kern_synch.c revision 1.136 1 1.136 agc /* $NetBSD: kern_synch.c,v 1.136 2003/08/07 16:31:50 agc Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.136 agc * 3. Neither the name of the University nor the names of its contributors
58 1.26 cgd * may be used to endorse or promote products derived from this software
59 1.26 cgd * without specific prior written permission.
60 1.26 cgd *
61 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.26 cgd * SUCH DAMAGE.
72 1.26 cgd *
73 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 1.26 cgd */
75 1.106 lukem
76 1.106 lukem #include <sys/cdefs.h>
77 1.136 agc __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.136 2003/08/07 16:31:50 agc Exp $");
78 1.48 mrg
79 1.52 jonathan #include "opt_ddb.h"
80 1.51 thorpej #include "opt_ktrace.h"
81 1.109 yamt #include "opt_kstack.h"
82 1.82 thorpej #include "opt_lockdebug.h"
83 1.83 thorpej #include "opt_multiprocessor.h"
84 1.110 briggs #include "opt_perfctrs.h"
85 1.26 cgd
86 1.26 cgd #include <sys/param.h>
87 1.26 cgd #include <sys/systm.h>
88 1.68 thorpej #include <sys/callout.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.26 cgd #include <sys/buf.h>
92 1.111 briggs #if defined(PERFCTRS)
93 1.110 briggs #include <sys/pmc.h>
94 1.111 briggs #endif
95 1.26 cgd #include <sys/signalvar.h>
96 1.26 cgd #include <sys/resourcevar.h>
97 1.55 ross #include <sys/sched.h>
98 1.122 thorpej #include <sys/sa.h>
99 1.122 thorpej #include <sys/savar.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.26 cgd #ifdef KTRACE
104 1.26 cgd #include <sys/ktrace.h>
105 1.26 cgd #endif
106 1.26 cgd
107 1.26 cgd #include <machine/cpu.h>
108 1.34 christos
109 1.26 cgd int lbolt; /* once a second sleep address */
110 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
111 1.26 cgd
112 1.73 thorpej /*
113 1.73 thorpej * The global scheduler state.
114 1.73 thorpej */
115 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118 1.73 thorpej
119 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120 1.83 thorpej
121 1.77 thorpej void schedcpu(void *);
122 1.122 thorpej void updatepri(struct lwp *);
123 1.77 thorpej void endtsleep(void *);
124 1.34 christos
125 1.122 thorpej __inline void awaken(struct lwp *);
126 1.63 thorpej
127 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128 1.68 thorpej
129 1.122 thorpej
130 1.122 thorpej
131 1.26 cgd /*
132 1.26 cgd * Force switch among equal priority processes every 100ms.
133 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 1.26 cgd */
135 1.26 cgd /* ARGSUSED */
136 1.26 cgd void
137 1.89 sommerfe roundrobin(struct cpu_info *ci)
138 1.26 cgd {
139 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
140 1.26 cgd
141 1.88 sommerfe spc->spc_rrticks = rrticks;
142 1.130 nathanw
143 1.122 thorpej if (curlwp != NULL) {
144 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
145 1.69 thorpej /*
146 1.69 thorpej * The process has already been through a roundrobin
147 1.69 thorpej * without switching and may be hogging the CPU.
148 1.69 thorpej * Indicate that the process should yield.
149 1.69 thorpej */
150 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
151 1.69 thorpej } else
152 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
153 1.69 thorpej }
154 1.87 thorpej need_resched(curcpu());
155 1.26 cgd }
156 1.26 cgd
157 1.26 cgd /*
158 1.26 cgd * Constants for digital decay and forget:
159 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
160 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
162 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
163 1.26 cgd *
164 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
165 1.26 cgd *
166 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 1.26 cgd * That is, the system wants to compute a value of decay such
168 1.26 cgd * that the following for loop:
169 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
170 1.26 cgd * p_estcpu *= decay;
171 1.26 cgd * will compute
172 1.26 cgd * p_estcpu *= 0.1;
173 1.26 cgd * for all values of loadavg:
174 1.26 cgd *
175 1.26 cgd * Mathematically this loop can be expressed by saying:
176 1.26 cgd * decay ** (5 * loadavg) ~= .1
177 1.26 cgd *
178 1.26 cgd * The system computes decay as:
179 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
180 1.26 cgd *
181 1.26 cgd * We wish to prove that the system's computation of decay
182 1.26 cgd * will always fulfill the equation:
183 1.26 cgd * decay ** (5 * loadavg) ~= .1
184 1.26 cgd *
185 1.26 cgd * If we compute b as:
186 1.26 cgd * b = 2 * loadavg
187 1.26 cgd * then
188 1.26 cgd * decay = b / (b + 1)
189 1.26 cgd *
190 1.26 cgd * We now need to prove two things:
191 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 1.130 nathanw *
194 1.26 cgd * Facts:
195 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
196 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
199 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 1.26 cgd * ln(.1) =~ -2.30
202 1.26 cgd *
203 1.26 cgd * Proof of (1):
204 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 1.26 cgd * solving for factor,
206 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
207 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 1.26 cgd *
210 1.26 cgd * Proof of (2):
211 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 1.26 cgd * solving for power,
213 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
214 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 1.26 cgd *
216 1.26 cgd * Actual power values for the implemented algorithm are as follows:
217 1.26 cgd * loadav: 1 2 3 4
218 1.26 cgd * power: 5.68 10.32 14.94 19.55
219 1.26 cgd */
220 1.26 cgd
221 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
223 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224 1.26 cgd
225 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227 1.26 cgd
228 1.26 cgd /*
229 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 1.26 cgd *
233 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 1.26 cgd *
236 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
237 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
239 1.26 cgd */
240 1.26 cgd #define CCPU_SHIFT 11
241 1.26 cgd
242 1.26 cgd /*
243 1.26 cgd * Recompute process priorities, every hz ticks.
244 1.26 cgd */
245 1.26 cgd /* ARGSUSED */
246 1.26 cgd void
247 1.77 thorpej schedcpu(void *arg)
248 1.26 cgd {
249 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 1.122 thorpej struct lwp *l;
251 1.71 augustss struct proc *p;
252 1.122 thorpej int s, minslp;
253 1.71 augustss unsigned int newcpu;
254 1.66 ross int clkhz;
255 1.26 cgd
256 1.62 thorpej proclist_lock_read();
257 1.112 matt LIST_FOREACH(p, &allproc, p_list) {
258 1.26 cgd /*
259 1.26 cgd * Increment time in/out of memory and sleep time
260 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
261 1.26 cgd * (remember them?) overflow takes 45 days.
262 1.26 cgd */
263 1.122 thorpej minslp = 2;
264 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
265 1.122 thorpej l->l_swtime++;
266 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
267 1.122 thorpej l->l_stat == LSSUSPENDED) {
268 1.122 thorpej l->l_slptime++;
269 1.122 thorpej minslp = min(minslp, l->l_slptime);
270 1.122 thorpej } else
271 1.122 thorpej minslp = 0;
272 1.122 thorpej }
273 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
274 1.26 cgd /*
275 1.26 cgd * If the process has slept the entire second,
276 1.26 cgd * stop recalculating its priority until it wakes up.
277 1.26 cgd */
278 1.122 thorpej if (minslp > 1)
279 1.26 cgd continue;
280 1.26 cgd s = splstatclock(); /* prevent state changes */
281 1.26 cgd /*
282 1.26 cgd * p_pctcpu is only for ps.
283 1.26 cgd */
284 1.66 ross clkhz = stathz != 0 ? stathz : hz;
285 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
286 1.66 ross p->p_pctcpu += (clkhz == 100)?
287 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
288 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
289 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
290 1.26 cgd #else
291 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
292 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
293 1.26 cgd #endif
294 1.26 cgd p->p_cpticks = 0;
295 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
296 1.55 ross p->p_estcpu = newcpu;
297 1.120 pk splx(s); /* Done with the process CPU ticks update */
298 1.120 pk SCHED_LOCK(s);
299 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
300 1.122 thorpej if (l->l_slptime > 1)
301 1.122 thorpej continue;
302 1.122 thorpej resetpriority(l);
303 1.122 thorpej if (l->l_priority >= PUSER) {
304 1.122 thorpej if (l->l_stat == LSRUN &&
305 1.122 thorpej (l->l_flag & L_INMEM) &&
306 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
307 1.122 thorpej remrunqueue(l);
308 1.122 thorpej l->l_priority = l->l_usrpri;
309 1.122 thorpej setrunqueue(l);
310 1.122 thorpej } else
311 1.122 thorpej l->l_priority = l->l_usrpri;
312 1.122 thorpej }
313 1.26 cgd }
314 1.120 pk SCHED_UNLOCK(s);
315 1.26 cgd }
316 1.61 thorpej proclist_unlock_read();
317 1.47 mrg uvm_meter();
318 1.67 fvdl wakeup((caddr_t)&lbolt);
319 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
320 1.26 cgd }
321 1.26 cgd
322 1.26 cgd /*
323 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
324 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
325 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
326 1.26 cgd */
327 1.26 cgd void
328 1.122 thorpej updatepri(struct lwp *l)
329 1.26 cgd {
330 1.122 thorpej struct proc *p = l->l_proc;
331 1.83 thorpej unsigned int newcpu;
332 1.83 thorpej fixpt_t loadfac;
333 1.83 thorpej
334 1.83 thorpej SCHED_ASSERT_LOCKED();
335 1.83 thorpej
336 1.83 thorpej newcpu = p->p_estcpu;
337 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
338 1.26 cgd
339 1.122 thorpej if (l->l_slptime > 5 * loadfac)
340 1.122 thorpej p->p_estcpu = 0; /* XXX NJWLWP */
341 1.26 cgd else {
342 1.122 thorpej l->l_slptime--; /* the first time was done in schedcpu */
343 1.122 thorpej while (newcpu && --l->l_slptime)
344 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
345 1.55 ross p->p_estcpu = newcpu;
346 1.26 cgd }
347 1.122 thorpej resetpriority(l);
348 1.26 cgd }
349 1.26 cgd
350 1.26 cgd /*
351 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
352 1.26 cgd * lower the priority briefly to allow interrupts, then return.
353 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
354 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
355 1.26 cgd * This priority will typically be 0, or the lowest priority
356 1.26 cgd * that is safe for use on the interrupt stack; it can be made
357 1.26 cgd * higher to block network software interrupts after panics.
358 1.26 cgd */
359 1.26 cgd int safepri;
360 1.26 cgd
361 1.26 cgd /*
362 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
363 1.26 cgd * performed on the specified identifier. The process will then be made
364 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
365 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
366 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
367 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
368 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
369 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
370 1.26 cgd * call should be interrupted by the signal (return EINTR).
371 1.77 thorpej *
372 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
373 1.77 thorpej * interlock will be locked before returning back to the caller
374 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
375 1.77 thorpej * interlock will always be unlocked upon return.
376 1.26 cgd */
377 1.26 cgd int
378 1.125 yamt ltsleep(const void *ident, int priority, const char *wmesg, int timo,
379 1.77 thorpej __volatile struct simplelock *interlock)
380 1.26 cgd {
381 1.122 thorpej struct lwp *l = curlwp;
382 1.123 christos struct proc *p = l ? l->l_proc : NULL;
383 1.71 augustss struct slpque *qp;
384 1.77 thorpej int sig, s;
385 1.77 thorpej int catch = priority & PCATCH;
386 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
387 1.122 thorpej int exiterr = (priority & PNOEXITERR) == 0;
388 1.26 cgd
389 1.77 thorpej /*
390 1.77 thorpej * XXXSMP
391 1.77 thorpej * This is probably bogus. Figure out what the right
392 1.77 thorpej * thing to do here really is.
393 1.130 nathanw * Note that not sleeping if ltsleep is called with curlwp == NULL
394 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
395 1.78 sommerfe * how shutdown (barely) works.
396 1.77 thorpej */
397 1.122 thorpej if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
398 1.26 cgd /*
399 1.26 cgd * After a panic, or during autoconfiguration,
400 1.26 cgd * just give interrupts a chance, then just return;
401 1.26 cgd * don't run any other procs or panic below,
402 1.26 cgd * in case this is the idle process and already asleep.
403 1.26 cgd */
404 1.42 cgd s = splhigh();
405 1.26 cgd splx(safepri);
406 1.26 cgd splx(s);
407 1.77 thorpej if (interlock != NULL && relock == 0)
408 1.77 thorpej simple_unlock(interlock);
409 1.26 cgd return (0);
410 1.26 cgd }
411 1.78 sommerfe
412 1.102 thorpej KASSERT(p != NULL);
413 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
414 1.42 cgd
415 1.42 cgd #ifdef KTRACE
416 1.42 cgd if (KTRPOINT(p, KTR_CSW))
417 1.132 fvdl ktrcsw(p, 1, 0);
418 1.42 cgd #endif
419 1.77 thorpej
420 1.83 thorpej SCHED_LOCK(s);
421 1.42 cgd
422 1.26 cgd #ifdef DIAGNOSTIC
423 1.64 thorpej if (ident == NULL)
424 1.77 thorpej panic("ltsleep: ident == NULL");
425 1.122 thorpej if (l->l_stat != LSONPROC)
426 1.122 thorpej panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
427 1.122 thorpej if (l->l_back != NULL)
428 1.77 thorpej panic("ltsleep: p_back != NULL");
429 1.26 cgd #endif
430 1.77 thorpej
431 1.122 thorpej l->l_wchan = ident;
432 1.122 thorpej l->l_wmesg = wmesg;
433 1.122 thorpej l->l_slptime = 0;
434 1.122 thorpej l->l_priority = priority & PRIMASK;
435 1.77 thorpej
436 1.73 thorpej qp = SLPQUE(ident);
437 1.26 cgd if (qp->sq_head == 0)
438 1.122 thorpej qp->sq_head = l;
439 1.122 thorpej else {
440 1.122 thorpej *qp->sq_tailp = l;
441 1.122 thorpej }
442 1.122 thorpej *(qp->sq_tailp = &l->l_forw) = 0;
443 1.77 thorpej
444 1.26 cgd if (timo)
445 1.122 thorpej callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
446 1.77 thorpej
447 1.77 thorpej /*
448 1.77 thorpej * We can now release the interlock; the scheduler_slock
449 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
450 1.77 thorpej * we do the switch.
451 1.77 thorpej *
452 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
453 1.77 thorpej * on the sleep queue, because we might want a more clever
454 1.77 thorpej * data structure for the sleep queues at some point.
455 1.77 thorpej */
456 1.77 thorpej if (interlock != NULL)
457 1.77 thorpej simple_unlock(interlock);
458 1.77 thorpej
459 1.26 cgd /*
460 1.26 cgd * We put ourselves on the sleep queue and start our timeout
461 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
462 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
463 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
464 1.26 cgd * without resuming us, thus we must be ready for sleep
465 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
466 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
467 1.26 cgd */
468 1.26 cgd if (catch) {
469 1.122 thorpej l->l_flag |= L_SINTR;
470 1.133 fvdl if (((sig = CURSIG(l)) != 0) || (p->p_flag & P_WEXIT)) {
471 1.122 thorpej if (l->l_wchan != NULL)
472 1.122 thorpej unsleep(l);
473 1.122 thorpej l->l_stat = LSONPROC;
474 1.83 thorpej SCHED_UNLOCK(s);
475 1.26 cgd goto resume;
476 1.26 cgd }
477 1.122 thorpej if (l->l_wchan == NULL) {
478 1.26 cgd catch = 0;
479 1.83 thorpej SCHED_UNLOCK(s);
480 1.26 cgd goto resume;
481 1.26 cgd }
482 1.26 cgd } else
483 1.26 cgd sig = 0;
484 1.122 thorpej l->l_stat = LSSLEEP;
485 1.122 thorpej p->p_nrlwps--;
486 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
487 1.83 thorpej SCHED_ASSERT_LOCKED();
488 1.122 thorpej if (l->l_flag & L_SA)
489 1.122 thorpej sa_switch(l, SA_UPCALL_BLOCKED);
490 1.122 thorpej else
491 1.122 thorpej mi_switch(l, NULL);
492 1.83 thorpej
493 1.104 chs #if defined(DDB) && !defined(GPROF)
494 1.26 cgd /* handy breakpoint location after process "wakes" */
495 1.107 kleink __asm(".globl bpendtsleep ; bpendtsleep:");
496 1.26 cgd #endif
497 1.122 thorpej /*
498 1.122 thorpej * p->p_nrlwps is incremented by whoever made us runnable again,
499 1.122 thorpej * either setrunnable() or awaken().
500 1.122 thorpej */
501 1.77 thorpej
502 1.83 thorpej SCHED_ASSERT_UNLOCKED();
503 1.83 thorpej splx(s);
504 1.83 thorpej
505 1.77 thorpej resume:
506 1.122 thorpej KDASSERT(l->l_cpu != NULL);
507 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
508 1.122 thorpej l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
509 1.122 thorpej
510 1.122 thorpej l->l_flag &= ~L_SINTR;
511 1.122 thorpej if (l->l_flag & L_TIMEOUT) {
512 1.135 matt l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
513 1.26 cgd if (sig == 0) {
514 1.26 cgd #ifdef KTRACE
515 1.26 cgd if (KTRPOINT(p, KTR_CSW))
516 1.132 fvdl ktrcsw(p, 0, 0);
517 1.26 cgd #endif
518 1.77 thorpej if (relock && interlock != NULL)
519 1.77 thorpej simple_lock(interlock);
520 1.26 cgd return (EWOULDBLOCK);
521 1.26 cgd }
522 1.26 cgd } else if (timo)
523 1.122 thorpej callout_stop(&l->l_tsleep_ch);
524 1.135 matt
525 1.135 matt if (catch) {
526 1.135 matt const int cancelled = l->l_flag & L_CANCELLED;
527 1.135 matt l->l_flag &= ~L_CANCELLED;
528 1.135 matt if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
529 1.26 cgd #ifdef KTRACE
530 1.135 matt if (KTRPOINT(p, KTR_CSW))
531 1.135 matt ktrcsw(p, 0, 0);
532 1.26 cgd #endif
533 1.135 matt if (relock && interlock != NULL)
534 1.135 matt simple_lock(interlock);
535 1.135 matt /*
536 1.135 matt * If this sleep was canceled, don't let the syscall
537 1.135 matt * restart.
538 1.135 matt */
539 1.135 matt if (cancelled ||
540 1.135 matt (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
541 1.135 matt return (EINTR);
542 1.135 matt return (ERESTART);
543 1.135 matt }
544 1.26 cgd }
545 1.126 pk
546 1.126 pk #ifdef KTRACE
547 1.126 pk if (KTRPOINT(p, KTR_CSW))
548 1.132 fvdl ktrcsw(p, 0, 0);
549 1.126 pk #endif
550 1.126 pk if (relock && interlock != NULL)
551 1.126 pk simple_lock(interlock);
552 1.126 pk
553 1.122 thorpej /* XXXNJW this is very much a kluge.
554 1.130 nathanw * revisit. a better way of preventing looping/hanging syscalls like
555 1.122 thorpej * wait4() and _lwp_wait() from wedging an exiting process
556 1.122 thorpej * would be preferred.
557 1.122 thorpej */
558 1.122 thorpej if (catch && ((p->p_flag & P_WEXIT) && exiterr))
559 1.122 thorpej return (EINTR);
560 1.26 cgd return (0);
561 1.26 cgd }
562 1.26 cgd
563 1.26 cgd /*
564 1.26 cgd * Implement timeout for tsleep.
565 1.26 cgd * If process hasn't been awakened (wchan non-zero),
566 1.26 cgd * set timeout flag and undo the sleep. If proc
567 1.26 cgd * is stopped, just unsleep so it will remain stopped.
568 1.26 cgd */
569 1.26 cgd void
570 1.77 thorpej endtsleep(void *arg)
571 1.26 cgd {
572 1.122 thorpej struct lwp *l;
573 1.26 cgd int s;
574 1.26 cgd
575 1.122 thorpej l = (struct lwp *)arg;
576 1.83 thorpej SCHED_LOCK(s);
577 1.122 thorpej if (l->l_wchan) {
578 1.122 thorpej if (l->l_stat == LSSLEEP)
579 1.122 thorpej setrunnable(l);
580 1.26 cgd else
581 1.122 thorpej unsleep(l);
582 1.122 thorpej l->l_flag |= L_TIMEOUT;
583 1.26 cgd }
584 1.83 thorpej SCHED_UNLOCK(s);
585 1.26 cgd }
586 1.26 cgd
587 1.26 cgd /*
588 1.26 cgd * Remove a process from its wait queue
589 1.26 cgd */
590 1.26 cgd void
591 1.122 thorpej unsleep(struct lwp *l)
592 1.26 cgd {
593 1.71 augustss struct slpque *qp;
594 1.122 thorpej struct lwp **hp;
595 1.26 cgd
596 1.83 thorpej SCHED_ASSERT_LOCKED();
597 1.83 thorpej
598 1.122 thorpej if (l->l_wchan) {
599 1.122 thorpej hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
600 1.122 thorpej while (*hp != l)
601 1.122 thorpej hp = &(*hp)->l_forw;
602 1.122 thorpej *hp = l->l_forw;
603 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
604 1.26 cgd qp->sq_tailp = hp;
605 1.122 thorpej l->l_wchan = 0;
606 1.26 cgd }
607 1.26 cgd }
608 1.26 cgd
609 1.26 cgd /*
610 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
611 1.63 thorpej */
612 1.63 thorpej __inline void
613 1.122 thorpej awaken(struct lwp *l)
614 1.63 thorpej {
615 1.63 thorpej
616 1.83 thorpej SCHED_ASSERT_LOCKED();
617 1.130 nathanw
618 1.122 thorpej if (l->l_slptime > 1)
619 1.122 thorpej updatepri(l);
620 1.122 thorpej l->l_slptime = 0;
621 1.122 thorpej l->l_stat = LSRUN;
622 1.122 thorpej l->l_proc->p_nrlwps++;
623 1.93 bouyer /*
624 1.93 bouyer * Since curpriority is a user priority, p->p_priority
625 1.119 thorpej * is always better than curpriority on the last CPU on
626 1.119 thorpej * which it ran.
627 1.118 thorpej *
628 1.119 thorpej * XXXSMP See affinity comment in resched_proc().
629 1.93 bouyer */
630 1.122 thorpej if (l->l_flag & L_INMEM) {
631 1.122 thorpej setrunqueue(l);
632 1.122 thorpej if (l->l_flag & L_SA)
633 1.122 thorpej l->l_proc->p_sa->sa_woken = l;
634 1.122 thorpej KASSERT(l->l_cpu != NULL);
635 1.122 thorpej need_resched(l->l_cpu);
636 1.93 bouyer } else
637 1.93 bouyer sched_wakeup(&proc0);
638 1.83 thorpej }
639 1.83 thorpej
640 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
641 1.83 thorpej void
642 1.83 thorpej sched_unlock_idle(void)
643 1.83 thorpej {
644 1.83 thorpej
645 1.83 thorpej simple_unlock(&sched_lock);
646 1.63 thorpej }
647 1.63 thorpej
648 1.83 thorpej void
649 1.83 thorpej sched_lock_idle(void)
650 1.83 thorpej {
651 1.83 thorpej
652 1.83 thorpej simple_lock(&sched_lock);
653 1.83 thorpej }
654 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
655 1.83 thorpej
656 1.63 thorpej /*
657 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
658 1.26 cgd */
659 1.83 thorpej
660 1.26 cgd void
661 1.125 yamt wakeup(const void *ident)
662 1.26 cgd {
663 1.83 thorpej int s;
664 1.83 thorpej
665 1.83 thorpej SCHED_ASSERT_UNLOCKED();
666 1.83 thorpej
667 1.83 thorpej SCHED_LOCK(s);
668 1.83 thorpej sched_wakeup(ident);
669 1.83 thorpej SCHED_UNLOCK(s);
670 1.83 thorpej }
671 1.83 thorpej
672 1.83 thorpej void
673 1.125 yamt sched_wakeup(const void *ident)
674 1.83 thorpej {
675 1.71 augustss struct slpque *qp;
676 1.122 thorpej struct lwp *l, **q;
677 1.26 cgd
678 1.83 thorpej SCHED_ASSERT_LOCKED();
679 1.77 thorpej
680 1.73 thorpej qp = SLPQUE(ident);
681 1.77 thorpej restart:
682 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; ) {
683 1.26 cgd #ifdef DIAGNOSTIC
684 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
685 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
686 1.26 cgd panic("wakeup");
687 1.26 cgd #endif
688 1.122 thorpej if (l->l_wchan == ident) {
689 1.122 thorpej l->l_wchan = 0;
690 1.122 thorpej *q = l->l_forw;
691 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
692 1.26 cgd qp->sq_tailp = q;
693 1.122 thorpej if (l->l_stat == LSSLEEP) {
694 1.122 thorpej awaken(l);
695 1.26 cgd goto restart;
696 1.26 cgd }
697 1.26 cgd } else
698 1.122 thorpej q = &l->l_forw;
699 1.63 thorpej }
700 1.63 thorpej }
701 1.63 thorpej
702 1.63 thorpej /*
703 1.63 thorpej * Make the highest priority process first in line on the specified
704 1.63 thorpej * identifier runnable.
705 1.63 thorpej */
706 1.63 thorpej void
707 1.125 yamt wakeup_one(const void *ident)
708 1.63 thorpej {
709 1.63 thorpej struct slpque *qp;
710 1.122 thorpej struct lwp *l, **q;
711 1.122 thorpej struct lwp *best_sleepp, **best_sleepq;
712 1.122 thorpej struct lwp *best_stopp, **best_stopq;
713 1.63 thorpej int s;
714 1.63 thorpej
715 1.63 thorpej best_sleepp = best_stopp = NULL;
716 1.63 thorpej best_sleepq = best_stopq = NULL;
717 1.63 thorpej
718 1.83 thorpej SCHED_LOCK(s);
719 1.77 thorpej
720 1.73 thorpej qp = SLPQUE(ident);
721 1.77 thorpej
722 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
723 1.63 thorpej #ifdef DIAGNOSTIC
724 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
725 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
726 1.63 thorpej panic("wakeup_one");
727 1.63 thorpej #endif
728 1.122 thorpej if (l->l_wchan == ident) {
729 1.122 thorpej if (l->l_stat == LSSLEEP) {
730 1.63 thorpej if (best_sleepp == NULL ||
731 1.122 thorpej l->l_priority < best_sleepp->l_priority) {
732 1.122 thorpej best_sleepp = l;
733 1.63 thorpej best_sleepq = q;
734 1.63 thorpej }
735 1.63 thorpej } else {
736 1.63 thorpej if (best_stopp == NULL ||
737 1.122 thorpej l->l_priority < best_stopp->l_priority) {
738 1.122 thorpej best_stopp = l;
739 1.63 thorpej best_stopq = q;
740 1.63 thorpej }
741 1.63 thorpej }
742 1.63 thorpej }
743 1.63 thorpej }
744 1.63 thorpej
745 1.63 thorpej /*
746 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
747 1.63 thorpej * process.
748 1.63 thorpej */
749 1.63 thorpej if (best_sleepp != NULL) {
750 1.122 thorpej l = best_sleepp;
751 1.63 thorpej q = best_sleepq;
752 1.63 thorpej } else {
753 1.122 thorpej l = best_stopp;
754 1.63 thorpej q = best_stopq;
755 1.63 thorpej }
756 1.63 thorpej
757 1.122 thorpej if (l != NULL) {
758 1.122 thorpej l->l_wchan = NULL;
759 1.122 thorpej *q = l->l_forw;
760 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
761 1.63 thorpej qp->sq_tailp = q;
762 1.122 thorpej if (l->l_stat == LSSLEEP)
763 1.122 thorpej awaken(l);
764 1.26 cgd }
765 1.83 thorpej SCHED_UNLOCK(s);
766 1.117 gmcgarry }
767 1.117 gmcgarry
768 1.117 gmcgarry /*
769 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
770 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
771 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
772 1.117 gmcgarry */
773 1.117 gmcgarry void
774 1.117 gmcgarry yield(void)
775 1.117 gmcgarry {
776 1.122 thorpej struct lwp *l = curlwp;
777 1.117 gmcgarry int s;
778 1.117 gmcgarry
779 1.117 gmcgarry SCHED_LOCK(s);
780 1.122 thorpej l->l_priority = l->l_usrpri;
781 1.122 thorpej l->l_stat = LSRUN;
782 1.122 thorpej setrunqueue(l);
783 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nvcsw++;
784 1.122 thorpej mi_switch(l, NULL);
785 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
786 1.117 gmcgarry splx(s);
787 1.69 thorpej }
788 1.69 thorpej
789 1.69 thorpej /*
790 1.69 thorpej * General preemption call. Puts the current process back on its run queue
791 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
792 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
793 1.69 thorpej * criteria.
794 1.69 thorpej */
795 1.122 thorpej
796 1.69 thorpej void
797 1.122 thorpej preempt(int more)
798 1.69 thorpej {
799 1.122 thorpej struct lwp *l = curlwp;
800 1.122 thorpej int r, s;
801 1.133 fvdl /* XXXUPSXXX Not needed for SMP patch */
802 1.133 fvdl #if 0
803 1.129 nathanw /* XXX Until the preempt() bug is fixed. */
804 1.129 nathanw if (more && (l->l_proc->p_flag & P_SA)) {
805 1.129 nathanw l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
806 1.129 nathanw return;
807 1.129 nathanw }
808 1.133 fvdl #endif
809 1.69 thorpej
810 1.83 thorpej SCHED_LOCK(s);
811 1.122 thorpej l->l_priority = l->l_usrpri;
812 1.122 thorpej l->l_stat = LSRUN;
813 1.122 thorpej setrunqueue(l);
814 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nivcsw++;
815 1.122 thorpej r = mi_switch(l, NULL);
816 1.83 thorpej SCHED_ASSERT_UNLOCKED();
817 1.69 thorpej splx(s);
818 1.122 thorpej if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
819 1.122 thorpej sa_preempt(l);
820 1.69 thorpej }
821 1.69 thorpej
822 1.69 thorpej /*
823 1.72 thorpej * The machine independent parts of context switch.
824 1.86 thorpej * Must be called at splsched() (no higher!) and with
825 1.86 thorpej * the sched_lock held.
826 1.122 thorpej * Switch to "new" if non-NULL, otherwise let cpu_switch choose
827 1.122 thorpej * the next lwp.
828 1.130 nathanw *
829 1.122 thorpej * Returns 1 if another process was actually run.
830 1.26 cgd */
831 1.122 thorpej int
832 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
833 1.26 cgd {
834 1.76 thorpej struct schedstate_percpu *spc;
835 1.71 augustss struct rlimit *rlim;
836 1.71 augustss long s, u;
837 1.26 cgd struct timeval tv;
838 1.85 sommerfe #if defined(MULTIPROCESSOR)
839 1.85 sommerfe int hold_count;
840 1.85 sommerfe #endif
841 1.122 thorpej struct proc *p = l->l_proc;
842 1.122 thorpej int retval;
843 1.26 cgd
844 1.83 thorpej SCHED_ASSERT_LOCKED();
845 1.83 thorpej
846 1.85 sommerfe #if defined(MULTIPROCESSOR)
847 1.90 sommerfe /*
848 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
849 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
850 1.90 sommerfe * selects a new process and removes it from the run queue.
851 1.90 sommerfe */
852 1.122 thorpej if (l->l_flag & L_BIGLOCK)
853 1.90 sommerfe hold_count = spinlock_release_all(&kernel_lock);
854 1.85 sommerfe #endif
855 1.85 sommerfe
856 1.122 thorpej KDASSERT(l->l_cpu != NULL);
857 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
858 1.113 gmcgarry
859 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
860 1.76 thorpej
861 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
862 1.82 thorpej spinlock_switchcheck();
863 1.82 thorpej #endif
864 1.54 chs #ifdef LOCKDEBUG
865 1.81 thorpej simple_lock_switchcheck();
866 1.50 fvdl #endif
867 1.81 thorpej
868 1.26 cgd /*
869 1.26 cgd * Compute the amount of time during which the current
870 1.113 gmcgarry * process was running.
871 1.26 cgd */
872 1.26 cgd microtime(&tv);
873 1.130 nathanw u = p->p_rtime.tv_usec +
874 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
875 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
876 1.26 cgd if (u < 0) {
877 1.26 cgd u += 1000000;
878 1.26 cgd s--;
879 1.26 cgd } else if (u >= 1000000) {
880 1.26 cgd u -= 1000000;
881 1.26 cgd s++;
882 1.26 cgd }
883 1.114 gmcgarry p->p_rtime.tv_usec = u;
884 1.114 gmcgarry p->p_rtime.tv_sec = s;
885 1.26 cgd
886 1.26 cgd /*
887 1.26 cgd * Check if the process exceeds its cpu resource allocation.
888 1.26 cgd * If over max, kill it. In any case, if it has run for more
889 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
890 1.26 cgd */
891 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
892 1.26 cgd if (s >= rlim->rlim_cur) {
893 1.100 sommerfe /*
894 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
895 1.100 sommerfe * use sched_psignal.
896 1.100 sommerfe */
897 1.26 cgd if (s >= rlim->rlim_max)
898 1.100 sommerfe sched_psignal(p, SIGKILL);
899 1.26 cgd else {
900 1.100 sommerfe sched_psignal(p, SIGXCPU);
901 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
902 1.26 cgd rlim->rlim_cur += 5;
903 1.26 cgd }
904 1.26 cgd }
905 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
906 1.77 thorpej p->p_nice == NZERO) {
907 1.39 ws p->p_nice = autoniceval + NZERO;
908 1.122 thorpej resetpriority(l);
909 1.26 cgd }
910 1.69 thorpej
911 1.69 thorpej /*
912 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
913 1.69 thorpej * scheduling flags.
914 1.69 thorpej */
915 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
916 1.109 yamt
917 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
918 1.124 yamt kstack_check_magic(l);
919 1.109 yamt #endif
920 1.26 cgd
921 1.113 gmcgarry /*
922 1.114 gmcgarry * If we are using h/w performance counters, save context.
923 1.113 gmcgarry */
924 1.114 gmcgarry #if PERFCTRS
925 1.114 gmcgarry if (PMC_ENABLED(p))
926 1.114 gmcgarry pmc_save_context(p);
927 1.110 briggs #endif
928 1.113 gmcgarry
929 1.113 gmcgarry /*
930 1.114 gmcgarry * Switch to the new current process. When we
931 1.114 gmcgarry * run again, we'll return back here.
932 1.113 gmcgarry */
933 1.114 gmcgarry uvmexp.swtch++;
934 1.122 thorpej if (newl == NULL) {
935 1.122 thorpej retval = cpu_switch(l, NULL);
936 1.122 thorpej } else {
937 1.122 thorpej remrunqueue(newl);
938 1.122 thorpej cpu_switchto(l, newl);
939 1.122 thorpej retval = 0;
940 1.122 thorpej }
941 1.110 briggs
942 1.110 briggs /*
943 1.114 gmcgarry * If we are using h/w performance counters, restore context.
944 1.26 cgd */
945 1.114 gmcgarry #if PERFCTRS
946 1.114 gmcgarry if (PMC_ENABLED(p))
947 1.114 gmcgarry pmc_restore_context(p);
948 1.114 gmcgarry #endif
949 1.110 briggs
950 1.110 briggs /*
951 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
952 1.114 gmcgarry * resuming us.
953 1.110 briggs */
954 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
955 1.83 thorpej
956 1.83 thorpej /*
957 1.76 thorpej * We're running again; record our new start time. We might
958 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
959 1.76 thorpej * schedstate_percpu pointer.
960 1.76 thorpej */
961 1.122 thorpej KDASSERT(l->l_cpu != NULL);
962 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
963 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
964 1.85 sommerfe
965 1.85 sommerfe #if defined(MULTIPROCESSOR)
966 1.90 sommerfe /*
967 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
968 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
969 1.90 sommerfe * we reacquire the interlock.
970 1.90 sommerfe */
971 1.122 thorpej if (l->l_flag & L_BIGLOCK)
972 1.90 sommerfe spinlock_acquire_count(&kernel_lock, hold_count);
973 1.85 sommerfe #endif
974 1.122 thorpej
975 1.122 thorpej return retval;
976 1.26 cgd }
977 1.26 cgd
978 1.26 cgd /*
979 1.26 cgd * Initialize the (doubly-linked) run queues
980 1.26 cgd * to be empty.
981 1.26 cgd */
982 1.26 cgd void
983 1.26 cgd rqinit()
984 1.26 cgd {
985 1.71 augustss int i;
986 1.26 cgd
987 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
988 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
989 1.122 thorpej (struct lwp *)&sched_qs[i];
990 1.26 cgd }
991 1.26 cgd
992 1.119 thorpej static __inline void
993 1.122 thorpej resched_proc(struct lwp *l, u_char pri)
994 1.119 thorpej {
995 1.119 thorpej struct cpu_info *ci;
996 1.119 thorpej
997 1.119 thorpej /*
998 1.119 thorpej * XXXSMP
999 1.122 thorpej * Since l->l_cpu persists across a context switch,
1000 1.119 thorpej * this gives us *very weak* processor affinity, in
1001 1.119 thorpej * that we notify the CPU on which the process last
1002 1.119 thorpej * ran that it should try to switch.
1003 1.119 thorpej *
1004 1.119 thorpej * This does not guarantee that the process will run on
1005 1.119 thorpej * that processor next, because another processor might
1006 1.119 thorpej * grab it the next time it performs a context switch.
1007 1.119 thorpej *
1008 1.119 thorpej * This also does not handle the case where its last
1009 1.119 thorpej * CPU is running a higher-priority process, but every
1010 1.119 thorpej * other CPU is running a lower-priority process. There
1011 1.119 thorpej * are ways to handle this situation, but they're not
1012 1.119 thorpej * currently very pretty, and we also need to weigh the
1013 1.119 thorpej * cost of moving a process from one CPU to another.
1014 1.119 thorpej *
1015 1.119 thorpej * XXXSMP
1016 1.119 thorpej * There is also the issue of locking the other CPU's
1017 1.119 thorpej * sched state, which we currently do not do.
1018 1.119 thorpej */
1019 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1020 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
1021 1.119 thorpej need_resched(ci);
1022 1.119 thorpej }
1023 1.119 thorpej
1024 1.26 cgd /*
1025 1.26 cgd * Change process state to be runnable,
1026 1.26 cgd * placing it on the run queue if it is in memory,
1027 1.26 cgd * and awakening the swapper if it isn't in memory.
1028 1.26 cgd */
1029 1.26 cgd void
1030 1.122 thorpej setrunnable(struct lwp *l)
1031 1.26 cgd {
1032 1.122 thorpej struct proc *p = l->l_proc;
1033 1.26 cgd
1034 1.83 thorpej SCHED_ASSERT_LOCKED();
1035 1.83 thorpej
1036 1.122 thorpej switch (l->l_stat) {
1037 1.26 cgd case 0:
1038 1.122 thorpej case LSRUN:
1039 1.122 thorpej case LSONPROC:
1040 1.122 thorpej case LSZOMB:
1041 1.122 thorpej case LSDEAD:
1042 1.26 cgd default:
1043 1.127 matt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1044 1.122 thorpej case LSSTOP:
1045 1.33 mycroft /*
1046 1.33 mycroft * If we're being traced (possibly because someone attached us
1047 1.33 mycroft * while we were stopped), check for a signal from the debugger.
1048 1.33 mycroft */
1049 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1050 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1051 1.101 thorpej CHECKSIGS(p);
1052 1.53 mycroft }
1053 1.122 thorpej case LSSLEEP:
1054 1.122 thorpej unsleep(l); /* e.g. when sending signals */
1055 1.26 cgd break;
1056 1.26 cgd
1057 1.122 thorpej case LSIDL:
1058 1.122 thorpej break;
1059 1.122 thorpej case LSSUSPENDED:
1060 1.26 cgd break;
1061 1.26 cgd }
1062 1.122 thorpej l->l_stat = LSRUN;
1063 1.122 thorpej p->p_nrlwps++;
1064 1.122 thorpej
1065 1.122 thorpej if (l->l_flag & L_INMEM)
1066 1.122 thorpej setrunqueue(l);
1067 1.122 thorpej
1068 1.122 thorpej if (l->l_slptime > 1)
1069 1.122 thorpej updatepri(l);
1070 1.122 thorpej l->l_slptime = 0;
1071 1.122 thorpej if ((l->l_flag & L_INMEM) == 0)
1072 1.83 thorpej sched_wakeup((caddr_t)&proc0);
1073 1.119 thorpej else
1074 1.122 thorpej resched_proc(l, l->l_priority);
1075 1.26 cgd }
1076 1.26 cgd
1077 1.26 cgd /*
1078 1.26 cgd * Compute the priority of a process when running in user mode.
1079 1.26 cgd * Arrange to reschedule if the resulting priority is better
1080 1.26 cgd * than that of the current process.
1081 1.26 cgd */
1082 1.26 cgd void
1083 1.122 thorpej resetpriority(struct lwp *l)
1084 1.26 cgd {
1085 1.71 augustss unsigned int newpriority;
1086 1.122 thorpej struct proc *p = l->l_proc;
1087 1.26 cgd
1088 1.83 thorpej SCHED_ASSERT_LOCKED();
1089 1.83 thorpej
1090 1.130 nathanw newpriority = PUSER + p->p_estcpu +
1091 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
1092 1.26 cgd newpriority = min(newpriority, MAXPRI);
1093 1.122 thorpej l->l_usrpri = newpriority;
1094 1.122 thorpej resched_proc(l, l->l_usrpri);
1095 1.122 thorpej }
1096 1.122 thorpej
1097 1.130 nathanw /*
1098 1.122 thorpej * Recompute priority for all LWPs in a process.
1099 1.122 thorpej */
1100 1.122 thorpej void
1101 1.122 thorpej resetprocpriority(struct proc *p)
1102 1.122 thorpej {
1103 1.122 thorpej struct lwp *l;
1104 1.122 thorpej
1105 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling)
1106 1.122 thorpej resetpriority(l);
1107 1.55 ross }
1108 1.55 ross
1109 1.55 ross /*
1110 1.56 ross * We adjust the priority of the current process. The priority of a process
1111 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1112 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1113 1.56 ross * will compute a different value each time p_estcpu increases. This can
1114 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1115 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
1116 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1117 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1118 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1119 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1120 1.56 ross * processes which haven't run much recently, and to round-robin among other
1121 1.56 ross * processes.
1122 1.55 ross */
1123 1.55 ross
1124 1.55 ross void
1125 1.122 thorpej schedclock(struct lwp *l)
1126 1.55 ross {
1127 1.122 thorpej struct proc *p = l->l_proc;
1128 1.83 thorpej int s;
1129 1.77 thorpej
1130 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1131 1.83 thorpej SCHED_LOCK(s);
1132 1.122 thorpej resetpriority(l);
1133 1.83 thorpej SCHED_UNLOCK(s);
1134 1.130 nathanw
1135 1.122 thorpej if (l->l_priority >= PUSER)
1136 1.122 thorpej l->l_priority = l->l_usrpri;
1137 1.26 cgd }
1138 1.94 bouyer
1139 1.94 bouyer void
1140 1.94 bouyer suspendsched()
1141 1.94 bouyer {
1142 1.122 thorpej struct lwp *l;
1143 1.97 enami int s;
1144 1.94 bouyer
1145 1.94 bouyer /*
1146 1.130 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1147 1.122 thorpej * LSSUSPENDED.
1148 1.94 bouyer */
1149 1.95 thorpej proclist_lock_read();
1150 1.95 thorpej SCHED_LOCK(s);
1151 1.122 thorpej LIST_FOREACH(l, &alllwp, l_list) {
1152 1.122 thorpej if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1153 1.94 bouyer continue;
1154 1.122 thorpej
1155 1.122 thorpej switch (l->l_stat) {
1156 1.122 thorpej case LSRUN:
1157 1.122 thorpej l->l_proc->p_nrlwps--;
1158 1.122 thorpej if ((l->l_flag & L_INMEM) != 0)
1159 1.122 thorpej remrunqueue(l);
1160 1.97 enami /* FALLTHROUGH */
1161 1.122 thorpej case LSSLEEP:
1162 1.122 thorpej l->l_stat = LSSUSPENDED;
1163 1.97 enami break;
1164 1.122 thorpej case LSONPROC:
1165 1.97 enami /*
1166 1.97 enami * XXX SMP: we need to deal with processes on
1167 1.97 enami * others CPU !
1168 1.97 enami */
1169 1.97 enami break;
1170 1.97 enami default:
1171 1.97 enami break;
1172 1.94 bouyer }
1173 1.94 bouyer }
1174 1.94 bouyer SCHED_UNLOCK(s);
1175 1.97 enami proclist_unlock_read();
1176 1.94 bouyer }
1177 1.113 gmcgarry
1178 1.113 gmcgarry /*
1179 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1180 1.113 gmcgarry * routines can override these.
1181 1.113 gmcgarry */
1182 1.113 gmcgarry
1183 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1184 1.115 nisimura
1185 1.130 nathanw /*
1186 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1187 1.134 matt * than the traditional LSB ordering.
1188 1.134 matt */
1189 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1190 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1191 1.134 matt #else
1192 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1193 1.134 matt #endif
1194 1.134 matt
1195 1.134 matt /*
1196 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1197 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1198 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1199 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1200 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1201 1.115 nisimura * available queues.
1202 1.130 nathanw */
1203 1.113 gmcgarry
1204 1.113 gmcgarry void
1205 1.122 thorpej setrunqueue(struct lwp *l)
1206 1.113 gmcgarry {
1207 1.113 gmcgarry struct prochd *rq;
1208 1.122 thorpej struct lwp *prev;
1209 1.134 matt const int whichq = l->l_priority / 4;
1210 1.113 gmcgarry
1211 1.113 gmcgarry #ifdef DIAGNOSTIC
1212 1.122 thorpej if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1213 1.113 gmcgarry panic("setrunqueue");
1214 1.113 gmcgarry #endif
1215 1.134 matt sched_whichqs |= RQMASK(whichq);
1216 1.113 gmcgarry rq = &sched_qs[whichq];
1217 1.113 gmcgarry prev = rq->ph_rlink;
1218 1.122 thorpej l->l_forw = (struct lwp *)rq;
1219 1.122 thorpej rq->ph_rlink = l;
1220 1.122 thorpej prev->l_forw = l;
1221 1.122 thorpej l->l_back = prev;
1222 1.113 gmcgarry }
1223 1.113 gmcgarry
1224 1.113 gmcgarry void
1225 1.122 thorpej remrunqueue(struct lwp *l)
1226 1.113 gmcgarry {
1227 1.122 thorpej struct lwp *prev, *next;
1228 1.134 matt const int whichq = l->l_priority / 4;
1229 1.113 gmcgarry #ifdef DIAGNOSTIC
1230 1.134 matt if (((sched_whichqs & RQMASK(whichq)) == 0))
1231 1.113 gmcgarry panic("remrunqueue");
1232 1.113 gmcgarry #endif
1233 1.122 thorpej prev = l->l_back;
1234 1.122 thorpej l->l_back = NULL;
1235 1.122 thorpej next = l->l_forw;
1236 1.122 thorpej prev->l_forw = next;
1237 1.122 thorpej next->l_back = prev;
1238 1.113 gmcgarry if (prev == next)
1239 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1240 1.113 gmcgarry }
1241 1.113 gmcgarry
1242 1.134 matt #undef RQMASK
1243 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1244