Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.132.2.1
      1  1.132.2.1   darrenr /*	$NetBSD: kern_synch.c,v 1.132.2.1 2003/07/02 15:26:39 darrenr Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4       1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.63   thorpej  * NASA Ames Research Center.
     10       1.63   thorpej  *
     11       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.63   thorpej  * modification, are permitted provided that the following conditions
     13       1.63   thorpej  * are met:
     14       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20       1.63   thorpej  *    must display the following acknowledgement:
     21       1.63   thorpej  *	This product includes software developed by the NetBSD
     22       1.63   thorpej  *	Foundation, Inc. and its contributors.
     23       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25       1.63   thorpej  *    from this software without specific prior written permission.
     26       1.63   thorpej  *
     27       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38       1.63   thorpej  */
     39       1.26       cgd 
     40       1.26       cgd /*-
     41       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44       1.26       cgd  * All or some portions of this file are derived from material licensed
     45       1.26       cgd  * to the University of California by American Telephone and Telegraph
     46       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48       1.26       cgd  *
     49       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50       1.26       cgd  * modification, are permitted provided that the following conditions
     51       1.26       cgd  * are met:
     52       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57       1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58       1.26       cgd  *    must display the following acknowledgement:
     59       1.26       cgd  *	This product includes software developed by the University of
     60       1.26       cgd  *	California, Berkeley and its contributors.
     61       1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62       1.26       cgd  *    may be used to endorse or promote products derived from this software
     63       1.26       cgd  *    without specific prior written permission.
     64       1.26       cgd  *
     65       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75       1.26       cgd  * SUCH DAMAGE.
     76       1.26       cgd  *
     77       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78       1.26       cgd  */
     79      1.106     lukem 
     80      1.106     lukem #include <sys/cdefs.h>
     81  1.132.2.1   darrenr __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.132.2.1 2003/07/02 15:26:39 darrenr Exp $");
     82       1.48       mrg 
     83       1.52  jonathan #include "opt_ddb.h"
     84       1.51   thorpej #include "opt_ktrace.h"
     85      1.109      yamt #include "opt_kstack.h"
     86       1.82   thorpej #include "opt_lockdebug.h"
     87       1.83   thorpej #include "opt_multiprocessor.h"
     88      1.110    briggs #include "opt_perfctrs.h"
     89       1.26       cgd 
     90       1.26       cgd #include <sys/param.h>
     91       1.26       cgd #include <sys/systm.h>
     92       1.68   thorpej #include <sys/callout.h>
     93       1.26       cgd #include <sys/proc.h>
     94       1.26       cgd #include <sys/kernel.h>
     95       1.26       cgd #include <sys/buf.h>
     96      1.111    briggs #if defined(PERFCTRS)
     97      1.110    briggs #include <sys/pmc.h>
     98      1.111    briggs #endif
     99       1.26       cgd #include <sys/signalvar.h>
    100       1.26       cgd #include <sys/resourcevar.h>
    101       1.55      ross #include <sys/sched.h>
    102      1.122   thorpej #include <sys/sa.h>
    103      1.122   thorpej #include <sys/savar.h>
    104       1.47       mrg 
    105       1.47       mrg #include <uvm/uvm_extern.h>
    106       1.47       mrg 
    107       1.26       cgd #ifdef KTRACE
    108       1.26       cgd #include <sys/ktrace.h>
    109       1.26       cgd #endif
    110       1.26       cgd 
    111       1.26       cgd #include <machine/cpu.h>
    112       1.34  christos 
    113       1.26       cgd int	lbolt;			/* once a second sleep address */
    114       1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    115       1.26       cgd 
    116       1.73   thorpej /*
    117       1.73   thorpej  * The global scheduler state.
    118       1.73   thorpej  */
    119       1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    120       1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    121       1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    122       1.73   thorpej 
    123       1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    124       1.83   thorpej 
    125       1.77   thorpej void schedcpu(void *);
    126      1.122   thorpej void updatepri(struct lwp *);
    127       1.77   thorpej void endtsleep(void *);
    128       1.34  christos 
    129      1.122   thorpej __inline void awaken(struct lwp *);
    130       1.63   thorpej 
    131       1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    132       1.68   thorpej 
    133      1.122   thorpej 
    134      1.122   thorpej 
    135       1.26       cgd /*
    136       1.26       cgd  * Force switch among equal priority processes every 100ms.
    137       1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    138       1.26       cgd  */
    139       1.26       cgd /* ARGSUSED */
    140       1.26       cgd void
    141       1.89  sommerfe roundrobin(struct cpu_info *ci)
    142       1.26       cgd {
    143       1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    144       1.26       cgd 
    145       1.88  sommerfe 	spc->spc_rrticks = rrticks;
    146      1.130   nathanw 
    147      1.122   thorpej 	if (curlwp != NULL) {
    148       1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    149       1.69   thorpej 			/*
    150       1.69   thorpej 			 * The process has already been through a roundrobin
    151       1.69   thorpej 			 * without switching and may be hogging the CPU.
    152       1.69   thorpej 			 * Indicate that the process should yield.
    153       1.69   thorpej 			 */
    154       1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    155       1.69   thorpej 		} else
    156       1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    157       1.69   thorpej 	}
    158       1.87   thorpej 	need_resched(curcpu());
    159       1.26       cgd }
    160       1.26       cgd 
    161       1.26       cgd /*
    162       1.26       cgd  * Constants for digital decay and forget:
    163       1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    164       1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    165       1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    166       1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    167       1.26       cgd  *
    168       1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    169       1.26       cgd  *
    170       1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    171       1.26       cgd  * That is, the system wants to compute a value of decay such
    172       1.26       cgd  * that the following for loop:
    173       1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    174       1.26       cgd  * 		p_estcpu *= decay;
    175       1.26       cgd  * will compute
    176       1.26       cgd  * 	p_estcpu *= 0.1;
    177       1.26       cgd  * for all values of loadavg:
    178       1.26       cgd  *
    179       1.26       cgd  * Mathematically this loop can be expressed by saying:
    180       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    181       1.26       cgd  *
    182       1.26       cgd  * The system computes decay as:
    183       1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    184       1.26       cgd  *
    185       1.26       cgd  * We wish to prove that the system's computation of decay
    186       1.26       cgd  * will always fulfill the equation:
    187       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    188       1.26       cgd  *
    189       1.26       cgd  * If we compute b as:
    190       1.26       cgd  * 	b = 2 * loadavg
    191       1.26       cgd  * then
    192       1.26       cgd  * 	decay = b / (b + 1)
    193       1.26       cgd  *
    194       1.26       cgd  * We now need to prove two things:
    195       1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    196       1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    197      1.130   nathanw  *
    198       1.26       cgd  * Facts:
    199       1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    200       1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    201       1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    202       1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    203       1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    204       1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    205       1.26       cgd  *         ln(.1) =~ -2.30
    206       1.26       cgd  *
    207       1.26       cgd  * Proof of (1):
    208       1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    209       1.26       cgd  *	solving for factor,
    210       1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    211       1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    212       1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    213       1.26       cgd  *
    214       1.26       cgd  * Proof of (2):
    215       1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    216       1.26       cgd  *	solving for power,
    217       1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    218       1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    219       1.26       cgd  *
    220       1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    221       1.26       cgd  *      loadav: 1       2       3       4
    222       1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    223       1.26       cgd  */
    224       1.26       cgd 
    225       1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    226       1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    227       1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    228       1.26       cgd 
    229       1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    230       1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    231       1.26       cgd 
    232       1.26       cgd /*
    233       1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    234       1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    235       1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    236       1.26       cgd  *
    237       1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    238       1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    239       1.26       cgd  *
    240       1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    241       1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    242       1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    243       1.26       cgd  */
    244       1.26       cgd #define	CCPU_SHIFT	11
    245       1.26       cgd 
    246       1.26       cgd /*
    247       1.26       cgd  * Recompute process priorities, every hz ticks.
    248       1.26       cgd  */
    249       1.26       cgd /* ARGSUSED */
    250       1.26       cgd void
    251       1.77   thorpej schedcpu(void *arg)
    252       1.26       cgd {
    253       1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    254      1.122   thorpej 	struct lwp *l;
    255       1.71  augustss 	struct proc *p;
    256      1.122   thorpej 	int s, minslp;
    257       1.71  augustss 	unsigned int newcpu;
    258       1.66      ross 	int clkhz;
    259       1.26       cgd 
    260       1.62   thorpej 	proclist_lock_read();
    261      1.112      matt 	LIST_FOREACH(p, &allproc, p_list) {
    262       1.26       cgd 		/*
    263       1.26       cgd 		 * Increment time in/out of memory and sleep time
    264       1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    265       1.26       cgd 		 * (remember them?) overflow takes 45 days.
    266       1.26       cgd 		 */
    267      1.122   thorpej 		minslp = 2;
    268      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    269      1.122   thorpej 			l->l_swtime++;
    270      1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    271      1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    272      1.122   thorpej 				l->l_slptime++;
    273      1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    274      1.122   thorpej 			} else
    275      1.122   thorpej 				minslp = 0;
    276      1.122   thorpej 		}
    277       1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    278       1.26       cgd 		/*
    279       1.26       cgd 		 * If the process has slept the entire second,
    280       1.26       cgd 		 * stop recalculating its priority until it wakes up.
    281       1.26       cgd 		 */
    282      1.122   thorpej 		if (minslp > 1)
    283       1.26       cgd 			continue;
    284       1.26       cgd 		s = splstatclock();	/* prevent state changes */
    285       1.26       cgd 		/*
    286       1.26       cgd 		 * p_pctcpu is only for ps.
    287       1.26       cgd 		 */
    288       1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    289       1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    290       1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    291       1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    292       1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    293       1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    294       1.26       cgd #else
    295       1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    296       1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    297       1.26       cgd #endif
    298       1.26       cgd 		p->p_cpticks = 0;
    299       1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    300       1.55      ross 		p->p_estcpu = newcpu;
    301      1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    302      1.120        pk 		SCHED_LOCK(s);
    303      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    304      1.122   thorpej 			if (l->l_slptime > 1)
    305      1.122   thorpej 				continue;
    306      1.122   thorpej 			resetpriority(l);
    307      1.122   thorpej 			if (l->l_priority >= PUSER) {
    308      1.122   thorpej 				if (l->l_stat == LSRUN &&
    309      1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    310      1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    311      1.122   thorpej 					remrunqueue(l);
    312      1.122   thorpej 					l->l_priority = l->l_usrpri;
    313      1.122   thorpej 					setrunqueue(l);
    314      1.122   thorpej 				} else
    315      1.122   thorpej 					l->l_priority = l->l_usrpri;
    316      1.122   thorpej 			}
    317       1.26       cgd 		}
    318      1.120        pk 		SCHED_UNLOCK(s);
    319       1.26       cgd 	}
    320       1.61   thorpej 	proclist_unlock_read();
    321       1.47       mrg 	uvm_meter();
    322       1.67      fvdl 	wakeup((caddr_t)&lbolt);
    323       1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    324       1.26       cgd }
    325       1.26       cgd 
    326       1.26       cgd /*
    327       1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    328       1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    329       1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    330       1.26       cgd  */
    331       1.26       cgd void
    332      1.122   thorpej updatepri(struct lwp *l)
    333       1.26       cgd {
    334      1.122   thorpej 	struct proc *p = l->l_proc;
    335       1.83   thorpej 	unsigned int newcpu;
    336       1.83   thorpej 	fixpt_t loadfac;
    337       1.83   thorpej 
    338       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    339       1.83   thorpej 
    340       1.83   thorpej 	newcpu = p->p_estcpu;
    341       1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    342       1.26       cgd 
    343      1.122   thorpej 	if (l->l_slptime > 5 * loadfac)
    344      1.122   thorpej 		p->p_estcpu = 0; /* XXX NJWLWP */
    345       1.26       cgd 	else {
    346      1.122   thorpej 		l->l_slptime--;	/* the first time was done in schedcpu */
    347      1.122   thorpej 		while (newcpu && --l->l_slptime)
    348       1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    349       1.55      ross 		p->p_estcpu = newcpu;
    350       1.26       cgd 	}
    351      1.122   thorpej 	resetpriority(l);
    352       1.26       cgd }
    353       1.26       cgd 
    354       1.26       cgd /*
    355       1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    356       1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    357       1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    358       1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    359       1.26       cgd  * This priority will typically be 0, or the lowest priority
    360       1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    361       1.26       cgd  * higher to block network software interrupts after panics.
    362       1.26       cgd  */
    363       1.26       cgd int safepri;
    364       1.26       cgd 
    365       1.26       cgd /*
    366       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    367       1.26       cgd  * performed on the specified identifier.  The process will then be made
    368       1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    369       1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    370       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    371       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    372       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    373       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    374       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    375       1.77   thorpej  *
    376      1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    377       1.77   thorpej  * interlock will be locked before returning back to the caller
    378       1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    379       1.77   thorpej  * interlock will always be unlocked upon return.
    380       1.26       cgd  */
    381       1.26       cgd int
    382      1.125      yamt ltsleep(const void *ident, int priority, const char *wmesg, int timo,
    383       1.77   thorpej     __volatile struct simplelock *interlock)
    384       1.26       cgd {
    385      1.122   thorpej 	struct lwp *l = curlwp;
    386      1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    387       1.71  augustss 	struct slpque *qp;
    388       1.77   thorpej 	int sig, s;
    389       1.77   thorpej 	int catch = priority & PCATCH;
    390       1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    391      1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    392       1.26       cgd 
    393       1.77   thorpej 	/*
    394       1.77   thorpej 	 * XXXSMP
    395       1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    396       1.77   thorpej 	 * thing to do here really is.
    397      1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    398       1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    399       1.78  sommerfe 	 * how shutdown (barely) works.
    400       1.77   thorpej 	 */
    401      1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    402       1.26       cgd 		/*
    403       1.26       cgd 		 * After a panic, or during autoconfiguration,
    404       1.26       cgd 		 * just give interrupts a chance, then just return;
    405       1.26       cgd 		 * don't run any other procs or panic below,
    406       1.26       cgd 		 * in case this is the idle process and already asleep.
    407       1.26       cgd 		 */
    408       1.42       cgd 		s = splhigh();
    409       1.26       cgd 		splx(safepri);
    410       1.26       cgd 		splx(s);
    411       1.77   thorpej 		if (interlock != NULL && relock == 0)
    412       1.77   thorpej 			simple_unlock(interlock);
    413       1.26       cgd 		return (0);
    414       1.26       cgd 	}
    415       1.78  sommerfe 
    416      1.102   thorpej 	KASSERT(p != NULL);
    417      1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    418       1.42       cgd 
    419       1.42       cgd #ifdef KTRACE
    420       1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    421  1.132.2.1   darrenr 		ktrcsw(l, 1, 0);
    422       1.42       cgd #endif
    423       1.77   thorpej 
    424       1.83   thorpej 	SCHED_LOCK(s);
    425       1.42       cgd 
    426       1.26       cgd #ifdef DIAGNOSTIC
    427       1.64   thorpej 	if (ident == NULL)
    428       1.77   thorpej 		panic("ltsleep: ident == NULL");
    429      1.122   thorpej 	if (l->l_stat != LSONPROC)
    430      1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    431      1.122   thorpej 	if (l->l_back != NULL)
    432       1.77   thorpej 		panic("ltsleep: p_back != NULL");
    433       1.26       cgd #endif
    434       1.77   thorpej 
    435      1.122   thorpej 	l->l_wchan = ident;
    436      1.122   thorpej 	l->l_wmesg = wmesg;
    437      1.122   thorpej 	l->l_slptime = 0;
    438      1.122   thorpej 	l->l_priority = priority & PRIMASK;
    439       1.77   thorpej 
    440       1.73   thorpej 	qp = SLPQUE(ident);
    441       1.26       cgd 	if (qp->sq_head == 0)
    442      1.122   thorpej 		qp->sq_head = l;
    443      1.122   thorpej 	else {
    444      1.122   thorpej 		*qp->sq_tailp = l;
    445      1.122   thorpej 	}
    446      1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    447       1.77   thorpej 
    448       1.26       cgd 	if (timo)
    449      1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    450       1.77   thorpej 
    451       1.77   thorpej 	/*
    452       1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    453       1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    454       1.77   thorpej 	 * we do the switch.
    455       1.77   thorpej 	 *
    456       1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    457       1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    458       1.77   thorpej 	 * data structure for the sleep queues at some point.
    459       1.77   thorpej 	 */
    460       1.77   thorpej 	if (interlock != NULL)
    461       1.77   thorpej 		simple_unlock(interlock);
    462       1.77   thorpej 
    463       1.26       cgd 	/*
    464       1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    465       1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    466       1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    467       1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    468       1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    469       1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    470       1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    471       1.26       cgd 	 */
    472       1.26       cgd 	if (catch) {
    473      1.122   thorpej 		l->l_flag |= L_SINTR;
    474      1.122   thorpej 		if ((sig = CURSIG(l)) != 0) {
    475      1.122   thorpej 			if (l->l_wchan != NULL)
    476      1.122   thorpej 				unsleep(l);
    477      1.122   thorpej 			l->l_stat = LSONPROC;
    478       1.83   thorpej 			SCHED_UNLOCK(s);
    479       1.26       cgd 			goto resume;
    480       1.26       cgd 		}
    481      1.122   thorpej 		if (l->l_wchan == NULL) {
    482       1.26       cgd 			catch = 0;
    483       1.83   thorpej 			SCHED_UNLOCK(s);
    484       1.26       cgd 			goto resume;
    485       1.26       cgd 		}
    486       1.26       cgd 	} else
    487       1.26       cgd 		sig = 0;
    488      1.122   thorpej 	l->l_stat = LSSLEEP;
    489      1.122   thorpej 	p->p_nrlwps--;
    490       1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    491       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    492      1.122   thorpej 	if (l->l_flag & L_SA)
    493      1.122   thorpej 		sa_switch(l, SA_UPCALL_BLOCKED);
    494      1.122   thorpej 	else
    495      1.122   thorpej 		mi_switch(l, NULL);
    496       1.83   thorpej 
    497      1.104       chs #if	defined(DDB) && !defined(GPROF)
    498       1.26       cgd 	/* handy breakpoint location after process "wakes" */
    499      1.107    kleink 	__asm(".globl bpendtsleep ; bpendtsleep:");
    500       1.26       cgd #endif
    501      1.122   thorpej 	/*
    502      1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    503      1.122   thorpej 	 * either setrunnable() or awaken().
    504      1.122   thorpej 	 */
    505       1.77   thorpej 
    506       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    507       1.83   thorpej 	splx(s);
    508       1.83   thorpej 
    509       1.77   thorpej  resume:
    510      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    511      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    512      1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    513      1.122   thorpej 
    514      1.122   thorpej 	l->l_flag &= ~L_SINTR;
    515      1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    516      1.122   thorpej 		l->l_flag &= ~L_TIMEOUT;
    517       1.26       cgd 		if (sig == 0) {
    518       1.26       cgd #ifdef KTRACE
    519       1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    520  1.132.2.1   darrenr 				ktrcsw(l, 0, 0);
    521       1.26       cgd #endif
    522       1.77   thorpej 			if (relock && interlock != NULL)
    523       1.77   thorpej 				simple_lock(interlock);
    524       1.26       cgd 			return (EWOULDBLOCK);
    525       1.26       cgd 		}
    526       1.26       cgd 	} else if (timo)
    527      1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    528      1.122   thorpej 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    529       1.26       cgd #ifdef KTRACE
    530       1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    531  1.132.2.1   darrenr 			ktrcsw(l, 0, 0);
    532       1.26       cgd #endif
    533       1.77   thorpej 		if (relock && interlock != NULL)
    534       1.77   thorpej 			simple_lock(interlock);
    535       1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    536       1.26       cgd 			return (EINTR);
    537       1.26       cgd 		return (ERESTART);
    538       1.26       cgd 	}
    539      1.126        pk 
    540      1.126        pk #ifdef KTRACE
    541      1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    542  1.132.2.1   darrenr 		ktrcsw(l, 0, 0);
    543      1.126        pk #endif
    544      1.126        pk 	if (relock && interlock != NULL)
    545      1.126        pk 		simple_lock(interlock);
    546      1.126        pk 
    547      1.122   thorpej 	/* XXXNJW this is very much a kluge.
    548      1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    549      1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    550      1.122   thorpej 	 * would be preferred.
    551      1.122   thorpej 	 */
    552      1.122   thorpej 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    553      1.122   thorpej 		return (EINTR);
    554       1.26       cgd 	return (0);
    555       1.26       cgd }
    556       1.26       cgd 
    557       1.26       cgd /*
    558       1.26       cgd  * Implement timeout for tsleep.
    559       1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    560       1.26       cgd  * set timeout flag and undo the sleep.  If proc
    561       1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    562       1.26       cgd  */
    563       1.26       cgd void
    564       1.77   thorpej endtsleep(void *arg)
    565       1.26       cgd {
    566      1.122   thorpej 	struct lwp *l;
    567       1.26       cgd 	int s;
    568       1.26       cgd 
    569      1.122   thorpej 	l = (struct lwp *)arg;
    570       1.83   thorpej 	SCHED_LOCK(s);
    571      1.122   thorpej 	if (l->l_wchan) {
    572      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    573      1.122   thorpej 			setrunnable(l);
    574       1.26       cgd 		else
    575      1.122   thorpej 			unsleep(l);
    576      1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    577       1.26       cgd 	}
    578       1.83   thorpej 	SCHED_UNLOCK(s);
    579       1.26       cgd }
    580       1.26       cgd 
    581       1.26       cgd /*
    582       1.26       cgd  * Remove a process from its wait queue
    583       1.26       cgd  */
    584       1.26       cgd void
    585      1.122   thorpej unsleep(struct lwp *l)
    586       1.26       cgd {
    587       1.71  augustss 	struct slpque *qp;
    588      1.122   thorpej 	struct lwp **hp;
    589       1.26       cgd 
    590       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    591       1.83   thorpej 
    592      1.122   thorpej 	if (l->l_wchan) {
    593      1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    594      1.122   thorpej 		while (*hp != l)
    595      1.122   thorpej 			hp = &(*hp)->l_forw;
    596      1.122   thorpej 		*hp = l->l_forw;
    597      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    598       1.26       cgd 			qp->sq_tailp = hp;
    599      1.122   thorpej 		l->l_wchan = 0;
    600       1.26       cgd 	}
    601       1.26       cgd }
    602       1.26       cgd 
    603       1.26       cgd /*
    604       1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    605       1.63   thorpej  */
    606       1.63   thorpej __inline void
    607      1.122   thorpej awaken(struct lwp *l)
    608       1.63   thorpej {
    609       1.63   thorpej 
    610       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    611      1.130   nathanw 
    612      1.122   thorpej 	if (l->l_slptime > 1)
    613      1.122   thorpej 		updatepri(l);
    614      1.122   thorpej 	l->l_slptime = 0;
    615      1.122   thorpej 	l->l_stat = LSRUN;
    616      1.122   thorpej 	l->l_proc->p_nrlwps++;
    617       1.93    bouyer 	/*
    618       1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    619      1.119   thorpej 	 * is always better than curpriority on the last CPU on
    620      1.119   thorpej 	 * which it ran.
    621      1.118   thorpej 	 *
    622      1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    623       1.93    bouyer 	 */
    624      1.122   thorpej 	if (l->l_flag & L_INMEM) {
    625      1.122   thorpej 		setrunqueue(l);
    626      1.122   thorpej 		if (l->l_flag & L_SA)
    627      1.122   thorpej 			l->l_proc->p_sa->sa_woken = l;
    628      1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    629      1.122   thorpej 		need_resched(l->l_cpu);
    630       1.93    bouyer 	} else
    631       1.93    bouyer 		sched_wakeup(&proc0);
    632       1.83   thorpej }
    633       1.83   thorpej 
    634       1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    635       1.83   thorpej void
    636       1.83   thorpej sched_unlock_idle(void)
    637       1.83   thorpej {
    638       1.83   thorpej 
    639       1.83   thorpej 	simple_unlock(&sched_lock);
    640       1.63   thorpej }
    641       1.63   thorpej 
    642       1.83   thorpej void
    643       1.83   thorpej sched_lock_idle(void)
    644       1.83   thorpej {
    645       1.83   thorpej 
    646       1.83   thorpej 	simple_lock(&sched_lock);
    647       1.83   thorpej }
    648       1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    649       1.83   thorpej 
    650       1.63   thorpej /*
    651       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    652       1.26       cgd  */
    653       1.83   thorpej 
    654       1.26       cgd void
    655      1.125      yamt wakeup(const void *ident)
    656       1.26       cgd {
    657       1.83   thorpej 	int s;
    658       1.83   thorpej 
    659       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    660       1.83   thorpej 
    661       1.83   thorpej 	SCHED_LOCK(s);
    662       1.83   thorpej 	sched_wakeup(ident);
    663       1.83   thorpej 	SCHED_UNLOCK(s);
    664       1.83   thorpej }
    665       1.83   thorpej 
    666       1.83   thorpej void
    667      1.125      yamt sched_wakeup(const void *ident)
    668       1.83   thorpej {
    669       1.71  augustss 	struct slpque *qp;
    670      1.122   thorpej 	struct lwp *l, **q;
    671       1.26       cgd 
    672       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    673       1.77   thorpej 
    674       1.73   thorpej 	qp = SLPQUE(ident);
    675       1.77   thorpej  restart:
    676      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    677       1.26       cgd #ifdef DIAGNOSTIC
    678      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    679      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    680       1.26       cgd 			panic("wakeup");
    681       1.26       cgd #endif
    682      1.122   thorpej 		if (l->l_wchan == ident) {
    683      1.122   thorpej 			l->l_wchan = 0;
    684      1.122   thorpej 			*q = l->l_forw;
    685      1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    686       1.26       cgd 				qp->sq_tailp = q;
    687      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    688      1.122   thorpej 				awaken(l);
    689       1.26       cgd 				goto restart;
    690       1.26       cgd 			}
    691       1.26       cgd 		} else
    692      1.122   thorpej 			q = &l->l_forw;
    693       1.63   thorpej 	}
    694       1.63   thorpej }
    695       1.63   thorpej 
    696       1.63   thorpej /*
    697       1.63   thorpej  * Make the highest priority process first in line on the specified
    698       1.63   thorpej  * identifier runnable.
    699       1.63   thorpej  */
    700       1.63   thorpej void
    701      1.125      yamt wakeup_one(const void *ident)
    702       1.63   thorpej {
    703       1.63   thorpej 	struct slpque *qp;
    704      1.122   thorpej 	struct lwp *l, **q;
    705      1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    706      1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    707       1.63   thorpej 	int s;
    708       1.63   thorpej 
    709       1.63   thorpej 	best_sleepp = best_stopp = NULL;
    710       1.63   thorpej 	best_sleepq = best_stopq = NULL;
    711       1.63   thorpej 
    712       1.83   thorpej 	SCHED_LOCK(s);
    713       1.77   thorpej 
    714       1.73   thorpej 	qp = SLPQUE(ident);
    715       1.77   thorpej 
    716      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    717       1.63   thorpej #ifdef DIAGNOSTIC
    718      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    719      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    720       1.63   thorpej 			panic("wakeup_one");
    721       1.63   thorpej #endif
    722      1.122   thorpej 		if (l->l_wchan == ident) {
    723      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    724       1.63   thorpej 				if (best_sleepp == NULL ||
    725      1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    726      1.122   thorpej 					best_sleepp = l;
    727       1.63   thorpej 					best_sleepq = q;
    728       1.63   thorpej 				}
    729       1.63   thorpej 			} else {
    730       1.63   thorpej 				if (best_stopp == NULL ||
    731      1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    732      1.122   thorpej 				    	best_stopp = l;
    733       1.63   thorpej 					best_stopq = q;
    734       1.63   thorpej 				}
    735       1.63   thorpej 			}
    736       1.63   thorpej 		}
    737       1.63   thorpej 	}
    738       1.63   thorpej 
    739       1.63   thorpej 	/*
    740       1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    741       1.63   thorpej 	 * process.
    742       1.63   thorpej 	 */
    743       1.63   thorpej 	if (best_sleepp != NULL) {
    744      1.122   thorpej 		l = best_sleepp;
    745       1.63   thorpej 		q = best_sleepq;
    746       1.63   thorpej 	} else {
    747      1.122   thorpej 		l = best_stopp;
    748       1.63   thorpej 		q = best_stopq;
    749       1.63   thorpej 	}
    750       1.63   thorpej 
    751      1.122   thorpej 	if (l != NULL) {
    752      1.122   thorpej 		l->l_wchan = NULL;
    753      1.122   thorpej 		*q = l->l_forw;
    754      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    755       1.63   thorpej 			qp->sq_tailp = q;
    756      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    757      1.122   thorpej 			awaken(l);
    758       1.26       cgd 	}
    759       1.83   thorpej 	SCHED_UNLOCK(s);
    760      1.117  gmcgarry }
    761      1.117  gmcgarry 
    762      1.117  gmcgarry /*
    763      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    764      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    765      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    766      1.117  gmcgarry  */
    767      1.117  gmcgarry void
    768      1.117  gmcgarry yield(void)
    769      1.117  gmcgarry {
    770      1.122   thorpej 	struct lwp *l = curlwp;
    771      1.117  gmcgarry 	int s;
    772      1.117  gmcgarry 
    773      1.117  gmcgarry 	SCHED_LOCK(s);
    774      1.122   thorpej 	l->l_priority = l->l_usrpri;
    775      1.122   thorpej 	l->l_stat = LSRUN;
    776      1.122   thorpej 	setrunqueue(l);
    777      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    778      1.122   thorpej 	mi_switch(l, NULL);
    779      1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    780      1.117  gmcgarry 	splx(s);
    781       1.69   thorpej }
    782       1.69   thorpej 
    783       1.69   thorpej /*
    784       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    785       1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    786       1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    787       1.69   thorpej  * criteria.
    788       1.69   thorpej  */
    789      1.122   thorpej 
    790       1.69   thorpej void
    791      1.122   thorpej preempt(int more)
    792       1.69   thorpej {
    793      1.122   thorpej 	struct lwp *l = curlwp;
    794      1.122   thorpej 	int r, s;
    795      1.129   nathanw 
    796      1.129   nathanw 	/* XXX Until the preempt() bug is fixed. */
    797      1.129   nathanw 	if (more && (l->l_proc->p_flag & P_SA)) {
    798      1.129   nathanw 		l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
    799      1.129   nathanw 		return;
    800      1.129   nathanw 	}
    801       1.69   thorpej 
    802       1.83   thorpej 	SCHED_LOCK(s);
    803      1.122   thorpej 	l->l_priority = l->l_usrpri;
    804      1.122   thorpej 	l->l_stat = LSRUN;
    805      1.122   thorpej 	setrunqueue(l);
    806      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    807      1.122   thorpej 	r = mi_switch(l, NULL);
    808       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    809       1.69   thorpej 	splx(s);
    810      1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    811      1.122   thorpej 		sa_preempt(l);
    812       1.69   thorpej }
    813       1.69   thorpej 
    814       1.69   thorpej /*
    815       1.72   thorpej  * The machine independent parts of context switch.
    816       1.86   thorpej  * Must be called at splsched() (no higher!) and with
    817       1.86   thorpej  * the sched_lock held.
    818      1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    819      1.122   thorpej  * the next lwp.
    820      1.130   nathanw  *
    821      1.122   thorpej  * Returns 1 if another process was actually run.
    822       1.26       cgd  */
    823      1.122   thorpej int
    824      1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    825       1.26       cgd {
    826       1.76   thorpej 	struct schedstate_percpu *spc;
    827       1.71  augustss 	struct rlimit *rlim;
    828       1.71  augustss 	long s, u;
    829       1.26       cgd 	struct timeval tv;
    830       1.85  sommerfe #if defined(MULTIPROCESSOR)
    831       1.85  sommerfe 	int hold_count;
    832       1.85  sommerfe #endif
    833      1.122   thorpej 	struct proc *p = l->l_proc;
    834      1.122   thorpej 	int retval;
    835       1.26       cgd 
    836       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    837       1.83   thorpej 
    838       1.85  sommerfe #if defined(MULTIPROCESSOR)
    839       1.90  sommerfe 	/*
    840       1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    841       1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    842       1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    843       1.90  sommerfe 	 */
    844      1.122   thorpej 	if (l->l_flag & L_BIGLOCK)
    845       1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    846       1.85  sommerfe #endif
    847       1.85  sommerfe 
    848      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    849      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    850      1.113  gmcgarry 
    851      1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    852       1.76   thorpej 
    853       1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    854       1.82   thorpej 	spinlock_switchcheck();
    855       1.82   thorpej #endif
    856       1.54       chs #ifdef LOCKDEBUG
    857       1.81   thorpej 	simple_lock_switchcheck();
    858       1.50      fvdl #endif
    859       1.81   thorpej 
    860       1.26       cgd 	/*
    861       1.26       cgd 	 * Compute the amount of time during which the current
    862      1.113  gmcgarry 	 * process was running.
    863       1.26       cgd 	 */
    864       1.26       cgd 	microtime(&tv);
    865      1.130   nathanw 	u = p->p_rtime.tv_usec +
    866      1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    867       1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    868       1.26       cgd 	if (u < 0) {
    869       1.26       cgd 		u += 1000000;
    870       1.26       cgd 		s--;
    871       1.26       cgd 	} else if (u >= 1000000) {
    872       1.26       cgd 		u -= 1000000;
    873       1.26       cgd 		s++;
    874       1.26       cgd 	}
    875      1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    876      1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    877       1.26       cgd 
    878       1.26       cgd 	/*
    879       1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    880       1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    881       1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    882       1.26       cgd 	 */
    883       1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    884       1.26       cgd 	if (s >= rlim->rlim_cur) {
    885      1.100  sommerfe 		/*
    886      1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    887      1.100  sommerfe 		 * use sched_psignal.
    888      1.100  sommerfe 		 */
    889       1.26       cgd 		if (s >= rlim->rlim_max)
    890      1.100  sommerfe 			sched_psignal(p, SIGKILL);
    891       1.26       cgd 		else {
    892      1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    893       1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    894       1.26       cgd 				rlim->rlim_cur += 5;
    895       1.26       cgd 		}
    896       1.26       cgd 	}
    897       1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    898       1.77   thorpej 	    p->p_nice == NZERO) {
    899       1.39        ws 		p->p_nice = autoniceval + NZERO;
    900      1.122   thorpej 		resetpriority(l);
    901       1.26       cgd 	}
    902       1.69   thorpej 
    903       1.69   thorpej 	/*
    904       1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    905       1.69   thorpej 	 * scheduling flags.
    906       1.69   thorpej 	 */
    907       1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    908      1.109      yamt 
    909      1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    910      1.124      yamt 	kstack_check_magic(l);
    911      1.109      yamt #endif
    912       1.26       cgd 
    913      1.113  gmcgarry 	/*
    914      1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    915      1.113  gmcgarry 	 */
    916      1.114  gmcgarry #if PERFCTRS
    917      1.114  gmcgarry 	if (PMC_ENABLED(p))
    918      1.114  gmcgarry 		pmc_save_context(p);
    919      1.110    briggs #endif
    920      1.113  gmcgarry 
    921      1.113  gmcgarry 	/*
    922      1.114  gmcgarry 	 * Switch to the new current process.  When we
    923      1.114  gmcgarry 	 * run again, we'll return back here.
    924      1.113  gmcgarry 	 */
    925      1.114  gmcgarry 	uvmexp.swtch++;
    926      1.122   thorpej 	if (newl == NULL) {
    927      1.122   thorpej 		retval = cpu_switch(l, NULL);
    928      1.122   thorpej 	} else {
    929      1.122   thorpej 		remrunqueue(newl);
    930      1.122   thorpej 		cpu_switchto(l, newl);
    931      1.122   thorpej 		retval = 0;
    932      1.122   thorpej 	}
    933      1.110    briggs 
    934      1.110    briggs 	/*
    935      1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
    936       1.26       cgd 	 */
    937      1.114  gmcgarry #if PERFCTRS
    938      1.114  gmcgarry 	if (PMC_ENABLED(p))
    939      1.114  gmcgarry 		pmc_restore_context(p);
    940      1.114  gmcgarry #endif
    941      1.110    briggs 
    942      1.110    briggs 	/*
    943      1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
    944      1.114  gmcgarry 	 * resuming us.
    945      1.110    briggs 	 */
    946      1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    947       1.83   thorpej 
    948       1.83   thorpej 	/*
    949       1.76   thorpej 	 * We're running again; record our new start time.  We might
    950       1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    951       1.76   thorpej 	 * schedstate_percpu pointer.
    952       1.76   thorpej 	 */
    953      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    954      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    955      1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    956       1.85  sommerfe 
    957       1.85  sommerfe #if defined(MULTIPROCESSOR)
    958       1.90  sommerfe 	/*
    959       1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    960       1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    961       1.90  sommerfe 	 * we reacquire the interlock.
    962       1.90  sommerfe 	 */
    963      1.122   thorpej 	if (l->l_flag & L_BIGLOCK)
    964       1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    965       1.85  sommerfe #endif
    966      1.122   thorpej 
    967      1.122   thorpej 	return retval;
    968       1.26       cgd }
    969       1.26       cgd 
    970       1.26       cgd /*
    971       1.26       cgd  * Initialize the (doubly-linked) run queues
    972       1.26       cgd  * to be empty.
    973       1.26       cgd  */
    974       1.26       cgd void
    975       1.26       cgd rqinit()
    976       1.26       cgd {
    977       1.71  augustss 	int i;
    978       1.26       cgd 
    979       1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    980       1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    981      1.122   thorpej 		    (struct lwp *)&sched_qs[i];
    982       1.26       cgd }
    983       1.26       cgd 
    984      1.119   thorpej static __inline void
    985      1.122   thorpej resched_proc(struct lwp *l, u_char pri)
    986      1.119   thorpej {
    987      1.119   thorpej 	struct cpu_info *ci;
    988      1.119   thorpej 
    989      1.119   thorpej 	/*
    990      1.119   thorpej 	 * XXXSMP
    991      1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
    992      1.119   thorpej 	 * this gives us *very weak* processor affinity, in
    993      1.119   thorpej 	 * that we notify the CPU on which the process last
    994      1.119   thorpej 	 * ran that it should try to switch.
    995      1.119   thorpej 	 *
    996      1.119   thorpej 	 * This does not guarantee that the process will run on
    997      1.119   thorpej 	 * that processor next, because another processor might
    998      1.119   thorpej 	 * grab it the next time it performs a context switch.
    999      1.119   thorpej 	 *
   1000      1.119   thorpej 	 * This also does not handle the case where its last
   1001      1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1002      1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1003      1.119   thorpej 	 * are ways to handle this situation, but they're not
   1004      1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1005      1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1006      1.119   thorpej 	 *
   1007      1.119   thorpej 	 * XXXSMP
   1008      1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1009      1.119   thorpej 	 * sched state, which we currently do not do.
   1010      1.119   thorpej 	 */
   1011      1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1012      1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1013      1.119   thorpej 		need_resched(ci);
   1014      1.119   thorpej }
   1015      1.119   thorpej 
   1016       1.26       cgd /*
   1017       1.26       cgd  * Change process state to be runnable,
   1018       1.26       cgd  * placing it on the run queue if it is in memory,
   1019       1.26       cgd  * and awakening the swapper if it isn't in memory.
   1020       1.26       cgd  */
   1021       1.26       cgd void
   1022      1.122   thorpej setrunnable(struct lwp *l)
   1023       1.26       cgd {
   1024      1.122   thorpej 	struct proc *p = l->l_proc;
   1025       1.26       cgd 
   1026       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1027       1.83   thorpej 
   1028      1.122   thorpej 	switch (l->l_stat) {
   1029       1.26       cgd 	case 0:
   1030      1.122   thorpej 	case LSRUN:
   1031      1.122   thorpej 	case LSONPROC:
   1032      1.122   thorpej 	case LSZOMB:
   1033      1.122   thorpej 	case LSDEAD:
   1034       1.26       cgd 	default:
   1035      1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1036      1.122   thorpej 	case LSSTOP:
   1037       1.33   mycroft 		/*
   1038       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1039       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1040       1.33   mycroft 		 */
   1041       1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1042       1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1043      1.101   thorpej 			CHECKSIGS(p);
   1044       1.53   mycroft 		}
   1045      1.122   thorpej 	case LSSLEEP:
   1046      1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1047       1.26       cgd 		break;
   1048       1.26       cgd 
   1049      1.122   thorpej 	case LSIDL:
   1050      1.122   thorpej 		break;
   1051      1.122   thorpej 	case LSSUSPENDED:
   1052       1.26       cgd 		break;
   1053       1.26       cgd 	}
   1054      1.122   thorpej 	l->l_stat = LSRUN;
   1055      1.122   thorpej 	p->p_nrlwps++;
   1056      1.122   thorpej 
   1057      1.122   thorpej 	if (l->l_flag & L_INMEM)
   1058      1.122   thorpej 		setrunqueue(l);
   1059      1.122   thorpej 
   1060      1.122   thorpej 	if (l->l_slptime > 1)
   1061      1.122   thorpej 		updatepri(l);
   1062      1.122   thorpej 	l->l_slptime = 0;
   1063      1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1064       1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1065      1.119   thorpej 	else
   1066      1.122   thorpej 		resched_proc(l, l->l_priority);
   1067       1.26       cgd }
   1068       1.26       cgd 
   1069       1.26       cgd /*
   1070       1.26       cgd  * Compute the priority of a process when running in user mode.
   1071       1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1072       1.26       cgd  * than that of the current process.
   1073       1.26       cgd  */
   1074       1.26       cgd void
   1075      1.122   thorpej resetpriority(struct lwp *l)
   1076       1.26       cgd {
   1077       1.71  augustss 	unsigned int newpriority;
   1078      1.122   thorpej 	struct proc *p = l->l_proc;
   1079       1.26       cgd 
   1080       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1081       1.83   thorpej 
   1082      1.130   nathanw 	newpriority = PUSER + p->p_estcpu +
   1083      1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1084       1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1085      1.122   thorpej 	l->l_usrpri = newpriority;
   1086      1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1087      1.122   thorpej }
   1088      1.122   thorpej 
   1089      1.130   nathanw /*
   1090      1.122   thorpej  * Recompute priority for all LWPs in a process.
   1091      1.122   thorpej  */
   1092      1.122   thorpej void
   1093      1.122   thorpej resetprocpriority(struct proc *p)
   1094      1.122   thorpej {
   1095      1.122   thorpej 	struct lwp *l;
   1096      1.122   thorpej 
   1097      1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1098      1.122   thorpej 	    resetpriority(l);
   1099       1.55      ross }
   1100       1.55      ross 
   1101       1.55      ross /*
   1102       1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1103       1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1104       1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1105       1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1106       1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1107       1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1108       1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1109       1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1110       1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1111       1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1112       1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1113       1.56      ross  * processes.
   1114       1.55      ross  */
   1115       1.55      ross 
   1116       1.55      ross void
   1117      1.122   thorpej schedclock(struct lwp *l)
   1118       1.55      ross {
   1119      1.122   thorpej 	struct proc *p = l->l_proc;
   1120       1.83   thorpej 	int s;
   1121       1.77   thorpej 
   1122       1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1123       1.83   thorpej 	SCHED_LOCK(s);
   1124      1.122   thorpej 	resetpriority(l);
   1125       1.83   thorpej 	SCHED_UNLOCK(s);
   1126      1.130   nathanw 
   1127      1.122   thorpej 	if (l->l_priority >= PUSER)
   1128      1.122   thorpej 		l->l_priority = l->l_usrpri;
   1129       1.26       cgd }
   1130       1.94    bouyer 
   1131       1.94    bouyer void
   1132       1.94    bouyer suspendsched()
   1133       1.94    bouyer {
   1134      1.122   thorpej 	struct lwp *l;
   1135       1.97     enami 	int s;
   1136       1.94    bouyer 
   1137       1.94    bouyer 	/*
   1138      1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1139      1.122   thorpej 	 * LSSUSPENDED.
   1140       1.94    bouyer 	 */
   1141       1.95   thorpej 	proclist_lock_read();
   1142       1.95   thorpej 	SCHED_LOCK(s);
   1143      1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1144      1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1145       1.94    bouyer 			continue;
   1146      1.122   thorpej 
   1147      1.122   thorpej 		switch (l->l_stat) {
   1148      1.122   thorpej 		case LSRUN:
   1149      1.122   thorpej 			l->l_proc->p_nrlwps--;
   1150      1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1151      1.122   thorpej 				remrunqueue(l);
   1152       1.97     enami 			/* FALLTHROUGH */
   1153      1.122   thorpej 		case LSSLEEP:
   1154      1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1155       1.97     enami 			break;
   1156      1.122   thorpej 		case LSONPROC:
   1157       1.97     enami 			/*
   1158       1.97     enami 			 * XXX SMP: we need to deal with processes on
   1159       1.97     enami 			 * others CPU !
   1160       1.97     enami 			 */
   1161       1.97     enami 			break;
   1162       1.97     enami 		default:
   1163       1.97     enami 			break;
   1164       1.94    bouyer 		}
   1165       1.94    bouyer 	}
   1166       1.94    bouyer 	SCHED_UNLOCK(s);
   1167       1.97     enami 	proclist_unlock_read();
   1168       1.94    bouyer }
   1169      1.113  gmcgarry 
   1170      1.113  gmcgarry /*
   1171      1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1172      1.113  gmcgarry  * routines can override these.
   1173      1.113  gmcgarry  */
   1174      1.113  gmcgarry 
   1175      1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1176      1.115  nisimura 
   1177      1.130   nathanw /*
   1178      1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1179      1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1180      1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1181      1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1182      1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1183      1.115  nisimura  * available queues.
   1184      1.130   nathanw  */
   1185      1.113  gmcgarry 
   1186      1.113  gmcgarry void
   1187      1.122   thorpej setrunqueue(struct lwp *l)
   1188      1.113  gmcgarry {
   1189      1.113  gmcgarry 	struct prochd *rq;
   1190      1.122   thorpej 	struct lwp *prev;
   1191      1.113  gmcgarry 	int whichq;
   1192      1.113  gmcgarry 
   1193      1.113  gmcgarry #ifdef DIAGNOSTIC
   1194      1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1195      1.113  gmcgarry 		panic("setrunqueue");
   1196      1.113  gmcgarry #endif
   1197      1.122   thorpej 	whichq = l->l_priority / 4;
   1198      1.128    simonb 	sched_whichqs |= (1 << whichq);
   1199      1.113  gmcgarry 	rq = &sched_qs[whichq];
   1200      1.113  gmcgarry 	prev = rq->ph_rlink;
   1201      1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1202      1.122   thorpej 	rq->ph_rlink = l;
   1203      1.122   thorpej 	prev->l_forw = l;
   1204      1.122   thorpej 	l->l_back = prev;
   1205      1.113  gmcgarry }
   1206      1.113  gmcgarry 
   1207      1.113  gmcgarry void
   1208      1.122   thorpej remrunqueue(struct lwp *l)
   1209      1.113  gmcgarry {
   1210      1.122   thorpej 	struct lwp *prev, *next;
   1211      1.113  gmcgarry 	int whichq;
   1212      1.113  gmcgarry 
   1213      1.122   thorpej 	whichq = l->l_priority / 4;
   1214      1.113  gmcgarry #ifdef DIAGNOSTIC
   1215      1.128    simonb 	if (((sched_whichqs & (1 << whichq)) == 0))
   1216      1.113  gmcgarry 		panic("remrunqueue");
   1217      1.113  gmcgarry #endif
   1218      1.122   thorpej 	prev = l->l_back;
   1219      1.122   thorpej 	l->l_back = NULL;
   1220      1.122   thorpej 	next = l->l_forw;
   1221      1.122   thorpej 	prev->l_forw = next;
   1222      1.122   thorpej 	next->l_back = prev;
   1223      1.113  gmcgarry 	if (prev == next)
   1224      1.128    simonb 		sched_whichqs &= ~(1 << whichq);
   1225      1.113  gmcgarry }
   1226      1.113  gmcgarry 
   1227      1.113  gmcgarry #endif
   1228