 2 * loadavg
191 1.26 cgd * then
192 1.26 cgd * decay = b / (b + 1)
193 1.26 cgd *
194 1.26 cgd * We now need to prove two things:
195 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
196 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
197 1.26 cgd *
198 1.26 cgd * Facts:
199 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
200 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
201 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
202 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
203 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
204 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
205 1.26 cgd * ln(.1) =~ -2.30
206 1.26 cgd *
207 1.26 cgd * Proof of (1):
208 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
209 1.26 cgd * solving for factor,
210 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
211 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
212 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
213 1.26 cgd *
214 1.26 cgd * Proof of (2):
215 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
216 1.26 cgd * solving for power,
217 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
218 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
219 1.26 cgd *
220 1.26 cgd * Actual power values for the implemented algorithm are as follows:
221 1.26 cgd * loadav: 1 2 3 4
222 1.26 cgd * power: 5.68 10.32 14.94 19.55
223 1.26 cgd */
224 1.26 cgd
225 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
226 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
227 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
228 1.26 cgd
229 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
230 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
231 1.26 cgd
232 1.26 cgd /*
233 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236 1.26 cgd *
237 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239 1.26 cgd *
240 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
241 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
243 1.26 cgd */
244 1.26 cgd #define CCPU_SHIFT 11
245 1.26 cgd
246 1.26 cgd /*
247 1.26 cgd * Recompute process priorities, every hz ticks.
248 1.26 cgd */
249 1.26 cgd /* ARGSUSED */
250 1.26 cgd void
251 1.77 thorpej schedcpu(void *arg)
252 1.26 cgd {
253 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
254 1.122 thorpej struct lwp *l;
255 1.71 augustss struct proc *p;
256 1.122 thorpej int s, minslp;
257 1.71 augustss unsigned int newcpu;
258 1.66 ross int clkhz;
259 1.26 cgd
260 1.62 thorpej proclist_lock_read();
261 1.112 matt LIST_FOREACH(p, &allproc, p_list) {
262 1.26 cgd /*
263 1.26 cgd * Increment time in/out of memory and sleep time
264 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
265 1.26 cgd * (remember them?) overflow takes 45 days.
266 1.26 cgd */
267 1.122 thorpej minslp = 2;
268 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
269 1.122 thorpej l->l_swtime++;
270 1.122 thorpej if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
271 1.122 thorpej l->l_stat == LSSUSPENDED) {
272 1.122 thorpej l->l_slptime++;
273 1.122 thorpej minslp = min(minslp, l->l_slptime);
274 1.122 thorpej } else
275 1.122 thorpej minslp = 0;
276 1.122 thorpej }
277 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
278 1.26 cgd /*
279 1.26 cgd * If the process has slept the entire second,
280 1.26 cgd * stop recalculating its priority until it wakes up.
281 1.26 cgd */
282 1.122 thorpej if (minslp > 1)
283 1.26 cgd continue;
284 1.26 cgd s = splstatclock(); /* prevent state changes */
285 1.26 cgd /*
286 1.26 cgd * p_pctcpu is only for ps.
287 1.26 cgd */
288 1.66 ross clkhz = stathz != 0 ? stathz : hz;
289 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
290 1.66 ross p->p_pctcpu += (clkhz == 100)?
291 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
292 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
293 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
294 1.26 cgd #else
295 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
296 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
297 1.26 cgd #endif
298 1.26 cgd p->p_cpticks = 0;
299 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
300 1.55 ross p->p_estcpu = newcpu;
301 1.120 pk splx(s); /* Done with the process CPU ticks update */
302 1.120 pk SCHED_LOCK(s);
303 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
304 1.122 thorpej if (l->l_slptime > 1)
305 1.122 thorpej continue;
306 1.122 thorpej resetpriority(l);
307 1.122 thorpej if (l->l_priority >= PUSER) {
308 1.122 thorpej if (l->l_stat == LSRUN &&
309 1.122 thorpej (l->l_flag & L_INMEM) &&
310 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
311 1.122 thorpej remrunqueue(l);
312 1.122 thorpej l->l_priority = l->l_usrpri;
313 1.122 thorpej setrunqueue(l);
314 1.122 thorpej } else
315 1.122 thorpej l->l_priority = l->l_usrpri;
316 1.122 thorpej }
317 1.26 cgd }
318 1.120 pk SCHED_UNLOCK(s);
319 1.26 cgd }
320 1.61 thorpej proclist_unlock_read();
321 1.47 mrg uvm_meter();
322 1.67 fvdl wakeup((caddr_t)&lbolt);
323 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
324 1.26 cgd }
325 1.26 cgd
326 1.26 cgd /*
327 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
328 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
329 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
330 1.26 cgd */
331 1.26 cgd void
332 1.122 thorpej updatepri(struct lwp *l)
333 1.26 cgd {
334 1.122 thorpej struct proc *p = l->l_proc;
335 1.83 thorpej unsigned int newcpu;
336 1.83 thorpej fixpt_t loadfac;
337 1.83 thorpej
338 1.83 thorpej SCHED_ASSERT_LOCKED();
339 1.83 thorpej
340 1.83 thorpej newcpu = p->p_estcpu;
341 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
342 1.26 cgd
343 1.122 thorpej if (l->l_slptime > 5 * loadfac)
344 1.122 thorpej p->p_estcpu = 0; /* XXX NJWLWP */
345 1.26 cgd else {
346 1.122 thorpej l->l_slptime--; /* the first time was done in schedcpu */
347 1.122 thorpej while (newcpu && --l->l_slptime)
348 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
349 1.55 ross p->p_estcpu = newcpu;
350 1.26 cgd }
351 1.122 thorpej resetpriority(l);
352 1.26 cgd }
353 1.26 cgd
354 1.26 cgd /*
355 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
356 1.26 cgd * lower the priority briefly to allow interrupts, then return.
357 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
358 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
359 1.26 cgd * This priority will typically be 0, or the lowest priority
360 1.26 cgd * that is safe for use on the interrupt stack; it can be made
361 1.26 cgd * higher to block network software interrupts after panics.
362 1.26 cgd */
363 1.26 cgd int safepri;
364 1.26 cgd
365 1.26 cgd /*
366 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
367 1.26 cgd * performed on the specified identifier. The process will then be made
368 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
369 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
370 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
371 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
372 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
373 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
374 1.26 cgd * call should be interrupted by the signal (return EINTR).
375 1.77 thorpej *
376 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
377 1.77 thorpej * interlock will be locked before returning back to the caller
378 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
379 1.77 thorpej * interlock will always be unlocked upon return.
380 1.26 cgd */
381 1.26 cgd int
382 1.125 yamt ltsleep(const void *ident, int priority, const char *wmesg, int timo,
383 1.77 thorpej __volatile struct simplelock *interlock)
384 1.26 cgd {
385 1.122 thorpej struct lwp *l = curlwp;
386 1.123 christos struct proc *p = l ? l->l_proc : NULL;
387 1.71 augustss struct slpque *qp;
388 1.77 thorpej int sig, s;
389 1.77 thorpej int catch = priority & PCATCH;
390 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
391 1.122 thorpej int exiterr = (priority & PNOEXITERR) == 0;
392 1.26 cgd
393 1.77 thorpej /*
394 1.77 thorpej * XXXSMP
395 1.77 thorpej * This is probably bogus. Figure out what the right
396 1.77 thorpej * thing to do here really is.
397 1.122 thorpej * Note that not sleeping if ltsleep is called with curlwp == NULL
398 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
399 1.78 sommerfe * how shutdown (barely) works.
400 1.77 thorpej */
401 1.122 thorpej if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
402 1.26 cgd /*
403 1.26 cgd * After a panic, or during autoconfiguration,
404 1.26 cgd * just give interrupts a chance, then just return;
405 1.26 cgd * don't run any other procs or panic below,
406 1.26 cgd * in case this is the idle process and already asleep.
407 1.26 cgd */
408 1.42 cgd s = splhigh();
409 1.26 cgd splx(safepri);
410 1.26 cgd splx(s);
411 1.77 thorpej if (interlock != NULL && relock == 0)
412 1.77 thorpej simple_unlock(interlock);
413 1.26 cgd return (0);
414 1.26 cgd }
415 1.78 sommerfe
416 1.102 thorpej KASSERT(p != NULL);
417 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
418 1.42 cgd
419 1.42 cgd #ifdef KTRACE
420 1.42 cgd if (KTRPOINT(p, KTR_CSW))
421 1.74 sommerfe ktrcsw(p, 1, 0);
422 1.42 cgd #endif
423 1.77 thorpej
424 1.83 thorpej SCHED_LOCK(s);
425 1.42 cgd
426 1.26 cgd #ifdef DIAGNOSTIC
427 1.64 thorpej if (ident == NULL)
428 1.77 thorpej panic("ltsleep: ident == NULL");
429 1.122 thorpej if (l->l_stat != LSONPROC)
430 1.122 thorpej panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
431 1.122 thorpej if (l->l_back != NULL)
432 1.77 thorpej panic("ltsleep: p_back != NULL");
433 1.26 cgd #endif
434 1.77 thorpej
435 1.122 thorpej l->l_wchan = ident;
436 1.122 thorpej l->l_wmesg = wmesg;
437 1.122 thorpej l->l_slptime = 0;
438 1.122 thorpej l->l_priority = priority & PRIMASK;
439 1.77 thorpej
440 1.73 thorpej qp = SLPQUE(ident);
441 1.26 cgd if (qp->sq_head == 0)
442 1.122 thorpej qp->sq_head = l;
443 1.122 thorpej else {
444 1.122 thorpej *qp->sq_tailp = l;
445 1.122 thorpej }
446 1.122 thorpej *(qp->sq_tailp = &l->l_forw) = 0;
447 1.77 thorpej
448 1.26 cgd if (timo)
449 1.122 thorpej callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
450 1.77 thorpej
451 1.77 thorpej /*
452 1.77 thorpej * We can now release the interlock; the scheduler_slock
453 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
454 1.77 thorpej * we do the switch.
455 1.77 thorpej *
456 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
457 1.77 thorpej * on the sleep queue, because we might want a more clever
458 1.77 thorpej * data structure for the sleep queues at some point.
459 1.77 thorpej */
460 1.77 thorpej if (interlock != NULL)
461 1.77 thorpej simple_unlock(interlock);
462 1.77 thorpej
463 1.26 cgd /*
464 1.26 cgd * We put ourselves on the sleep queue and start our timeout
465 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
466 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
467 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
468 1.26 cgd * without resuming us, thus we must be ready for sleep
469 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
470 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
471 1.26 cgd */
472 1.26 cgd if (catch) {
473 1.122 thorpej l->l_flag |= L_SINTR;
474 1.122 thorpej if ((sig = CURSIG(l)) != 0) {
475 1.122 thorpej if (l->l_wchan != NULL)
476 1.122 thorpej unsleep(l);
477 1.122 thorpej l->l_stat = LSONPROC;
478 1.83 thorpej SCHED_UNLOCK(s);
479 1.26 cgd goto resume;
480 1.26 cgd }
481 1.122 thorpej if (l->l_wchan == NULL) {
482 1.26 cgd catch = 0;
483 1.83 thorpej SCHED_UNLOCK(s);
484 1.26 cgd goto resume;
485 1.26 cgd }
486 1.26 cgd } else
487 1.26 cgd sig = 0;
488 1.122 thorpej l->l_stat = LSSLEEP;
489 1.122 thorpej p->p_nrlwps--;
490 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
491 1.83 thorpej SCHED_ASSERT_LOCKED();
492 1.122 thorpej if (l->l_flag & L_SA)
493 1.122 thorpej sa_switch(l, SA_UPCALL_BLOCKED);
494 1.122 thorpej else
495 1.122 thorpej mi_switch(l, NULL);
496 1.83 thorpej
497 1.104 chs #if defined(DDB) && !defined(GPROF)
498 1.26 cgd /* handy breakpoint location after process "wakes" */
499 1.107 kleink __asm(".globl bpendtsleep ; bpendtsleep:");
500 1.26 cgd #endif
501 1.122 thorpej /*
502 1.122 thorpej * p->p_nrlwps is incremented by whoever made us runnable again,
503 1.122 thorpej * either setrunnable() or awaken().
504 1.122 thorpej */
505 1.77 thorpej
506 1.83 thorpej SCHED_ASSERT_UNLOCKED();
507 1.83 thorpej splx(s);
508 1.83 thorpej
509 1.77 thorpej resume:
510 1.122 thorpej KDASSERT(l->l_cpu != NULL);
511 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
512 1.122 thorpej l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
513 1.122 thorpej
514 1.122 thorpej l->l_flag &= ~L_SINTR;
515 1.122 thorpej if (l->l_flag & L_TIMEOUT) {
516 1.122 thorpej l->l_flag &= ~L_TIMEOUT;
517 1.26 cgd if (sig == 0) {
518 1.26 cgd #ifdef KTRACE
519 1.26 cgd if (KTRPOINT(p, KTR_CSW))
520 1.74 sommerfe ktrcsw(p, 0, 0);
521 1.26 cgd #endif
522 1.77 thorpej if (relock && interlock != NULL)
523 1.77 thorpej simple_lock(interlock);
524 1.26 cgd return (EWOULDBLOCK);
525 1.26 cgd }
526 1.26 cgd } else if (timo)
527 1.122 thorpej callout_stop(&l->l_tsleep_ch);
528 1.122 thorpej if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
529 1.26 cgd #ifdef KTRACE
530 1.26 cgd if (KTRPOINT(p, KTR_CSW))
531 1.74 sommerfe ktrcsw(p, 0, 0);
532 1.26 cgd #endif
533 1.77 thorpej if (relock && interlock != NULL)
534 1.77 thorpej simple_lock(interlock);
535 1.98 jdolecek if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
536 1.26 cgd return (EINTR);
537 1.26 cgd return (ERESTART);
538 1.26 cgd }
539 1.126 pk
540 1.126 pk #ifdef KTRACE
541 1.126 pk if (KTRPOINT(p, KTR_CSW))
542 1.126 pk ktrcsw(p, 0, 0);
543 1.126 pk #endif
544 1.126 pk if (relock && interlock != NULL)
545 1.126 pk simple_lock(interlock);
546 1.126 pk
547 1.122 thorpej /* XXXNJW this is very much a kluge.
548 1.122 thorpej * revisit. a better way of preventing looping/hanging syscalls like
549 1.122 thorpej * wait4() and _lwp_wait() from wedging an exiting process
550 1.122 thorpej * would be preferred.
551 1.122 thorpej */
552 1.122 thorpej if (catch && ((p->p_flag & P_WEXIT) && exiterr))
553 1.122 thorpej return (EINTR);
554 1.26 cgd return (0);
555 1.26 cgd }
556 1.26 cgd
557 1.26 cgd /*
558 1.26 cgd * Implement timeout for tsleep.
559 1.26 cgd * If process hasn't been awakened (wchan non-zero),
560 1.26 cgd * set timeout flag and undo the sleep. If proc
561 1.26 cgd * is stopped, just unsleep so it will remain stopped.
562 1.26 cgd */
563 1.26 cgd void
564 1.77 thorpej endtsleep(void *arg)
565 1.26 cgd {
566 1.122 thorpej struct lwp *l;
567 1.26 cgd int s;
568 1.26 cgd
569 1.122 thorpej l = (struct lwp *)arg;
570 1.83 thorpej SCHED_LOCK(s);
571 1.122 thorpej if (l->l_wchan) {
572 1.122 thorpej if (l->l_stat == LSSLEEP)
573 1.122 thorpej setrunnable(l);
574 1.26 cgd else
575 1.122 thorpej unsleep(l);
576 1.122 thorpej l->l_flag |= L_TIMEOUT;
577 1.26 cgd }
578 1.83 thorpej SCHED_UNLOCK(s);
579 1.26 cgd }
580 1.26 cgd
581 1.26 cgd /*
582 1.26 cgd * Remove a process from its wait queue
583 1.26 cgd */
584 1.26 cgd void
585 1.122 thorpej unsleep(struct lwp *l)
586 1.26 cgd {
587 1.71 augustss struct slpque *qp;
588 1.122 thorpej struct lwp **hp;
589 1.26 cgd
590 1.83 thorpej SCHED_ASSERT_LOCKED();
591 1.83 thorpej
592 1.122 thorpej if (l->l_wchan) {
593 1.122 thorpej hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
594 1.122 thorpej while (*hp != l)
595 1.122 thorpej hp = &(*hp)->l_forw;
596 1.122 thorpej *hp = l->l_forw;
597 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
598 1.26 cgd qp->sq_tailp = hp;
599 1.122 thorpej l->l_wchan = 0;
600 1.26 cgd }
601 1.26 cgd }
602 1.26 cgd
603 1.26 cgd /*
604 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
605 1.63 thorpej */
606 1.63 thorpej __inline void
607 1.122 thorpej awaken(struct lwp *l)
608 1.63 thorpej {
609 1.63 thorpej
610 1.83 thorpej SCHED_ASSERT_LOCKED();
611 1.122 thorpej
612 1.122 thorpej if (l->l_slptime > 1)
613 1.122 thorpej updatepri(l);
614 1.122 thorpej l->l_slptime = 0;
615 1.122 thorpej l->l_stat = LSRUN;
616 1.122 thorpej l->l_proc->p_nrlwps++;
617 1.93 bouyer /*
618 1.93 bouyer * Since curpriority is a user priority, p->p_priority
619 1.119 thorpej * is always better than curpriority on the last CPU on
620 1.119 thorpej * which it ran.
621 1.118 thorpej *
622 1.119 thorpej * XXXSMP See affinity comment in resched_proc().
623 1.93 bouyer */
624 1.122 thorpej if (l->l_flag & L_INMEM) {
625 1.122 thorpej setrunqueue(l);
626 1.122 thorpej if (l->l_flag & L_SA)
627 1.122 thorpej l->l_proc->p_sa->sa_woken = l;
628 1.122 thorpej KASSERT(l->l_cpu != NULL);
629 1.122 thorpej need_resched(l->l_cpu);
630 1.93 bouyer } else
631 1.93 bouyer sched_wakeup(&proc0);
632 1.83 thorpej }
633 1.83 thorpej
634 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
635 1.83 thorpej void
636 1.83 thorpej sched_unlock_idle(void)
637 1.83 thorpej {
638 1.83 thorpej
639 1.83 thorpej simple_unlock(&sched_lock);
640 1.63 thorpej }
641 1.63 thorpej
642 1.83 thorpej void
643 1.83 thorpej sched_lock_idle(void)
644 1.83 thorpej {
645 1.83 thorpej
646 1.83 thorpej simple_lock(&sched_lock);
647 1.83 thorpej }
648 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
649 1.83 thorpej
650 1.63 thorpej /*
651 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
652 1.26 cgd */
653 1.83 thorpej
654 1.26 cgd void
655 1.125 yamt wakeup(const void *ident)
656 1.26 cgd {
657 1.83 thorpej int s;
658 1.83 thorpej
659 1.83 thorpej SCHED_ASSERT_UNLOCKED();
660 1.83 thorpej
661 1.83 thorpej SCHED_LOCK(s);
662 1.83 thorpej sched_wakeup(ident);
663 1.83 thorpej SCHED_UNLOCK(s);
664 1.83 thorpej }
665 1.83 thorpej
666 1.83 thorpej void
667 1.125 yamt sched_wakeup(const void *ident)
668 1.83 thorpej {
669 1.71 augustss struct slpque *qp;
670 1.122 thorpej struct lwp *l, **q;
671 1.26 cgd
672 1.83 thorpej SCHED_ASSERT_LOCKED();
673 1.77 thorpej
674 1.73 thorpej qp = SLPQUE(ident);
675 1.77 thorpej restart:
676 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; ) {
677 1.26 cgd #ifdef DIAGNOSTIC
678 1.122 thorpej if (l->l_back || (l->l_stat != LSSLEEP &&
679 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
680 1.26 cgd panic("wakeup");
681 1.26 cgd #endif
682 1.122 thorpej if (l->l_wchan == ident) {
683 1.122 thorpej l->l_wchan = 0;
684 1.122 thorpej *q = l->l_forw;
685 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
686 1.26 cgd qp->sq_tailp = q;
687 1.122 thorpej if (l->l_stat == LSSLEEP) {
688 1.122 thorpej awaken(l);
689 1.26 cgd goto restart;
690 1.26 cgd }
691 1.26 cgd } else
692 1.122 thorpej q = &l->l_forw;
693 1.63 thorpej }
694 1.63 thorpej }
695 1.63 thorpej
696 1.63 thorpej /*
697 1.63 thorpej * Make the highest priority process first in line on the specified
698 1.63 thorpej * identifier runnable.
699 1.63 thorpej */
700 1.63 thorpej void
701 1.125 yamt wakeup_one(const void *ident)
702 1.63 thorpej {
703 1.63 thorpej struct slpque *qp;
704 1.122 thorpej struct lwp *l, **q;
705 1.122 thorpej struct lwp *best_sleepp, **best_sleepq;
706 1.122 thorpej struct lwp *best_stopp, **best_stopq;
707 1.63 thorpej int s;
708 1.63 thorpej
709 1.63 thorpej best_sleepp = best_stopp = NULL;
710 1.63 thorpej best_sleepq = best_stopq = NULL;
711 1.63 thorpej
712 1.83 thorpej SCHED_LOCK(s);
713 1.77 thorpej
714 1.73 thorpej qp = SLPQUE(ident);
715 1.77 thorpej
716 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
717 1.63 thorpej #ifdef DIAGNOSTIC
718 1.122 thorpej if (l->l_back || (l->l_stat != LSSLEEP &&
719 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
720 1.63 thorpej panic("wakeup_one");
721 1.63 thorpej #endif
722 1.122 thorpej if (l->l_wchan == ident) {
723 1.122 thorpej if (l->l_stat == LSSLEEP) {
724 1.63 thorpej if (best_sleepp == NULL ||
725 1.122 thorpej l->l_priority < best_sleepp->l_priority) {
726 1.122 thorpej best_sleepp = l;
727 1.63 thorpej best_sleepq = q;
728 1.63 thorpej }
729 1.63 thorpej } else {
730 1.63 thorpej if (best_stopp == NULL ||
731 1.122 thorpej l->l_priority < best_stopp->l_priority) {
732 1.122 thorpej best_stopp = l;
733 1.63 thorpej best_stopq = q;
734 1.63 thorpej }
735 1.63 thorpej }
736 1.63 thorpej }
737 1.63 thorpej }
738 1.63 thorpej
739 1.63 thorpej /*
740 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
741 1.63 thorpej * process.
742 1.63 thorpej */
743 1.63 thorpej if (best_sleepp != NULL) {
744 1.122 thorpej l = best_sleepp;
745 1.63 thorpej q = best_sleepq;
746 1.63 thorpej } else {
747 1.122 thorpej l = best_stopp;
748 1.63 thorpej q = best_stopq;
749 1.63 thorpej }
750 1.63 thorpej
751 1.122 thorpej if (l != NULL) {
752 1.122 thorpej l->l_wchan = NULL;
753 1.122 thorpej *q = l->l_forw;
754 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
755 1.63 thorpej qp->sq_tailp = q;
756 1.122 thorpej if (l->l_stat == LSSLEEP)
757 1.122 thorpej awaken(l);
758 1.26 cgd }
759 1.83 thorpej SCHED_UNLOCK(s);
760 1.117 gmcgarry }
761 1.117 gmcgarry
762 1.117 gmcgarry /*
763 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
764 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
765 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
766 1.117 gmcgarry */
767 1.117 gmcgarry void
768 1.117 gmcgarry yield(void)
769 1.117 gmcgarry {
770 1.122 thorpej struct lwp *l = curlwp;
771 1.117 gmcgarry int s;
772 1.117 gmcgarry
773 1.117 gmcgarry SCHED_LOCK(s);
774 1.122 thorpej l->l_priority = l->l_usrpri;
775 1.122 thorpej l->l_stat = LSRUN;
776 1.122 thorpej setrunqueue(l);
777 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nvcsw++;
778 1.122 thorpej mi_switch(l, NULL);
779 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
780 1.117 gmcgarry splx(s);
781 1.69 thorpej }
782 1.69 thorpej
783 1.69 thorpej /*
784 1.69 thorpej * General preemption call. Puts the current process back on its run queue
785 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
786 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
787 1.69 thorpej * criteria.
788 1.69 thorpej */
789 1.122 thorpej
790 1.69 thorpej void
791 1.122 thorpej preempt(int more)
792 1.69 thorpej {
793 1.122 thorpej struct lwp *l = curlwp;
794 1.122 thorpej int r, s;
795 1.129 nathanw
796 1.129 nathanw /* XXX Until the preempt() bug is fixed. */
797 1.129 nathanw if (more && (l->l_proc->p_flag & P_SA)) {
798 1.129 nathanw l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
799 1.129 nathanw return;
800 1.129 nathanw }
801 1.69 thorpej
802 1.83 thorpej SCHED_LOCK(s);
803 1.122 thorpej l->l_priority = l->l_usrpri;
804 1.122 thorpej l->l_stat = LSRUN;
805 1.122 thorpej setrunqueue(l);
806 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nivcsw++;
807 1.122 thorpej r = mi_switch(l, NULL);
808 1.83 thorpej SCHED_ASSERT_UNLOCKED();
809 1.69 thorpej splx(s);
810 1.122 thorpej if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
811 1.122 thorpej sa_preempt(l);
812 1.69 thorpej }
813 1.69 thorpej
814 1.69 thorpej /*
815 1.72 thorpej * The machine independent parts of context switch.
816 1.86 thorpej * Must be called at splsched() (no higher!) and with
817 1.86 thorpej * the sched_lock held.
818 1.122 thorpej * Switch to "new" if non-NULL, otherwise let cpu_switch choose
819 1.122 thorpej * the next lwp.
820 1.122 thorpej *
821 1.122 thorpej * Returns 1 if another process was actually run.
822 1.26 cgd */
823 1.122 thorpej int
824 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
825 1.26 cgd {
826 1.76 thorpej struct schedstate_percpu *spc;
827 1.71 augustss struct rlimit *rlim;
828 1.71 augustss long s, u;
829 1.26 cgd struct timeval tv;
830 1.85 sommerfe #if defined(MULTIPROCESSOR)
831 1.85 sommerfe int hold_count;
832 1.85 sommerfe #endif
833 1.122 thorpej struct proc *p = l->l_proc;
834 1.122 thorpej int retval;
835 1.26 cgd
836 1.83 thorpej SCHED_ASSERT_LOCKED();
837 1.83 thorpej
838 1.85 sommerfe #if defined(MULTIPROCESSOR)
839 1.90 sommerfe /*
840 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
841 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
842 1.90 sommerfe * selects a new process and removes it from the run queue.
843 1.90 sommerfe */
844 1.122 thorpej if (l->l_flag & L_BIGLOCK)
845 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
846 1.85 sommerfe #endif
847 1.85 sommerfe
848 1.122 thorpej KDASSERT(l->l_cpu != NULL);
849 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
850 1.113 gmcgarry
851 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
852 1.76 thorpej
853 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
854 1.82 thorpej spinlock_switchcheck();
855 1.82 thorpej #endif
856 1.54 chs #ifdef LOCKDEBUG
857 1.81 thorpej simple_lock_switchcheck();
858 1.50 fvdl #endif
859 1.81 thorpej
860 1.26 cgd /*
861 1.26 cgd * Compute the amount of time during which the current
862 1.113 gmcgarry * process was running.
863 1.26 cgd */
864 1.26 cgd microtime(&tv);
865 1.122 thorpej u = p->p_rtime.tv_usec +
866 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
867 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
868 1.26 cgd if (u < 0) {
869 1.26 cgd u += 1000000;
870 1.26 cgd s--;
871 1.26 cgd } else if (u >= 1000000) {
872 1.26 cgd u -= 1000000;
873 1.26 cgd s++;
874 1.26 cgd }
875 1.114 gmcgarry p->p_rtime.tv_usec = u;
876 1.114 gmcgarry p->p_rtime.tv_sec = s;
877 1.26 cgd
878 1.26 cgd /*
879 1.26 cgd * Check if the process exceeds its cpu resource allocation.
880 1.26 cgd * If over max, kill it. In any case, if it has run for more
881 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
882 1.26 cgd */
883 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
884 1.26 cgd if (s >= rlim->rlim_cur) {
885 1.100 sommerfe /*
886 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
887 1.100 sommerfe * use sched_psignal.
888 1.100 sommerfe */
889 1.26 cgd if (s >= rlim->rlim_max)
890 1.100 sommerfe sched_psignal(p, SIGKILL);
891 1.26 cgd else {
892 1.100 sommerfe sched_psignal(p, SIGXCPU);
893 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
894 1.26 cgd rlim->rlim_cur += 5;
895 1.26 cgd }
896 1.26 cgd }
897 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
898 1.77 thorpej p->p_nice == NZERO) {
899 1.39 ws p->p_nice = autoniceval + NZERO;
900 1.122 thorpej resetpriority(l);
901 1.26 cgd }
902 1.69 thorpej
903 1.69 thorpej /*
904 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
905 1.69 thorpej * scheduling flags.
906 1.69 thorpej */
907 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
908 1.109 yamt
909 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
910 1.124 yamt kstack_check_magic(l);
911 1.109 yamt #endif
912 1.26 cgd
913 1.113 gmcgarry /*
914 1.114 gmcgarry * If we are using h/w performance counters, save context.
915 1.113 gmcgarry */
916 1.114 gmcgarry #if PERFCTRS
917 1.114 gmcgarry if (PMC_ENABLED(p))
918 1.114 gmcgarry pmc_save_context(p);
919 1.110 briggs #endif
920 1.113 gmcgarry
921 1.113 gmcgarry /*
922 1.114 gmcgarry * Switch to the new current process. When we
923 1.114 gmcgarry * run again, we'll return back here.
924 1.113 gmcgarry */
925 1.114 gmcgarry uvmexp.swtch++;
926 1.122 thorpej if (newl == NULL) {
927 1.122 thorpej retval = cpu_switch(l, NULL);
928 1.122 thorpej } else {
929 1.122 thorpej remrunqueue(newl);
930 1.122 thorpej cpu_switchto(l, newl);
931 1.122 thorpej retval = 0;
932 1.122 thorpej }
933 1.110 briggs
934 1.110 briggs /*
935 1.114 gmcgarry * If we are using h/w performance counters, restore context.
936 1.26 cgd */
937 1.114 gmcgarry #if PERFCTRS
938 1.114 gmcgarry if (PMC_ENABLED(p))
939 1.114 gmcgarry pmc_restore_context(p);
940 1.114 gmcgarry #endif
941 1.110 briggs
942 1.110 briggs /*
943 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
944 1.114 gmcgarry * resuming us.
945 1.110 briggs */
946 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
947 1.83 thorpej
948 1.83 thorpej /*
949 1.76 thorpej * We're running again; record our new start time. We might
950 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
951 1.76 thorpej * schedstate_percpu pointer.
952 1.76 thorpej */
953 1.122 thorpej KDASSERT(l->l_cpu != NULL);
954 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
955 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
956 1.85 sommerfe
957 1.85 sommerfe #if defined(MULTIPROCESSOR)
958 1.90 sommerfe /*
959 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
960 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
961 1.90 sommerfe * we reacquire the interlock.
962 1.90 sommerfe */
963 1.122 thorpej if (l->l_flag & L_BIGLOCK)
964 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
965 1.85 sommerfe #endif
966 1.122 thorpej
967 1.122 thorpej return retval;
968 1.26 cgd }
969 1.26 cgd
970 1.26 cgd /*
971 1.26 cgd * Initialize the (doubly-linked) run queues
972 1.26 cgd * to be empty.
973 1.26 cgd */
974 1.26 cgd void
975 1.26 cgd rqinit()
976 1.26 cgd {
977 1.71 augustss int i;
978 1.26 cgd
979 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
980 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
981 1.122 thorpej (struct lwp *)&sched_qs[i];
982 1.26 cgd }
983 1.26 cgd
984 1.119 thorpej static __inline void
985 1.122 thorpej resched_proc(struct lwp *l, u_char pri)
986 1.119 thorpej {
987 1.119 thorpej struct cpu_info *ci;
988 1.119 thorpej
989 1.119 thorpej /*
990 1.119 thorpej * XXXSMP
991 1.122 thorpej * Since l->l_cpu persists across a context switch,
992 1.119 thorpej * this gives us *very weak* processor affinity, in
993 1.119 thorpej * that we notify the CPU on which the process last
994 1.119 thorpej * ran that it should try to switch.
995 1.119 thorpej *
996 1.119 thorpej * This does not guarantee that the process will run on
997 1.119 thorpej * that processor next, because another processor might
998 1.119 thorpej * grab it the next time it performs a context switch.
999 1.119 thorpej *
1000 1.119 thorpej * This also does not handle the case where its last
1001 1.119 thorpej * CPU is running a higher-priority process, but every
1002 1.119 thorpej * other CPU is running a lower-priority process. There
1003 1.119 thorpej * are ways to handle this situation, but they're not
1004 1.119 thorpej * currently very pretty, and we also need to weigh the
1005 1.119 thorpej * cost of moving a process from one CPU to another.
1006 1.119 thorpej *
1007 1.119 thorpej * XXXSMP
1008 1.119 thorpej * There is also the issue of locking the other CPU's
1009 1.119 thorpej * sched state, which we currently do not do.
1010 1.119 thorpej */
1011 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1012 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
1013 1.119 thorpej need_resched(ci);
1014 1.119 thorpej }
1015 1.119 thorpej
1016 1.26 cgd /*
1017 1.26 cgd * Change process state to be runnable,
1018 1.26 cgd * placing it on the run queue if it is in memory,
1019 1.26 cgd * and awakening the swapper if it isn't in memory.
1020 1.26 cgd */
1021 1.26 cgd void
1022 1.122 thorpej setrunnable(struct lwp *l)
1023 1.26 cgd {
1024 1.122 thorpej struct proc *p = l->l_proc;
1025 1.26 cgd
1026 1.83 thorpej SCHED_ASSERT_LOCKED();
1027 1.83 thorpej
1028 1.122 thorpej switch (l->l_stat) {
1029 1.26 cgd case 0:
1030 1.122 thorpej case LSRUN:
1031 1.122 thorpej case LSONPROC:
1032 1.122 thorpej case LSZOMB:
1033 1.122 thorpej case LSDEAD:
1034 1.26 cgd default:
1035 1.127 matt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1036 1.122 thorpej case LSSTOP:
1037 1.33 mycroft /*
1038 1.33 mycroft * If we're being traced (possibly because someone attached us
1039 1.33 mycroft * while we were stopped), check for a signal from the debugger.
1040 1.33 mycroft */
1041 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1042 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1043 1.101 thorpej CHECKSIGS(p);
1044 1.53 mycroft }
1045 1.122 thorpej case LSSLEEP:
1046 1.122 thorpej unsleep(l); /* e.g. when sending signals */
1047 1.26 cgd break;
1048 1.26 cgd
1049 1.122 thorpej case LSIDL:
1050 1.122 thorpej break;
1051 1.122 thorpej case LSSUSPENDED:
1052 1.26 cgd break;
1053 1.26 cgd }
1054 1.122 thorpej l->l_stat = LSRUN;
1055 1.122 thorpej p->p_nrlwps++;
1056 1.122 thorpej
1057 1.122 thorpej if (l->l_flag & L_INMEM)
1058 1.122 thorpej setrunqueue(l);
1059 1.122 thorpej
1060 1.122 thorpej if (l->l_slptime > 1)
1061 1.122 thorpej updatepri(l);
1062 1.122 thorpej l->l_slptime = 0;
1063 1.122 thorpej if ((l->l_flag & L_INMEM) == 0)
1064 1.83 thorpej sched_wakeup((caddr_t)&proc0);
1065 1.119 thorpej else
1066 1.122 thorpej resched_proc(l, l->l_priority);
1067 1.26 cgd }
1068 1.26 cgd
1069 1.26 cgd /*
1070 1.26 cgd * Compute the priority of a process when running in user mode.
1071 1.26 cgd * Arrange to reschedule if the resulting priority is better
1072 1.26 cgd * than that of the current process.
1073 1.26 cgd */
1074 1.26 cgd void
1075 1.122 thorpej resetpriority(struct lwp *l)
1076 1.26 cgd {
1077 1.71 augustss unsigned int newpriority;
1078 1.122 thorpej struct proc *p = l->l_proc;
1079 1.26 cgd
1080 1.83 thorpej SCHED_ASSERT_LOCKED();
1081 1.83 thorpej
1082 1.122 thorpej newpriority = PUSER + p->p_estcpu +
1083 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
1084 1.26 cgd newpriority = min(newpriority, MAXPRI);
1085 1.122 thorpej l->l_usrpri = newpriority;
1086 1.122 thorpej resched_proc(l, l->l_usrpri);
1087 1.122 thorpej }
1088 1.122 thorpej
1089 1.122 thorpej /*
1090 1.122 thorpej * Recompute priority for all LWPs in a process.
1091 1.122 thorpej */
1092 1.122 thorpej void
1093 1.122 thorpej resetprocpriority(struct proc *p)
1094 1.122 thorpej {
1095 1.122 thorpej struct lwp *l;
1096 1.122 thorpej
1097 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling)
1098 1.122 thorpej resetpriority(l);
1099 1.55 ross }
1100 1.55 ross
1101 1.55 ross /*
1102 1.56 ross * We adjust the priority of the current process. The priority of a process
1103 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1104 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1105 1.56 ross * will compute a different value each time p_estcpu increases. This can
1106 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1107 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
1108 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1109 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1110 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1111 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1112 1.56 ross * processes which haven't run much recently, and to round-robin among other
1113 1.56 ross * processes.
1114 1.55 ross */
1115 1.55 ross
1116 1.55 ross void
1117 1.122 thorpej schedclock(struct lwp *l)
1118 1.55 ross {
1119 1.122 thorpej struct proc *p = l->l_proc;
1120 1.83 thorpej int s;
1121 1.77 thorpej
1122 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1123 1.83 thorpej SCHED_LOCK(s);
1124 1.122 thorpej resetpriority(l);
1125 1.83 thorpej SCHED_UNLOCK(s);
1126 1.122 thorpej
1127 1.122 thorpej if (l->l_priority >= PUSER)
1128 1.122 thorpej l->l_priority = l->l_usrpri;
1129 1.26 cgd }
1130 1.94 bouyer
1131 1.94 bouyer void
1132 1.94 bouyer suspendsched()
1133 1.94 bouyer {
1134 1.122 thorpej struct lwp *l;
1135 1.97 enami int s;
1136 1.94 bouyer
1137 1.94 bouyer /*
1138 1.122 thorpej * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1139 1.122 thorpej * LSSUSPENDED.
1140 1.94 bouyer */
1141 1.95 thorpej proclist_lock_read();
1142 1.95 thorpej SCHED_LOCK(s);
1143 1.122 thorpej LIST_FOREACH(l, &alllwp, l_list) {
1144 1.122 thorpej if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1145 1.94 bouyer continue;
1146 1.122 thorpej
1147 1.122 thorpej switch (l->l_stat) {
1148 1.122 thorpej case LSRUN:
1149 1.122 thorpej l->l_proc->p_nrlwps--;
1150 1.122 thorpej if ((l->l_flag & L_INMEM) != 0)
1151 1.122 thorpej remrunqueue(l);
1152 1.97 enami /* FALLTHROUGH */
1153 1.122 thorpej case LSSLEEP:
1154 1.122 thorpej l->l_stat = LSSUSPENDED;
1155 1.97 enami break;
1156 1.122 thorpej case LSONPROC:
1157 1.97 enami /*
1158 1.97 enami * XXX SMP: we need to deal with processes on
1159 1.97 enami * others CPU !
1160 1.97 enami */
1161 1.97 enami break;
1162 1.97 enami default:
1163 1.97 enami break;
1164 1.94 bouyer }
1165 1.94 bouyer }
1166 1.94 bouyer SCHED_UNLOCK(s);
1167 1.97 enami proclist_unlock_read();
1168 1.94 bouyer }
1169 1.113 gmcgarry
1170 1.113 gmcgarry /*
1171 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1172 1.113 gmcgarry * routines can override these.
1173 1.113 gmcgarry */
1174 1.113 gmcgarry
1175 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1176 1.115 nisimura
1177 1.115 nisimura /*
1178 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1179 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1180 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1181 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1182 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1183 1.115 nisimura * available queues.
1184 1.115 nisimura */
1185 1.113 gmcgarry
1186 1.113 gmcgarry void
1187 1.122 thorpej setrunqueue(struct lwp *l)
1188 1.113 gmcgarry {
1189 1.113 gmcgarry struct prochd *rq;
1190 1.122 thorpej struct lwp *prev;
1191 1.113 gmcgarry int whichq;
1192 1.113 gmcgarry
1193 1.113 gmcgarry #ifdef DIAGNOSTIC
1194 1.122 thorpej if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1195 1.113 gmcgarry panic("setrunqueue");
1196 1.113 gmcgarry #endif
1197 1.122 thorpej whichq = l->l_priority / 4;
1198 1.128 simonb sched_whichqs |= (1 << whichq);
1199 1.113 gmcgarry rq = &sched_qs[whichq];
1200 1.113 gmcgarry prev = rq->ph_rlink;
1201 1.122 thorpej l->l_forw = (struct lwp *)rq;
1202 1.122 thorpej rq->ph_rlink = l;
1203 1.122 thorpej prev->l_forw = l;
1204 1.122 thorpej l->l_back = prev;
1205 1.113 gmcgarry }
1206 1.113 gmcgarry
1207 1.113 gmcgarry void
1208 1.122 thorpej remrunqueue(struct lwp *l)
1209 1.113 gmcgarry {
1210 1.122 thorpej struct lwp *prev, *next;
1211 1.113 gmcgarry int whichq;
1212 1.113 gmcgarry
1213 1.122 thorpej whichq = l->l_priority / 4;
1214 1.113 gmcgarry #ifdef DIAGNOSTIC
1215 1.128 simonb if (((sched_whichqs & (1 << whichq)) == 0))
1216 1.113 gmcgarry panic("remrunqueue");
1217 1.113 gmcgarry #endif
1218 1.122 thorpej prev = l->l_back;
1219 1.122 thorpej l->l_back = NULL;
1220 1.122 thorpej next = l->l_forw;
1221 1.122 thorpej prev->l_forw = next;
1222 1.122 thorpej next->l_back = prev;
1223 1.113 gmcgarry if (prev == next)
1224 1.128 simonb sched_whichqs &= ~(1 << whichq);
1225 1.113 gmcgarry }
1226 1.113 gmcgarry
1227 1.113 gmcgarry #endif
1228