Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.133
      1  1.133      fvdl /*	$NetBSD: kern_synch.c,v 1.133 2003/07/17 18:16:59 fvdl Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4   1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.63   thorpej  * NASA Ames Research Center.
     10   1.63   thorpej  *
     11   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12   1.63   thorpej  * modification, are permitted provided that the following conditions
     13   1.63   thorpej  * are met:
     14   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20   1.63   thorpej  *    must display the following acknowledgement:
     21   1.63   thorpej  *	This product includes software developed by the NetBSD
     22   1.63   thorpej  *	Foundation, Inc. and its contributors.
     23   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25   1.63   thorpej  *    from this software without specific prior written permission.
     26   1.63   thorpej  *
     27   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38   1.63   thorpej  */
     39   1.26       cgd 
     40   1.26       cgd /*-
     41   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44   1.26       cgd  * All or some portions of this file are derived from material licensed
     45   1.26       cgd  * to the University of California by American Telephone and Telegraph
     46   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48   1.26       cgd  *
     49   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50   1.26       cgd  * modification, are permitted provided that the following conditions
     51   1.26       cgd  * are met:
     52   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57   1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58   1.26       cgd  *    must display the following acknowledgement:
     59   1.26       cgd  *	This product includes software developed by the University of
     60   1.26       cgd  *	California, Berkeley and its contributors.
     61   1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62   1.26       cgd  *    may be used to endorse or promote products derived from this software
     63   1.26       cgd  *    without specific prior written permission.
     64   1.26       cgd  *
     65   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75   1.26       cgd  * SUCH DAMAGE.
     76   1.26       cgd  *
     77   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78   1.26       cgd  */
     79  1.106     lukem 
     80  1.106     lukem #include <sys/cdefs.h>
     81  1.133      fvdl __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.133 2003/07/17 18:16:59 fvdl Exp $");
     82   1.48       mrg 
     83   1.52  jonathan #include "opt_ddb.h"
     84   1.51   thorpej #include "opt_ktrace.h"
     85  1.109      yamt #include "opt_kstack.h"
     86   1.82   thorpej #include "opt_lockdebug.h"
     87   1.83   thorpej #include "opt_multiprocessor.h"
     88  1.110    briggs #include "opt_perfctrs.h"
     89   1.26       cgd 
     90   1.26       cgd #include <sys/param.h>
     91   1.26       cgd #include <sys/systm.h>
     92   1.68   thorpej #include <sys/callout.h>
     93   1.26       cgd #include <sys/proc.h>
     94   1.26       cgd #include <sys/kernel.h>
     95   1.26       cgd #include <sys/buf.h>
     96  1.111    briggs #if defined(PERFCTRS)
     97  1.110    briggs #include <sys/pmc.h>
     98  1.111    briggs #endif
     99   1.26       cgd #include <sys/signalvar.h>
    100   1.26       cgd #include <sys/resourcevar.h>
    101   1.55      ross #include <sys/sched.h>
    102  1.122   thorpej #include <sys/sa.h>
    103  1.122   thorpej #include <sys/savar.h>
    104   1.47       mrg 
    105   1.47       mrg #include <uvm/uvm_extern.h>
    106   1.47       mrg 
    107   1.26       cgd #ifdef KTRACE
    108   1.26       cgd #include <sys/ktrace.h>
    109   1.26       cgd #endif
    110   1.26       cgd 
    111   1.26       cgd #include <machine/cpu.h>
    112   1.34  christos 
    113   1.26       cgd int	lbolt;			/* once a second sleep address */
    114   1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    115   1.26       cgd 
    116   1.73   thorpej /*
    117   1.73   thorpej  * The global scheduler state.
    118   1.73   thorpej  */
    119   1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    120   1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    121   1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    122   1.73   thorpej 
    123   1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    124   1.83   thorpej 
    125   1.77   thorpej void schedcpu(void *);
    126  1.122   thorpej void updatepri(struct lwp *);
    127   1.77   thorpej void endtsleep(void *);
    128   1.34  christos 
    129  1.122   thorpej __inline void awaken(struct lwp *);
    130   1.63   thorpej 
    131   1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    132   1.68   thorpej 
    133  1.122   thorpej 
    134  1.122   thorpej 
    135   1.26       cgd /*
    136   1.26       cgd  * Force switch among equal priority processes every 100ms.
    137   1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    138   1.26       cgd  */
    139   1.26       cgd /* ARGSUSED */
    140   1.26       cgd void
    141   1.89  sommerfe roundrobin(struct cpu_info *ci)
    142   1.26       cgd {
    143   1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    144   1.26       cgd 
    145   1.88  sommerfe 	spc->spc_rrticks = rrticks;
    146  1.130   nathanw 
    147  1.122   thorpej 	if (curlwp != NULL) {
    148   1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    149   1.69   thorpej 			/*
    150   1.69   thorpej 			 * The process has already been through a roundrobin
    151   1.69   thorpej 			 * without switching and may be hogging the CPU.
    152   1.69   thorpej 			 * Indicate that the process should yield.
    153   1.69   thorpej 			 */
    154   1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    155   1.69   thorpej 		} else
    156   1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    157   1.69   thorpej 	}
    158   1.87   thorpej 	need_resched(curcpu());
    159   1.26       cgd }
    160   1.26       cgd 
    161   1.26       cgd /*
    162   1.26       cgd  * Constants for digital decay and forget:
    163   1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    164   1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    165   1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    166   1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    167   1.26       cgd  *
    168   1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    169   1.26       cgd  *
    170   1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    171   1.26       cgd  * That is, the system wants to compute a value of decay such
    172   1.26       cgd  * that the following for loop:
    173   1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    174   1.26       cgd  * 		p_estcpu *= decay;
    175   1.26       cgd  * will compute
    176   1.26       cgd  * 	p_estcpu *= 0.1;
    177   1.26       cgd  * for all values of loadavg:
    178   1.26       cgd  *
    179   1.26       cgd  * Mathematically this loop can be expressed by saying:
    180   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    181   1.26       cgd  *
    182   1.26       cgd  * The system computes decay as:
    183   1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    184   1.26       cgd  *
    185   1.26       cgd  * We wish to prove that the system's computation of decay
    186   1.26       cgd  * will always fulfill the equation:
    187   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    188   1.26       cgd  *
    189   1.26       cgd  * If we compute b as:
    190   1.26       cgd  * 	b = 2 * loadavg
    191   1.26       cgd  * then
    192   1.26       cgd  * 	decay = b / (b + 1)
    193   1.26       cgd  *
    194   1.26       cgd  * We now need to prove two things:
    195   1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    196   1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    197  1.130   nathanw  *
    198   1.26       cgd  * Facts:
    199   1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    200   1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    201   1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    202   1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    203   1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    204   1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    205   1.26       cgd  *         ln(.1) =~ -2.30
    206   1.26       cgd  *
    207   1.26       cgd  * Proof of (1):
    208   1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    209   1.26       cgd  *	solving for factor,
    210   1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    211   1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    212   1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    213   1.26       cgd  *
    214   1.26       cgd  * Proof of (2):
    215   1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    216   1.26       cgd  *	solving for power,
    217   1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    218   1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    219   1.26       cgd  *
    220   1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    221   1.26       cgd  *      loadav: 1       2       3       4
    222   1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    223   1.26       cgd  */
    224   1.26       cgd 
    225   1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    226   1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    227   1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    228   1.26       cgd 
    229   1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    230   1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    231   1.26       cgd 
    232   1.26       cgd /*
    233   1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    234   1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    235   1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    236   1.26       cgd  *
    237   1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    238   1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    239   1.26       cgd  *
    240   1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    241   1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    242   1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    243   1.26       cgd  */
    244   1.26       cgd #define	CCPU_SHIFT	11
    245   1.26       cgd 
    246   1.26       cgd /*
    247   1.26       cgd  * Recompute process priorities, every hz ticks.
    248   1.26       cgd  */
    249   1.26       cgd /* ARGSUSED */
    250   1.26       cgd void
    251   1.77   thorpej schedcpu(void *arg)
    252   1.26       cgd {
    253   1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    254  1.122   thorpej 	struct lwp *l;
    255   1.71  augustss 	struct proc *p;
    256  1.122   thorpej 	int s, minslp;
    257   1.71  augustss 	unsigned int newcpu;
    258   1.66      ross 	int clkhz;
    259   1.26       cgd 
    260   1.62   thorpej 	proclist_lock_read();
    261  1.112      matt 	LIST_FOREACH(p, &allproc, p_list) {
    262   1.26       cgd 		/*
    263   1.26       cgd 		 * Increment time in/out of memory and sleep time
    264   1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    265   1.26       cgd 		 * (remember them?) overflow takes 45 days.
    266   1.26       cgd 		 */
    267  1.122   thorpej 		minslp = 2;
    268  1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    269  1.122   thorpej 			l->l_swtime++;
    270  1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    271  1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    272  1.122   thorpej 				l->l_slptime++;
    273  1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    274  1.122   thorpej 			} else
    275  1.122   thorpej 				minslp = 0;
    276  1.122   thorpej 		}
    277   1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    278   1.26       cgd 		/*
    279   1.26       cgd 		 * If the process has slept the entire second,
    280   1.26       cgd 		 * stop recalculating its priority until it wakes up.
    281   1.26       cgd 		 */
    282  1.122   thorpej 		if (minslp > 1)
    283   1.26       cgd 			continue;
    284   1.26       cgd 		s = splstatclock();	/* prevent state changes */
    285   1.26       cgd 		/*
    286   1.26       cgd 		 * p_pctcpu is only for ps.
    287   1.26       cgd 		 */
    288   1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    289   1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    290   1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    291   1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    292   1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    293   1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    294   1.26       cgd #else
    295   1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    296   1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    297   1.26       cgd #endif
    298   1.26       cgd 		p->p_cpticks = 0;
    299   1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    300   1.55      ross 		p->p_estcpu = newcpu;
    301  1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    302  1.120        pk 		SCHED_LOCK(s);
    303  1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    304  1.122   thorpej 			if (l->l_slptime > 1)
    305  1.122   thorpej 				continue;
    306  1.122   thorpej 			resetpriority(l);
    307  1.122   thorpej 			if (l->l_priority >= PUSER) {
    308  1.122   thorpej 				if (l->l_stat == LSRUN &&
    309  1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    310  1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    311  1.122   thorpej 					remrunqueue(l);
    312  1.122   thorpej 					l->l_priority = l->l_usrpri;
    313  1.122   thorpej 					setrunqueue(l);
    314  1.122   thorpej 				} else
    315  1.122   thorpej 					l->l_priority = l->l_usrpri;
    316  1.122   thorpej 			}
    317   1.26       cgd 		}
    318  1.120        pk 		SCHED_UNLOCK(s);
    319   1.26       cgd 	}
    320   1.61   thorpej 	proclist_unlock_read();
    321   1.47       mrg 	uvm_meter();
    322   1.67      fvdl 	wakeup((caddr_t)&lbolt);
    323   1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    324   1.26       cgd }
    325   1.26       cgd 
    326   1.26       cgd /*
    327   1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    328   1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    329   1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    330   1.26       cgd  */
    331   1.26       cgd void
    332  1.122   thorpej updatepri(struct lwp *l)
    333   1.26       cgd {
    334  1.122   thorpej 	struct proc *p = l->l_proc;
    335   1.83   thorpej 	unsigned int newcpu;
    336   1.83   thorpej 	fixpt_t loadfac;
    337   1.83   thorpej 
    338   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    339   1.83   thorpej 
    340   1.83   thorpej 	newcpu = p->p_estcpu;
    341   1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    342   1.26       cgd 
    343  1.122   thorpej 	if (l->l_slptime > 5 * loadfac)
    344  1.122   thorpej 		p->p_estcpu = 0; /* XXX NJWLWP */
    345   1.26       cgd 	else {
    346  1.122   thorpej 		l->l_slptime--;	/* the first time was done in schedcpu */
    347  1.122   thorpej 		while (newcpu && --l->l_slptime)
    348   1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    349   1.55      ross 		p->p_estcpu = newcpu;
    350   1.26       cgd 	}
    351  1.122   thorpej 	resetpriority(l);
    352   1.26       cgd }
    353   1.26       cgd 
    354   1.26       cgd /*
    355   1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    356   1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    357   1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    358   1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    359   1.26       cgd  * This priority will typically be 0, or the lowest priority
    360   1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    361   1.26       cgd  * higher to block network software interrupts after panics.
    362   1.26       cgd  */
    363   1.26       cgd int safepri;
    364   1.26       cgd 
    365   1.26       cgd /*
    366   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    367   1.26       cgd  * performed on the specified identifier.  The process will then be made
    368   1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    369   1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    370   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    371   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    372   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    373   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    374   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    375   1.77   thorpej  *
    376  1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    377   1.77   thorpej  * interlock will be locked before returning back to the caller
    378   1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    379   1.77   thorpej  * interlock will always be unlocked upon return.
    380   1.26       cgd  */
    381   1.26       cgd int
    382  1.125      yamt ltsleep(const void *ident, int priority, const char *wmesg, int timo,
    383   1.77   thorpej     __volatile struct simplelock *interlock)
    384   1.26       cgd {
    385  1.122   thorpej 	struct lwp *l = curlwp;
    386  1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    387   1.71  augustss 	struct slpque *qp;
    388   1.77   thorpej 	int sig, s;
    389   1.77   thorpej 	int catch = priority & PCATCH;
    390   1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    391  1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    392   1.26       cgd 
    393   1.77   thorpej 	/*
    394   1.77   thorpej 	 * XXXSMP
    395   1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    396   1.77   thorpej 	 * thing to do here really is.
    397  1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    398   1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    399   1.78  sommerfe 	 * how shutdown (barely) works.
    400   1.77   thorpej 	 */
    401  1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    402   1.26       cgd 		/*
    403   1.26       cgd 		 * After a panic, or during autoconfiguration,
    404   1.26       cgd 		 * just give interrupts a chance, then just return;
    405   1.26       cgd 		 * don't run any other procs or panic below,
    406   1.26       cgd 		 * in case this is the idle process and already asleep.
    407   1.26       cgd 		 */
    408   1.42       cgd 		s = splhigh();
    409   1.26       cgd 		splx(safepri);
    410   1.26       cgd 		splx(s);
    411   1.77   thorpej 		if (interlock != NULL && relock == 0)
    412   1.77   thorpej 			simple_unlock(interlock);
    413   1.26       cgd 		return (0);
    414   1.26       cgd 	}
    415   1.78  sommerfe 
    416  1.102   thorpej 	KASSERT(p != NULL);
    417  1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    418   1.42       cgd 
    419   1.42       cgd #ifdef KTRACE
    420   1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    421  1.132      fvdl 		ktrcsw(p, 1, 0);
    422   1.42       cgd #endif
    423   1.77   thorpej 
    424   1.83   thorpej 	SCHED_LOCK(s);
    425   1.42       cgd 
    426   1.26       cgd #ifdef DIAGNOSTIC
    427   1.64   thorpej 	if (ident == NULL)
    428   1.77   thorpej 		panic("ltsleep: ident == NULL");
    429  1.122   thorpej 	if (l->l_stat != LSONPROC)
    430  1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    431  1.122   thorpej 	if (l->l_back != NULL)
    432   1.77   thorpej 		panic("ltsleep: p_back != NULL");
    433   1.26       cgd #endif
    434   1.77   thorpej 
    435  1.122   thorpej 	l->l_wchan = ident;
    436  1.122   thorpej 	l->l_wmesg = wmesg;
    437  1.122   thorpej 	l->l_slptime = 0;
    438  1.122   thorpej 	l->l_priority = priority & PRIMASK;
    439   1.77   thorpej 
    440   1.73   thorpej 	qp = SLPQUE(ident);
    441   1.26       cgd 	if (qp->sq_head == 0)
    442  1.122   thorpej 		qp->sq_head = l;
    443  1.122   thorpej 	else {
    444  1.122   thorpej 		*qp->sq_tailp = l;
    445  1.122   thorpej 	}
    446  1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    447   1.77   thorpej 
    448   1.26       cgd 	if (timo)
    449  1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    450   1.77   thorpej 
    451   1.77   thorpej 	/*
    452   1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    453   1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    454   1.77   thorpej 	 * we do the switch.
    455   1.77   thorpej 	 *
    456   1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    457   1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    458   1.77   thorpej 	 * data structure for the sleep queues at some point.
    459   1.77   thorpej 	 */
    460   1.77   thorpej 	if (interlock != NULL)
    461   1.77   thorpej 		simple_unlock(interlock);
    462   1.77   thorpej 
    463   1.26       cgd 	/*
    464   1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    465   1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    466   1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    467   1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    468   1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    469   1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    470   1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    471   1.26       cgd 	 */
    472   1.26       cgd 	if (catch) {
    473  1.122   thorpej 		l->l_flag |= L_SINTR;
    474  1.133      fvdl 		if (((sig = CURSIG(l)) != 0) || (p->p_flag & P_WEXIT)) {
    475  1.122   thorpej 			if (l->l_wchan != NULL)
    476  1.122   thorpej 				unsleep(l);
    477  1.122   thorpej 			l->l_stat = LSONPROC;
    478   1.83   thorpej 			SCHED_UNLOCK(s);
    479   1.26       cgd 			goto resume;
    480   1.26       cgd 		}
    481  1.122   thorpej 		if (l->l_wchan == NULL) {
    482   1.26       cgd 			catch = 0;
    483   1.83   thorpej 			SCHED_UNLOCK(s);
    484   1.26       cgd 			goto resume;
    485   1.26       cgd 		}
    486   1.26       cgd 	} else
    487   1.26       cgd 		sig = 0;
    488  1.122   thorpej 	l->l_stat = LSSLEEP;
    489  1.122   thorpej 	p->p_nrlwps--;
    490   1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    491   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    492  1.122   thorpej 	if (l->l_flag & L_SA)
    493  1.122   thorpej 		sa_switch(l, SA_UPCALL_BLOCKED);
    494  1.122   thorpej 	else
    495  1.122   thorpej 		mi_switch(l, NULL);
    496   1.83   thorpej 
    497  1.104       chs #if	defined(DDB) && !defined(GPROF)
    498   1.26       cgd 	/* handy breakpoint location after process "wakes" */
    499  1.107    kleink 	__asm(".globl bpendtsleep ; bpendtsleep:");
    500   1.26       cgd #endif
    501  1.122   thorpej 	/*
    502  1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    503  1.122   thorpej 	 * either setrunnable() or awaken().
    504  1.122   thorpej 	 */
    505   1.77   thorpej 
    506   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    507   1.83   thorpej 	splx(s);
    508   1.83   thorpej 
    509   1.77   thorpej  resume:
    510  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    511  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    512  1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    513  1.122   thorpej 
    514  1.122   thorpej 	l->l_flag &= ~L_SINTR;
    515  1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    516  1.122   thorpej 		l->l_flag &= ~L_TIMEOUT;
    517   1.26       cgd 		if (sig == 0) {
    518   1.26       cgd #ifdef KTRACE
    519   1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    520  1.132      fvdl 				ktrcsw(p, 0, 0);
    521   1.26       cgd #endif
    522   1.77   thorpej 			if (relock && interlock != NULL)
    523   1.77   thorpej 				simple_lock(interlock);
    524   1.26       cgd 			return (EWOULDBLOCK);
    525   1.26       cgd 		}
    526   1.26       cgd 	} else if (timo)
    527  1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    528  1.122   thorpej 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    529   1.26       cgd #ifdef KTRACE
    530   1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    531  1.132      fvdl 			ktrcsw(p, 0, 0);
    532   1.26       cgd #endif
    533   1.77   thorpej 		if (relock && interlock != NULL)
    534   1.77   thorpej 			simple_lock(interlock);
    535   1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    536   1.26       cgd 			return (EINTR);
    537   1.26       cgd 		return (ERESTART);
    538   1.26       cgd 	}
    539  1.126        pk 
    540  1.126        pk #ifdef KTRACE
    541  1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    542  1.132      fvdl 		ktrcsw(p, 0, 0);
    543  1.126        pk #endif
    544  1.126        pk 	if (relock && interlock != NULL)
    545  1.126        pk 		simple_lock(interlock);
    546  1.126        pk 
    547  1.122   thorpej 	/* XXXNJW this is very much a kluge.
    548  1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    549  1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    550  1.122   thorpej 	 * would be preferred.
    551  1.122   thorpej 	 */
    552  1.122   thorpej 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    553  1.122   thorpej 		return (EINTR);
    554   1.26       cgd 	return (0);
    555   1.26       cgd }
    556   1.26       cgd 
    557   1.26       cgd /*
    558   1.26       cgd  * Implement timeout for tsleep.
    559   1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    560   1.26       cgd  * set timeout flag and undo the sleep.  If proc
    561   1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    562   1.26       cgd  */
    563   1.26       cgd void
    564   1.77   thorpej endtsleep(void *arg)
    565   1.26       cgd {
    566  1.122   thorpej 	struct lwp *l;
    567   1.26       cgd 	int s;
    568   1.26       cgd 
    569  1.122   thorpej 	l = (struct lwp *)arg;
    570   1.83   thorpej 	SCHED_LOCK(s);
    571  1.122   thorpej 	if (l->l_wchan) {
    572  1.122   thorpej 		if (l->l_stat == LSSLEEP)
    573  1.122   thorpej 			setrunnable(l);
    574   1.26       cgd 		else
    575  1.122   thorpej 			unsleep(l);
    576  1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    577   1.26       cgd 	}
    578   1.83   thorpej 	SCHED_UNLOCK(s);
    579   1.26       cgd }
    580   1.26       cgd 
    581   1.26       cgd /*
    582   1.26       cgd  * Remove a process from its wait queue
    583   1.26       cgd  */
    584   1.26       cgd void
    585  1.122   thorpej unsleep(struct lwp *l)
    586   1.26       cgd {
    587   1.71  augustss 	struct slpque *qp;
    588  1.122   thorpej 	struct lwp **hp;
    589   1.26       cgd 
    590   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    591   1.83   thorpej 
    592  1.122   thorpej 	if (l->l_wchan) {
    593  1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    594  1.122   thorpej 		while (*hp != l)
    595  1.122   thorpej 			hp = &(*hp)->l_forw;
    596  1.122   thorpej 		*hp = l->l_forw;
    597  1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    598   1.26       cgd 			qp->sq_tailp = hp;
    599  1.122   thorpej 		l->l_wchan = 0;
    600   1.26       cgd 	}
    601   1.26       cgd }
    602   1.26       cgd 
    603   1.26       cgd /*
    604   1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    605   1.63   thorpej  */
    606   1.63   thorpej __inline void
    607  1.122   thorpej awaken(struct lwp *l)
    608   1.63   thorpej {
    609   1.63   thorpej 
    610   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    611  1.130   nathanw 
    612  1.122   thorpej 	if (l->l_slptime > 1)
    613  1.122   thorpej 		updatepri(l);
    614  1.122   thorpej 	l->l_slptime = 0;
    615  1.122   thorpej 	l->l_stat = LSRUN;
    616  1.122   thorpej 	l->l_proc->p_nrlwps++;
    617   1.93    bouyer 	/*
    618   1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    619  1.119   thorpej 	 * is always better than curpriority on the last CPU on
    620  1.119   thorpej 	 * which it ran.
    621  1.118   thorpej 	 *
    622  1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    623   1.93    bouyer 	 */
    624  1.122   thorpej 	if (l->l_flag & L_INMEM) {
    625  1.122   thorpej 		setrunqueue(l);
    626  1.122   thorpej 		if (l->l_flag & L_SA)
    627  1.122   thorpej 			l->l_proc->p_sa->sa_woken = l;
    628  1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    629  1.122   thorpej 		need_resched(l->l_cpu);
    630   1.93    bouyer 	} else
    631   1.93    bouyer 		sched_wakeup(&proc0);
    632   1.83   thorpej }
    633   1.83   thorpej 
    634   1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    635   1.83   thorpej void
    636   1.83   thorpej sched_unlock_idle(void)
    637   1.83   thorpej {
    638   1.83   thorpej 
    639   1.83   thorpej 	simple_unlock(&sched_lock);
    640   1.63   thorpej }
    641   1.63   thorpej 
    642   1.83   thorpej void
    643   1.83   thorpej sched_lock_idle(void)
    644   1.83   thorpej {
    645   1.83   thorpej 
    646   1.83   thorpej 	simple_lock(&sched_lock);
    647   1.83   thorpej }
    648   1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    649   1.83   thorpej 
    650   1.63   thorpej /*
    651   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    652   1.26       cgd  */
    653   1.83   thorpej 
    654   1.26       cgd void
    655  1.125      yamt wakeup(const void *ident)
    656   1.26       cgd {
    657   1.83   thorpej 	int s;
    658   1.83   thorpej 
    659   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    660   1.83   thorpej 
    661   1.83   thorpej 	SCHED_LOCK(s);
    662   1.83   thorpej 	sched_wakeup(ident);
    663   1.83   thorpej 	SCHED_UNLOCK(s);
    664   1.83   thorpej }
    665   1.83   thorpej 
    666   1.83   thorpej void
    667  1.125      yamt sched_wakeup(const void *ident)
    668   1.83   thorpej {
    669   1.71  augustss 	struct slpque *qp;
    670  1.122   thorpej 	struct lwp *l, **q;
    671   1.26       cgd 
    672   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    673   1.77   thorpej 
    674   1.73   thorpej 	qp = SLPQUE(ident);
    675   1.77   thorpej  restart:
    676  1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    677   1.26       cgd #ifdef DIAGNOSTIC
    678  1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    679  1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    680   1.26       cgd 			panic("wakeup");
    681   1.26       cgd #endif
    682  1.122   thorpej 		if (l->l_wchan == ident) {
    683  1.122   thorpej 			l->l_wchan = 0;
    684  1.122   thorpej 			*q = l->l_forw;
    685  1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    686   1.26       cgd 				qp->sq_tailp = q;
    687  1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    688  1.122   thorpej 				awaken(l);
    689   1.26       cgd 				goto restart;
    690   1.26       cgd 			}
    691   1.26       cgd 		} else
    692  1.122   thorpej 			q = &l->l_forw;
    693   1.63   thorpej 	}
    694   1.63   thorpej }
    695   1.63   thorpej 
    696   1.63   thorpej /*
    697   1.63   thorpej  * Make the highest priority process first in line on the specified
    698   1.63   thorpej  * identifier runnable.
    699   1.63   thorpej  */
    700   1.63   thorpej void
    701  1.125      yamt wakeup_one(const void *ident)
    702   1.63   thorpej {
    703   1.63   thorpej 	struct slpque *qp;
    704  1.122   thorpej 	struct lwp *l, **q;
    705  1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    706  1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    707   1.63   thorpej 	int s;
    708   1.63   thorpej 
    709   1.63   thorpej 	best_sleepp = best_stopp = NULL;
    710   1.63   thorpej 	best_sleepq = best_stopq = NULL;
    711   1.63   thorpej 
    712   1.83   thorpej 	SCHED_LOCK(s);
    713   1.77   thorpej 
    714   1.73   thorpej 	qp = SLPQUE(ident);
    715   1.77   thorpej 
    716  1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    717   1.63   thorpej #ifdef DIAGNOSTIC
    718  1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    719  1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    720   1.63   thorpej 			panic("wakeup_one");
    721   1.63   thorpej #endif
    722  1.122   thorpej 		if (l->l_wchan == ident) {
    723  1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    724   1.63   thorpej 				if (best_sleepp == NULL ||
    725  1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    726  1.122   thorpej 					best_sleepp = l;
    727   1.63   thorpej 					best_sleepq = q;
    728   1.63   thorpej 				}
    729   1.63   thorpej 			} else {
    730   1.63   thorpej 				if (best_stopp == NULL ||
    731  1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    732  1.122   thorpej 				    	best_stopp = l;
    733   1.63   thorpej 					best_stopq = q;
    734   1.63   thorpej 				}
    735   1.63   thorpej 			}
    736   1.63   thorpej 		}
    737   1.63   thorpej 	}
    738   1.63   thorpej 
    739   1.63   thorpej 	/*
    740   1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    741   1.63   thorpej 	 * process.
    742   1.63   thorpej 	 */
    743   1.63   thorpej 	if (best_sleepp != NULL) {
    744  1.122   thorpej 		l = best_sleepp;
    745   1.63   thorpej 		q = best_sleepq;
    746   1.63   thorpej 	} else {
    747  1.122   thorpej 		l = best_stopp;
    748   1.63   thorpej 		q = best_stopq;
    749   1.63   thorpej 	}
    750   1.63   thorpej 
    751  1.122   thorpej 	if (l != NULL) {
    752  1.122   thorpej 		l->l_wchan = NULL;
    753  1.122   thorpej 		*q = l->l_forw;
    754  1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    755   1.63   thorpej 			qp->sq_tailp = q;
    756  1.122   thorpej 		if (l->l_stat == LSSLEEP)
    757  1.122   thorpej 			awaken(l);
    758   1.26       cgd 	}
    759   1.83   thorpej 	SCHED_UNLOCK(s);
    760  1.117  gmcgarry }
    761  1.117  gmcgarry 
    762  1.117  gmcgarry /*
    763  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    764  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    765  1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    766  1.117  gmcgarry  */
    767  1.117  gmcgarry void
    768  1.117  gmcgarry yield(void)
    769  1.117  gmcgarry {
    770  1.122   thorpej 	struct lwp *l = curlwp;
    771  1.117  gmcgarry 	int s;
    772  1.117  gmcgarry 
    773  1.117  gmcgarry 	SCHED_LOCK(s);
    774  1.122   thorpej 	l->l_priority = l->l_usrpri;
    775  1.122   thorpej 	l->l_stat = LSRUN;
    776  1.122   thorpej 	setrunqueue(l);
    777  1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    778  1.122   thorpej 	mi_switch(l, NULL);
    779  1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    780  1.117  gmcgarry 	splx(s);
    781   1.69   thorpej }
    782   1.69   thorpej 
    783   1.69   thorpej /*
    784   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    785   1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    786   1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    787   1.69   thorpej  * criteria.
    788   1.69   thorpej  */
    789  1.122   thorpej 
    790   1.69   thorpej void
    791  1.122   thorpej preempt(int more)
    792   1.69   thorpej {
    793  1.122   thorpej 	struct lwp *l = curlwp;
    794  1.122   thorpej 	int r, s;
    795  1.133      fvdl /* XXXUPSXXX Not needed for SMP patch */
    796  1.133      fvdl #if 0
    797  1.129   nathanw 	/* XXX Until the preempt() bug is fixed. */
    798  1.129   nathanw 	if (more && (l->l_proc->p_flag & P_SA)) {
    799  1.129   nathanw 		l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
    800  1.129   nathanw 		return;
    801  1.129   nathanw 	}
    802  1.133      fvdl #endif
    803   1.69   thorpej 
    804   1.83   thorpej 	SCHED_LOCK(s);
    805  1.122   thorpej 	l->l_priority = l->l_usrpri;
    806  1.122   thorpej 	l->l_stat = LSRUN;
    807  1.122   thorpej 	setrunqueue(l);
    808  1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    809  1.122   thorpej 	r = mi_switch(l, NULL);
    810   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    811   1.69   thorpej 	splx(s);
    812  1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    813  1.122   thorpej 		sa_preempt(l);
    814   1.69   thorpej }
    815   1.69   thorpej 
    816   1.69   thorpej /*
    817   1.72   thorpej  * The machine independent parts of context switch.
    818   1.86   thorpej  * Must be called at splsched() (no higher!) and with
    819   1.86   thorpej  * the sched_lock held.
    820  1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    821  1.122   thorpej  * the next lwp.
    822  1.130   nathanw  *
    823  1.122   thorpej  * Returns 1 if another process was actually run.
    824   1.26       cgd  */
    825  1.122   thorpej int
    826  1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    827   1.26       cgd {
    828   1.76   thorpej 	struct schedstate_percpu *spc;
    829   1.71  augustss 	struct rlimit *rlim;
    830   1.71  augustss 	long s, u;
    831   1.26       cgd 	struct timeval tv;
    832   1.85  sommerfe #if defined(MULTIPROCESSOR)
    833   1.85  sommerfe 	int hold_count;
    834   1.85  sommerfe #endif
    835  1.122   thorpej 	struct proc *p = l->l_proc;
    836  1.122   thorpej 	int retval;
    837   1.26       cgd 
    838   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    839   1.83   thorpej 
    840   1.85  sommerfe #if defined(MULTIPROCESSOR)
    841   1.90  sommerfe 	/*
    842   1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    843   1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    844   1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    845   1.90  sommerfe 	 */
    846  1.122   thorpej 	if (l->l_flag & L_BIGLOCK)
    847   1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    848   1.85  sommerfe #endif
    849   1.85  sommerfe 
    850  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    851  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    852  1.113  gmcgarry 
    853  1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    854   1.76   thorpej 
    855   1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    856   1.82   thorpej 	spinlock_switchcheck();
    857   1.82   thorpej #endif
    858   1.54       chs #ifdef LOCKDEBUG
    859   1.81   thorpej 	simple_lock_switchcheck();
    860   1.50      fvdl #endif
    861   1.81   thorpej 
    862   1.26       cgd 	/*
    863   1.26       cgd 	 * Compute the amount of time during which the current
    864  1.113  gmcgarry 	 * process was running.
    865   1.26       cgd 	 */
    866   1.26       cgd 	microtime(&tv);
    867  1.130   nathanw 	u = p->p_rtime.tv_usec +
    868  1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    869   1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    870   1.26       cgd 	if (u < 0) {
    871   1.26       cgd 		u += 1000000;
    872   1.26       cgd 		s--;
    873   1.26       cgd 	} else if (u >= 1000000) {
    874   1.26       cgd 		u -= 1000000;
    875   1.26       cgd 		s++;
    876   1.26       cgd 	}
    877  1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    878  1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    879   1.26       cgd 
    880   1.26       cgd 	/*
    881   1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    882   1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    883   1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    884   1.26       cgd 	 */
    885   1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    886   1.26       cgd 	if (s >= rlim->rlim_cur) {
    887  1.100  sommerfe 		/*
    888  1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    889  1.100  sommerfe 		 * use sched_psignal.
    890  1.100  sommerfe 		 */
    891   1.26       cgd 		if (s >= rlim->rlim_max)
    892  1.100  sommerfe 			sched_psignal(p, SIGKILL);
    893   1.26       cgd 		else {
    894  1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    895   1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    896   1.26       cgd 				rlim->rlim_cur += 5;
    897   1.26       cgd 		}
    898   1.26       cgd 	}
    899   1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    900   1.77   thorpej 	    p->p_nice == NZERO) {
    901   1.39        ws 		p->p_nice = autoniceval + NZERO;
    902  1.122   thorpej 		resetpriority(l);
    903   1.26       cgd 	}
    904   1.69   thorpej 
    905   1.69   thorpej 	/*
    906   1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    907   1.69   thorpej 	 * scheduling flags.
    908   1.69   thorpej 	 */
    909   1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    910  1.109      yamt 
    911  1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    912  1.124      yamt 	kstack_check_magic(l);
    913  1.109      yamt #endif
    914   1.26       cgd 
    915  1.113  gmcgarry 	/*
    916  1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    917  1.113  gmcgarry 	 */
    918  1.114  gmcgarry #if PERFCTRS
    919  1.114  gmcgarry 	if (PMC_ENABLED(p))
    920  1.114  gmcgarry 		pmc_save_context(p);
    921  1.110    briggs #endif
    922  1.113  gmcgarry 
    923  1.113  gmcgarry 	/*
    924  1.114  gmcgarry 	 * Switch to the new current process.  When we
    925  1.114  gmcgarry 	 * run again, we'll return back here.
    926  1.113  gmcgarry 	 */
    927  1.114  gmcgarry 	uvmexp.swtch++;
    928  1.122   thorpej 	if (newl == NULL) {
    929  1.122   thorpej 		retval = cpu_switch(l, NULL);
    930  1.122   thorpej 	} else {
    931  1.122   thorpej 		remrunqueue(newl);
    932  1.122   thorpej 		cpu_switchto(l, newl);
    933  1.122   thorpej 		retval = 0;
    934  1.122   thorpej 	}
    935  1.110    briggs 
    936  1.110    briggs 	/*
    937  1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
    938   1.26       cgd 	 */
    939  1.114  gmcgarry #if PERFCTRS
    940  1.114  gmcgarry 	if (PMC_ENABLED(p))
    941  1.114  gmcgarry 		pmc_restore_context(p);
    942  1.114  gmcgarry #endif
    943  1.110    briggs 
    944  1.110    briggs 	/*
    945  1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
    946  1.114  gmcgarry 	 * resuming us.
    947  1.110    briggs 	 */
    948  1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    949   1.83   thorpej 
    950   1.83   thorpej 	/*
    951   1.76   thorpej 	 * We're running again; record our new start time.  We might
    952   1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    953   1.76   thorpej 	 * schedstate_percpu pointer.
    954   1.76   thorpej 	 */
    955  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    956  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    957  1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    958   1.85  sommerfe 
    959   1.85  sommerfe #if defined(MULTIPROCESSOR)
    960   1.90  sommerfe 	/*
    961   1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    962   1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    963   1.90  sommerfe 	 * we reacquire the interlock.
    964   1.90  sommerfe 	 */
    965  1.122   thorpej 	if (l->l_flag & L_BIGLOCK)
    966   1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    967   1.85  sommerfe #endif
    968  1.122   thorpej 
    969  1.122   thorpej 	return retval;
    970   1.26       cgd }
    971   1.26       cgd 
    972   1.26       cgd /*
    973   1.26       cgd  * Initialize the (doubly-linked) run queues
    974   1.26       cgd  * to be empty.
    975   1.26       cgd  */
    976   1.26       cgd void
    977   1.26       cgd rqinit()
    978   1.26       cgd {
    979   1.71  augustss 	int i;
    980   1.26       cgd 
    981   1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    982   1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    983  1.122   thorpej 		    (struct lwp *)&sched_qs[i];
    984   1.26       cgd }
    985   1.26       cgd 
    986  1.119   thorpej static __inline void
    987  1.122   thorpej resched_proc(struct lwp *l, u_char pri)
    988  1.119   thorpej {
    989  1.119   thorpej 	struct cpu_info *ci;
    990  1.119   thorpej 
    991  1.119   thorpej 	/*
    992  1.119   thorpej 	 * XXXSMP
    993  1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
    994  1.119   thorpej 	 * this gives us *very weak* processor affinity, in
    995  1.119   thorpej 	 * that we notify the CPU on which the process last
    996  1.119   thorpej 	 * ran that it should try to switch.
    997  1.119   thorpej 	 *
    998  1.119   thorpej 	 * This does not guarantee that the process will run on
    999  1.119   thorpej 	 * that processor next, because another processor might
   1000  1.119   thorpej 	 * grab it the next time it performs a context switch.
   1001  1.119   thorpej 	 *
   1002  1.119   thorpej 	 * This also does not handle the case where its last
   1003  1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1004  1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1005  1.119   thorpej 	 * are ways to handle this situation, but they're not
   1006  1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1007  1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1008  1.119   thorpej 	 *
   1009  1.119   thorpej 	 * XXXSMP
   1010  1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1011  1.119   thorpej 	 * sched state, which we currently do not do.
   1012  1.119   thorpej 	 */
   1013  1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1014  1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1015  1.119   thorpej 		need_resched(ci);
   1016  1.119   thorpej }
   1017  1.119   thorpej 
   1018   1.26       cgd /*
   1019   1.26       cgd  * Change process state to be runnable,
   1020   1.26       cgd  * placing it on the run queue if it is in memory,
   1021   1.26       cgd  * and awakening the swapper if it isn't in memory.
   1022   1.26       cgd  */
   1023   1.26       cgd void
   1024  1.122   thorpej setrunnable(struct lwp *l)
   1025   1.26       cgd {
   1026  1.122   thorpej 	struct proc *p = l->l_proc;
   1027   1.26       cgd 
   1028   1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1029   1.83   thorpej 
   1030  1.122   thorpej 	switch (l->l_stat) {
   1031   1.26       cgd 	case 0:
   1032  1.122   thorpej 	case LSRUN:
   1033  1.122   thorpej 	case LSONPROC:
   1034  1.122   thorpej 	case LSZOMB:
   1035  1.122   thorpej 	case LSDEAD:
   1036   1.26       cgd 	default:
   1037  1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1038  1.122   thorpej 	case LSSTOP:
   1039   1.33   mycroft 		/*
   1040   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1041   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1042   1.33   mycroft 		 */
   1043   1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1044   1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1045  1.101   thorpej 			CHECKSIGS(p);
   1046   1.53   mycroft 		}
   1047  1.122   thorpej 	case LSSLEEP:
   1048  1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1049   1.26       cgd 		break;
   1050   1.26       cgd 
   1051  1.122   thorpej 	case LSIDL:
   1052  1.122   thorpej 		break;
   1053  1.122   thorpej 	case LSSUSPENDED:
   1054   1.26       cgd 		break;
   1055   1.26       cgd 	}
   1056  1.122   thorpej 	l->l_stat = LSRUN;
   1057  1.122   thorpej 	p->p_nrlwps++;
   1058  1.122   thorpej 
   1059  1.122   thorpej 	if (l->l_flag & L_INMEM)
   1060  1.122   thorpej 		setrunqueue(l);
   1061  1.122   thorpej 
   1062  1.122   thorpej 	if (l->l_slptime > 1)
   1063  1.122   thorpej 		updatepri(l);
   1064  1.122   thorpej 	l->l_slptime = 0;
   1065  1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1066   1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1067  1.119   thorpej 	else
   1068  1.122   thorpej 		resched_proc(l, l->l_priority);
   1069   1.26       cgd }
   1070   1.26       cgd 
   1071   1.26       cgd /*
   1072   1.26       cgd  * Compute the priority of a process when running in user mode.
   1073   1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1074   1.26       cgd  * than that of the current process.
   1075   1.26       cgd  */
   1076   1.26       cgd void
   1077  1.122   thorpej resetpriority(struct lwp *l)
   1078   1.26       cgd {
   1079   1.71  augustss 	unsigned int newpriority;
   1080  1.122   thorpej 	struct proc *p = l->l_proc;
   1081   1.26       cgd 
   1082   1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1083   1.83   thorpej 
   1084  1.130   nathanw 	newpriority = PUSER + p->p_estcpu +
   1085  1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1086   1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1087  1.122   thorpej 	l->l_usrpri = newpriority;
   1088  1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1089  1.122   thorpej }
   1090  1.122   thorpej 
   1091  1.130   nathanw /*
   1092  1.122   thorpej  * Recompute priority for all LWPs in a process.
   1093  1.122   thorpej  */
   1094  1.122   thorpej void
   1095  1.122   thorpej resetprocpriority(struct proc *p)
   1096  1.122   thorpej {
   1097  1.122   thorpej 	struct lwp *l;
   1098  1.122   thorpej 
   1099  1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1100  1.122   thorpej 	    resetpriority(l);
   1101   1.55      ross }
   1102   1.55      ross 
   1103   1.55      ross /*
   1104   1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1105   1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1106   1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1107   1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1108   1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1109   1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1110   1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1111   1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1112   1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1113   1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1114   1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1115   1.56      ross  * processes.
   1116   1.55      ross  */
   1117   1.55      ross 
   1118   1.55      ross void
   1119  1.122   thorpej schedclock(struct lwp *l)
   1120   1.55      ross {
   1121  1.122   thorpej 	struct proc *p = l->l_proc;
   1122   1.83   thorpej 	int s;
   1123   1.77   thorpej 
   1124   1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1125   1.83   thorpej 	SCHED_LOCK(s);
   1126  1.122   thorpej 	resetpriority(l);
   1127   1.83   thorpej 	SCHED_UNLOCK(s);
   1128  1.130   nathanw 
   1129  1.122   thorpej 	if (l->l_priority >= PUSER)
   1130  1.122   thorpej 		l->l_priority = l->l_usrpri;
   1131   1.26       cgd }
   1132   1.94    bouyer 
   1133   1.94    bouyer void
   1134   1.94    bouyer suspendsched()
   1135   1.94    bouyer {
   1136  1.122   thorpej 	struct lwp *l;
   1137   1.97     enami 	int s;
   1138   1.94    bouyer 
   1139   1.94    bouyer 	/*
   1140  1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1141  1.122   thorpej 	 * LSSUSPENDED.
   1142   1.94    bouyer 	 */
   1143   1.95   thorpej 	proclist_lock_read();
   1144   1.95   thorpej 	SCHED_LOCK(s);
   1145  1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1146  1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1147   1.94    bouyer 			continue;
   1148  1.122   thorpej 
   1149  1.122   thorpej 		switch (l->l_stat) {
   1150  1.122   thorpej 		case LSRUN:
   1151  1.122   thorpej 			l->l_proc->p_nrlwps--;
   1152  1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1153  1.122   thorpej 				remrunqueue(l);
   1154   1.97     enami 			/* FALLTHROUGH */
   1155  1.122   thorpej 		case LSSLEEP:
   1156  1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1157   1.97     enami 			break;
   1158  1.122   thorpej 		case LSONPROC:
   1159   1.97     enami 			/*
   1160   1.97     enami 			 * XXX SMP: we need to deal with processes on
   1161   1.97     enami 			 * others CPU !
   1162   1.97     enami 			 */
   1163   1.97     enami 			break;
   1164   1.97     enami 		default:
   1165   1.97     enami 			break;
   1166   1.94    bouyer 		}
   1167   1.94    bouyer 	}
   1168   1.94    bouyer 	SCHED_UNLOCK(s);
   1169   1.97     enami 	proclist_unlock_read();
   1170   1.94    bouyer }
   1171  1.113  gmcgarry 
   1172  1.113  gmcgarry /*
   1173  1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1174  1.113  gmcgarry  * routines can override these.
   1175  1.113  gmcgarry  */
   1176  1.113  gmcgarry 
   1177  1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1178  1.115  nisimura 
   1179  1.130   nathanw /*
   1180  1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1181  1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1182  1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1183  1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1184  1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1185  1.115  nisimura  * available queues.
   1186  1.130   nathanw  */
   1187  1.113  gmcgarry 
   1188  1.113  gmcgarry void
   1189  1.122   thorpej setrunqueue(struct lwp *l)
   1190  1.113  gmcgarry {
   1191  1.113  gmcgarry 	struct prochd *rq;
   1192  1.122   thorpej 	struct lwp *prev;
   1193  1.113  gmcgarry 	int whichq;
   1194  1.113  gmcgarry 
   1195  1.113  gmcgarry #ifdef DIAGNOSTIC
   1196  1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1197  1.113  gmcgarry 		panic("setrunqueue");
   1198  1.113  gmcgarry #endif
   1199  1.122   thorpej 	whichq = l->l_priority / 4;
   1200  1.128    simonb 	sched_whichqs |= (1 << whichq);
   1201  1.113  gmcgarry 	rq = &sched_qs[whichq];
   1202  1.113  gmcgarry 	prev = rq->ph_rlink;
   1203  1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1204  1.122   thorpej 	rq->ph_rlink = l;
   1205  1.122   thorpej 	prev->l_forw = l;
   1206  1.122   thorpej 	l->l_back = prev;
   1207  1.113  gmcgarry }
   1208  1.113  gmcgarry 
   1209  1.113  gmcgarry void
   1210  1.122   thorpej remrunqueue(struct lwp *l)
   1211  1.113  gmcgarry {
   1212  1.122   thorpej 	struct lwp *prev, *next;
   1213  1.113  gmcgarry 	int whichq;
   1214  1.113  gmcgarry 
   1215  1.122   thorpej 	whichq = l->l_priority / 4;
   1216  1.113  gmcgarry #ifdef DIAGNOSTIC
   1217  1.128    simonb 	if (((sched_whichqs & (1 << whichq)) == 0))
   1218  1.113  gmcgarry 		panic("remrunqueue");
   1219  1.113  gmcgarry #endif
   1220  1.122   thorpej 	prev = l->l_back;
   1221  1.122   thorpej 	l->l_back = NULL;
   1222  1.122   thorpej 	next = l->l_forw;
   1223  1.122   thorpej 	prev->l_forw = next;
   1224  1.122   thorpej 	next->l_back = prev;
   1225  1.113  gmcgarry 	if (prev == next)
   1226  1.128    simonb 		sched_whichqs &= ~(1 << whichq);
   1227  1.113  gmcgarry }
   1228  1.113  gmcgarry 
   1229  1.113  gmcgarry #endif
   1230