Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.149.2.10
      1  1.149.2.10      yamt /*	$NetBSD: kern_synch.c,v 1.149.2.10 2008/03/17 09:15:33 yamt Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4  1.149.2.10      yamt  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.149.2.4      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10   1.149.2.4      yamt  * Daniel Sieger.
     11        1.63   thorpej  *
     12        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13        1.63   thorpej  * modification, are permitted provided that the following conditions
     14        1.63   thorpej  * are met:
     15        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21        1.63   thorpej  *    must display the following acknowledgement:
     22        1.63   thorpej  *	This product includes software developed by the NetBSD
     23        1.63   thorpej  *	Foundation, Inc. and its contributors.
     24        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26        1.63   thorpej  *    from this software without specific prior written permission.
     27        1.63   thorpej  *
     28        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39        1.63   thorpej  */
     40        1.26       cgd 
     41        1.26       cgd /*-
     42        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45        1.26       cgd  * All or some portions of this file are derived from material licensed
     46        1.26       cgd  * to the University of California by American Telephone and Telegraph
     47        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49        1.26       cgd  *
     50        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51        1.26       cgd  * modification, are permitted provided that the following conditions
     52        1.26       cgd  * are met:
     53        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59        1.26       cgd  *    may be used to endorse or promote products derived from this software
     60        1.26       cgd  *    without specific prior written permission.
     61        1.26       cgd  *
     62        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72        1.26       cgd  * SUCH DAMAGE.
     73        1.26       cgd  *
     74        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75        1.26       cgd  */
     76       1.106     lukem 
     77       1.106     lukem #include <sys/cdefs.h>
     78  1.149.2.10      yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.149.2.10 2008/03/17 09:15:33 yamt Exp $");
     79        1.48       mrg 
     80       1.109      yamt #include "opt_kstack.h"
     81        1.82   thorpej #include "opt_lockdebug.h"
     82        1.83   thorpej #include "opt_multiprocessor.h"
     83       1.110    briggs #include "opt_perfctrs.h"
     84        1.26       cgd 
     85   1.149.2.3      yamt #define	__MUTEX_PRIVATE
     86   1.149.2.3      yamt 
     87        1.26       cgd #include <sys/param.h>
     88        1.26       cgd #include <sys/systm.h>
     89        1.26       cgd #include <sys/proc.h>
     90        1.26       cgd #include <sys/kernel.h>
     91       1.111    briggs #if defined(PERFCTRS)
     92       1.110    briggs #include <sys/pmc.h>
     93       1.111    briggs #endif
     94   1.149.2.4      yamt #include <sys/cpu.h>
     95        1.26       cgd #include <sys/resourcevar.h>
     96        1.55      ross #include <sys/sched.h>
     97   1.149.2.3      yamt #include <sys/syscall_stats.h>
     98   1.149.2.3      yamt #include <sys/sleepq.h>
     99   1.149.2.3      yamt #include <sys/lockdebug.h>
    100   1.149.2.4      yamt #include <sys/evcnt.h>
    101   1.149.2.5      yamt #include <sys/intr.h>
    102   1.149.2.6      yamt #include <sys/lwpctl.h>
    103   1.149.2.7      yamt #include <sys/atomic.h>
    104   1.149.2.8      yamt #include <sys/simplelock.h>
    105        1.47       mrg 
    106        1.47       mrg #include <uvm/uvm_extern.h>
    107        1.47       mrg 
    108   1.149.2.4      yamt callout_t sched_pstats_ch;
    109   1.149.2.4      yamt unsigned int sched_pstats_ticks;
    110        1.34  christos 
    111   1.149.2.4      yamt kcondvar_t	lbolt;			/* once a second sleep address */
    112        1.26       cgd 
    113   1.149.2.4      yamt static void	sched_unsleep(struct lwp *);
    114   1.149.2.4      yamt static void	sched_changepri(struct lwp *, pri_t);
    115   1.149.2.4      yamt static void	sched_lendpri(struct lwp *, pri_t);
    116       1.122   thorpej 
    117   1.149.2.3      yamt syncobj_t sleep_syncobj = {
    118   1.149.2.3      yamt 	SOBJ_SLEEPQ_SORTED,
    119   1.149.2.3      yamt 	sleepq_unsleep,
    120   1.149.2.4      yamt 	sleepq_changepri,
    121   1.149.2.4      yamt 	sleepq_lendpri,
    122   1.149.2.4      yamt 	syncobj_noowner,
    123   1.149.2.3      yamt };
    124   1.149.2.3      yamt 
    125   1.149.2.3      yamt syncobj_t sched_syncobj = {
    126   1.149.2.3      yamt 	SOBJ_SLEEPQ_SORTED,
    127   1.149.2.3      yamt 	sched_unsleep,
    128   1.149.2.4      yamt 	sched_changepri,
    129   1.149.2.4      yamt 	sched_lendpri,
    130   1.149.2.4      yamt 	syncobj_noowner,
    131   1.149.2.3      yamt };
    132       1.122   thorpej 
    133        1.26       cgd /*
    134   1.149.2.3      yamt  * During autoconfiguration or after a panic, a sleep will simply lower the
    135   1.149.2.3      yamt  * priority briefly to allow interrupts, then return.  The priority to be
    136   1.149.2.3      yamt  * used (safepri) is machine-dependent, thus this value is initialized and
    137   1.149.2.3      yamt  * maintained in the machine-dependent layers.  This priority will typically
    138   1.149.2.3      yamt  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    139   1.149.2.3      yamt  * it can be made higher to block network software interrupts after panics.
    140        1.26       cgd  */
    141   1.149.2.3      yamt int	safepri;
    142        1.26       cgd 
    143        1.26       cgd /*
    144   1.149.2.3      yamt  * OBSOLETE INTERFACE
    145   1.149.2.3      yamt  *
    146        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    147        1.26       cgd  * performed on the specified identifier.  The process will then be made
    148   1.149.2.3      yamt  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    149   1.149.2.3      yamt  * means no timeout).  If pri includes PCATCH flag, signals are checked
    150        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    151        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    152        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    153        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    154        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    155        1.77   thorpej  *
    156   1.149.2.3      yamt  * The interlock is held until we are on a sleep queue. The interlock will
    157   1.149.2.3      yamt  * be locked before returning back to the caller unless the PNORELOCK flag
    158   1.149.2.3      yamt  * is specified, in which case the interlock will always be unlocked upon
    159   1.149.2.3      yamt  * return.
    160        1.26       cgd  */
    161        1.26       cgd int
    162   1.149.2.4      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    163   1.149.2.3      yamt 	volatile struct simplelock *interlock)
    164        1.26       cgd {
    165       1.122   thorpej 	struct lwp *l = curlwp;
    166   1.149.2.3      yamt 	sleepq_t *sq;
    167   1.149.2.4      yamt 	int error;
    168        1.26       cgd 
    169   1.149.2.6      yamt 	KASSERT((l->l_pflag & LP_INTR) == 0);
    170   1.149.2.6      yamt 
    171   1.149.2.3      yamt 	if (sleepq_dontsleep(l)) {
    172   1.149.2.3      yamt 		(void)sleepq_abort(NULL, 0);
    173   1.149.2.3      yamt 		if ((priority & PNORELOCK) != 0)
    174        1.77   thorpej 			simple_unlock(interlock);
    175   1.149.2.3      yamt 		return 0;
    176       1.122   thorpej 	}
    177        1.77   thorpej 
    178   1.149.2.6      yamt 	l->l_kpriority = true;
    179   1.149.2.3      yamt 	sq = sleeptab_lookup(&sleeptab, ident);
    180   1.149.2.3      yamt 	sleepq_enter(sq, l);
    181   1.149.2.6      yamt 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    182        1.77   thorpej 
    183   1.149.2.3      yamt 	if (interlock != NULL) {
    184   1.149.2.6      yamt 		KASSERT(simple_lock_held(interlock));
    185        1.77   thorpej 		simple_unlock(interlock);
    186        1.26       cgd 	}
    187       1.147     perry 
    188   1.149.2.4      yamt 	error = sleepq_block(timo, priority & PCATCH);
    189       1.139        cl 
    190   1.149.2.3      yamt 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    191   1.149.2.3      yamt 		simple_lock(interlock);
    192   1.149.2.3      yamt 
    193   1.149.2.3      yamt 	return error;
    194       1.139        cl }
    195       1.139        cl 
    196   1.149.2.4      yamt int
    197   1.149.2.4      yamt mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    198   1.149.2.4      yamt 	kmutex_t *mtx)
    199   1.149.2.4      yamt {
    200   1.149.2.4      yamt 	struct lwp *l = curlwp;
    201   1.149.2.4      yamt 	sleepq_t *sq;
    202   1.149.2.4      yamt 	int error;
    203   1.149.2.4      yamt 
    204   1.149.2.6      yamt 	KASSERT((l->l_pflag & LP_INTR) == 0);
    205   1.149.2.6      yamt 
    206   1.149.2.4      yamt 	if (sleepq_dontsleep(l)) {
    207   1.149.2.4      yamt 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    208   1.149.2.4      yamt 		return 0;
    209   1.149.2.4      yamt 	}
    210   1.149.2.4      yamt 
    211   1.149.2.6      yamt 	l->l_kpriority = true;
    212   1.149.2.4      yamt 	sq = sleeptab_lookup(&sleeptab, ident);
    213   1.149.2.4      yamt 	sleepq_enter(sq, l);
    214   1.149.2.6      yamt 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    215   1.149.2.4      yamt 	mutex_exit(mtx);
    216   1.149.2.4      yamt 	error = sleepq_block(timo, priority & PCATCH);
    217   1.149.2.4      yamt 
    218   1.149.2.4      yamt 	if ((priority & PNORELOCK) == 0)
    219   1.149.2.4      yamt 		mutex_enter(mtx);
    220   1.149.2.4      yamt 
    221   1.149.2.4      yamt 	return error;
    222   1.149.2.4      yamt }
    223   1.149.2.4      yamt 
    224        1.26       cgd /*
    225   1.149.2.3      yamt  * General sleep call for situations where a wake-up is not expected.
    226        1.63   thorpej  */
    227   1.149.2.3      yamt int
    228   1.149.2.3      yamt kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    229        1.83   thorpej {
    230   1.149.2.3      yamt 	struct lwp *l = curlwp;
    231   1.149.2.3      yamt 	sleepq_t *sq;
    232   1.149.2.3      yamt 	int error;
    233        1.83   thorpej 
    234   1.149.2.3      yamt 	if (sleepq_dontsleep(l))
    235   1.149.2.3      yamt 		return sleepq_abort(NULL, 0);
    236        1.63   thorpej 
    237   1.149.2.3      yamt 	if (mtx != NULL)
    238   1.149.2.3      yamt 		mutex_exit(mtx);
    239   1.149.2.6      yamt 	l->l_kpriority = true;
    240   1.149.2.3      yamt 	sq = sleeptab_lookup(&sleeptab, l);
    241   1.149.2.3      yamt 	sleepq_enter(sq, l);
    242   1.149.2.6      yamt 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    243   1.149.2.4      yamt 	error = sleepq_block(timo, intr);
    244   1.149.2.3      yamt 	if (mtx != NULL)
    245   1.149.2.3      yamt 		mutex_enter(mtx);
    246        1.83   thorpej 
    247   1.149.2.3      yamt 	return error;
    248        1.83   thorpej }
    249        1.83   thorpej 
    250        1.63   thorpej /*
    251   1.149.2.3      yamt  * OBSOLETE INTERFACE
    252   1.149.2.3      yamt  *
    253        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    254        1.26       cgd  */
    255        1.26       cgd void
    256   1.149.2.3      yamt wakeup(wchan_t ident)
    257        1.26       cgd {
    258   1.149.2.3      yamt 	sleepq_t *sq;
    259        1.83   thorpej 
    260   1.149.2.3      yamt 	if (cold)
    261   1.149.2.3      yamt 		return;
    262        1.83   thorpej 
    263   1.149.2.3      yamt 	sq = sleeptab_lookup(&sleeptab, ident);
    264   1.149.2.3      yamt 	sleepq_wake(sq, ident, (u_int)-1);
    265        1.63   thorpej }
    266        1.63   thorpej 
    267        1.63   thorpej /*
    268   1.149.2.3      yamt  * OBSOLETE INTERFACE
    269   1.149.2.3      yamt  *
    270        1.63   thorpej  * Make the highest priority process first in line on the specified
    271        1.63   thorpej  * identifier runnable.
    272        1.63   thorpej  */
    273   1.149.2.3      yamt void
    274   1.149.2.3      yamt wakeup_one(wchan_t ident)
    275        1.63   thorpej {
    276   1.149.2.3      yamt 	sleepq_t *sq;
    277        1.63   thorpej 
    278   1.149.2.3      yamt 	if (cold)
    279   1.149.2.3      yamt 		return;
    280   1.149.2.4      yamt 
    281   1.149.2.3      yamt 	sq = sleeptab_lookup(&sleeptab, ident);
    282   1.149.2.3      yamt 	sleepq_wake(sq, ident, 1);
    283       1.117  gmcgarry }
    284       1.117  gmcgarry 
    285   1.149.2.3      yamt 
    286       1.117  gmcgarry /*
    287       1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    288       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    289   1.149.2.5      yamt  * current process explicitly requests it (eg sched_yield(2)).
    290       1.117  gmcgarry  */
    291       1.117  gmcgarry void
    292       1.117  gmcgarry yield(void)
    293       1.117  gmcgarry {
    294       1.122   thorpej 	struct lwp *l = curlwp;
    295       1.117  gmcgarry 
    296   1.149.2.3      yamt 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    297   1.149.2.3      yamt 	lwp_lock(l);
    298   1.149.2.9      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    299   1.149.2.4      yamt 	KASSERT(l->l_stat == LSONPROC);
    300   1.149.2.6      yamt 	l->l_kpriority = false;
    301   1.149.2.6      yamt 	if (l->l_class == SCHED_OTHER) {
    302   1.149.2.6      yamt 		/*
    303   1.149.2.6      yamt 		 * Only for timeshared threads.  It will be reset
    304   1.149.2.6      yamt 		 * by the scheduler in due course.
    305   1.149.2.6      yamt 		 */
    306   1.149.2.6      yamt 		l->l_priority = 0;
    307   1.149.2.6      yamt 	}
    308   1.149.2.4      yamt 	(void)mi_switch(l);
    309   1.149.2.3      yamt 	KERNEL_LOCK(l->l_biglocks, l);
    310        1.69   thorpej }
    311        1.69   thorpej 
    312        1.69   thorpej /*
    313        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    314   1.149.2.1      yamt  * and performs an involuntary context switch.
    315        1.69   thorpej  */
    316        1.69   thorpej void
    317   1.149.2.3      yamt preempt(void)
    318        1.69   thorpej {
    319       1.122   thorpej 	struct lwp *l = curlwp;
    320        1.69   thorpej 
    321   1.149.2.3      yamt 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    322   1.149.2.3      yamt 	lwp_lock(l);
    323   1.149.2.9      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    324   1.149.2.4      yamt 	KASSERT(l->l_stat == LSONPROC);
    325   1.149.2.6      yamt 	l->l_kpriority = false;
    326   1.149.2.3      yamt 	l->l_nivcsw++;
    327   1.149.2.4      yamt 	(void)mi_switch(l);
    328   1.149.2.3      yamt 	KERNEL_LOCK(l->l_biglocks, l);
    329        1.69   thorpej }
    330        1.69   thorpej 
    331        1.69   thorpej /*
    332   1.149.2.4      yamt  * Compute the amount of time during which the current lwp was running.
    333       1.130   nathanw  *
    334   1.149.2.4      yamt  * - update l_rtime unless it's an idle lwp.
    335   1.149.2.4      yamt  */
    336   1.149.2.4      yamt 
    337   1.149.2.5      yamt void
    338   1.149.2.8      yamt updatertime(lwp_t *l, const struct bintime *now)
    339   1.149.2.4      yamt {
    340   1.149.2.4      yamt 
    341   1.149.2.5      yamt 	if ((l->l_flag & LW_IDLE) != 0)
    342   1.149.2.4      yamt 		return;
    343   1.149.2.4      yamt 
    344   1.149.2.8      yamt 	/* rtime += now - stime */
    345   1.149.2.8      yamt 	bintime_add(&l->l_rtime, now);
    346   1.149.2.8      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    347   1.149.2.4      yamt }
    348   1.149.2.4      yamt 
    349   1.149.2.4      yamt /*
    350   1.149.2.4      yamt  * The machine independent parts of context switch.
    351   1.149.2.4      yamt  *
    352   1.149.2.4      yamt  * Returns 1 if another LWP was actually run.
    353        1.26       cgd  */
    354       1.122   thorpej int
    355   1.149.2.5      yamt mi_switch(lwp_t *l)
    356        1.26       cgd {
    357   1.149.2.8      yamt 	struct cpu_info *ci, *tci = NULL;
    358        1.76   thorpej 	struct schedstate_percpu *spc;
    359   1.149.2.4      yamt 	struct lwp *newl;
    360   1.149.2.3      yamt 	int retval, oldspl;
    361   1.149.2.8      yamt 	struct bintime bt;
    362   1.149.2.5      yamt 	bool returning;
    363        1.85  sommerfe 
    364   1.149.2.4      yamt 	KASSERT(lwp_locked(l, NULL));
    365   1.149.2.4      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    366        1.76   thorpej 
    367   1.149.2.3      yamt #ifdef KSTACK_CHECK_MAGIC
    368   1.149.2.3      yamt 	kstack_check_magic(l);
    369   1.149.2.3      yamt #endif
    370   1.149.2.3      yamt 
    371   1.149.2.8      yamt 	binuptime(&bt);
    372   1.149.2.5      yamt 
    373   1.149.2.7      yamt 	KDASSERT(l->l_cpu == curcpu());
    374   1.149.2.5      yamt 	ci = l->l_cpu;
    375   1.149.2.5      yamt 	spc = &ci->ci_schedstate;
    376   1.149.2.5      yamt 	returning = false;
    377   1.149.2.4      yamt 	newl = NULL;
    378   1.149.2.4      yamt 
    379   1.149.2.5      yamt 	/*
    380   1.149.2.5      yamt 	 * If we have been asked to switch to a specific LWP, then there
    381   1.149.2.5      yamt 	 * is no need to inspect the run queues.  If a soft interrupt is
    382   1.149.2.5      yamt 	 * blocking, then return to the interrupted thread without adjusting
    383   1.149.2.5      yamt 	 * VM context or its start time: neither have been changed in order
    384   1.149.2.5      yamt 	 * to take the interrupt.
    385   1.149.2.5      yamt 	 */
    386   1.149.2.4      yamt 	if (l->l_switchto != NULL) {
    387   1.149.2.6      yamt 		if ((l->l_pflag & LP_INTR) != 0) {
    388   1.149.2.5      yamt 			returning = true;
    389   1.149.2.5      yamt 			softint_block(l);
    390   1.149.2.5      yamt 			if ((l->l_flag & LW_TIMEINTR) != 0)
    391   1.149.2.8      yamt 				updatertime(l, &bt);
    392   1.149.2.5      yamt 		}
    393   1.149.2.4      yamt 		newl = l->l_switchto;
    394   1.149.2.4      yamt 		l->l_switchto = NULL;
    395        1.26       cgd 	}
    396   1.149.2.6      yamt #ifndef __HAVE_FAST_SOFTINTS
    397   1.149.2.6      yamt 	else if (ci->ci_data.cpu_softints != 0) {
    398   1.149.2.6      yamt 		/* There are pending soft interrupts, so pick one. */
    399   1.149.2.6      yamt 		newl = softint_picklwp();
    400   1.149.2.6      yamt 		newl->l_stat = LSONPROC;
    401   1.149.2.6      yamt 		newl->l_flag |= LW_RUNNING;
    402   1.149.2.6      yamt 	}
    403   1.149.2.6      yamt #endif	/* !__HAVE_FAST_SOFTINTS */
    404   1.149.2.3      yamt 
    405   1.149.2.3      yamt 	/* Count time spent in current system call */
    406   1.149.2.5      yamt 	if (!returning) {
    407   1.149.2.5      yamt 		SYSCALL_TIME_SLEEP(l);
    408        1.26       cgd 
    409   1.149.2.5      yamt 		/*
    410   1.149.2.5      yamt 		 * XXXSMP If we are using h/w performance counters,
    411   1.149.2.5      yamt 		 * save context.
    412   1.149.2.5      yamt 		 */
    413   1.149.2.3      yamt #if PERFCTRS
    414   1.149.2.5      yamt 		if (PMC_ENABLED(l->l_proc)) {
    415   1.149.2.5      yamt 			pmc_save_context(l->l_proc);
    416   1.149.2.5      yamt 		}
    417       1.109      yamt #endif
    418   1.149.2.8      yamt 		updatertime(l, &bt);
    419   1.149.2.5      yamt 	}
    420       1.113  gmcgarry 
    421       1.113  gmcgarry 	/*
    422   1.149.2.3      yamt 	 * If on the CPU and we have gotten this far, then we must yield.
    423       1.113  gmcgarry 	 */
    424   1.149.2.3      yamt 	KASSERT(l->l_stat != LSRUN);
    425   1.149.2.8      yamt 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    426   1.149.2.9      yamt 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    427   1.149.2.8      yamt 
    428  1.149.2.10      yamt 		if (l->l_target_cpu == l->l_cpu) {
    429  1.149.2.10      yamt 			l->l_target_cpu = NULL;
    430  1.149.2.10      yamt 		} else {
    431  1.149.2.10      yamt 			tci = l->l_target_cpu;
    432  1.149.2.10      yamt 		}
    433  1.149.2.10      yamt 
    434   1.149.2.8      yamt 		if (__predict_false(tci != NULL)) {
    435   1.149.2.8      yamt 			/* Double-lock the runqueues */
    436   1.149.2.8      yamt 			spc_dlock(ci, tci);
    437   1.149.2.8      yamt 		} else {
    438   1.149.2.8      yamt 			/* Lock the runqueue */
    439   1.149.2.8      yamt 			spc_lock(ci);
    440   1.149.2.8      yamt 		}
    441   1.149.2.8      yamt 
    442   1.149.2.4      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    443   1.149.2.4      yamt 			l->l_stat = LSRUN;
    444   1.149.2.8      yamt 			if (__predict_false(tci != NULL)) {
    445   1.149.2.8      yamt 				/*
    446   1.149.2.8      yamt 				 * Set the new CPU, lock and unset the
    447   1.149.2.8      yamt 				 * l_target_cpu - thread will be enqueued
    448   1.149.2.8      yamt 				 * to the runqueue of target CPU.
    449   1.149.2.8      yamt 				 */
    450   1.149.2.8      yamt 				l->l_cpu = tci;
    451   1.149.2.8      yamt 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    452   1.149.2.8      yamt 				l->l_target_cpu = NULL;
    453   1.149.2.8      yamt 			} else {
    454   1.149.2.8      yamt 				lwp_setlock(l, spc->spc_mutex);
    455   1.149.2.8      yamt 			}
    456   1.149.2.4      yamt 			sched_enqueue(l, true);
    457   1.149.2.8      yamt 		} else {
    458   1.149.2.8      yamt 			KASSERT(tci == NULL);
    459   1.149.2.4      yamt 			l->l_stat = LSIDL;
    460   1.149.2.8      yamt 		}
    461   1.149.2.8      yamt 	} else {
    462   1.149.2.8      yamt 		/* Lock the runqueue */
    463   1.149.2.8      yamt 		spc_lock(ci);
    464   1.149.2.3      yamt 	}
    465   1.149.2.3      yamt 
    466   1.149.2.3      yamt 	/*
    467   1.149.2.5      yamt 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    468   1.149.2.7      yamt 	 * If no LWP is runnable, select the idle LWP.
    469   1.149.2.7      yamt 	 *
    470   1.149.2.7      yamt 	 * Note that spc_lwplock might not necessary be held, and
    471   1.149.2.7      yamt 	 * new thread would be unlocked after setting the LWP-lock.
    472   1.149.2.3      yamt 	 */
    473   1.149.2.4      yamt 	if (newl == NULL) {
    474   1.149.2.4      yamt 		newl = sched_nextlwp();
    475   1.149.2.4      yamt 		if (newl != NULL) {
    476   1.149.2.4      yamt 			sched_dequeue(newl);
    477   1.149.2.4      yamt 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    478   1.149.2.4      yamt 			newl->l_stat = LSONPROC;
    479   1.149.2.5      yamt 			newl->l_cpu = ci;
    480   1.149.2.4      yamt 			newl->l_flag |= LW_RUNNING;
    481   1.149.2.9      yamt 			lwp_setlock(newl, spc->spc_lwplock);
    482   1.149.2.4      yamt 		} else {
    483   1.149.2.5      yamt 			newl = ci->ci_data.cpu_idlelwp;
    484   1.149.2.4      yamt 			newl->l_stat = LSONPROC;
    485   1.149.2.4      yamt 			newl->l_flag |= LW_RUNNING;
    486   1.149.2.4      yamt 		}
    487   1.149.2.6      yamt 		/*
    488   1.149.2.6      yamt 		 * Only clear want_resched if there are no
    489   1.149.2.6      yamt 		 * pending (slow) software interrupts.
    490   1.149.2.6      yamt 		 */
    491   1.149.2.6      yamt 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    492   1.149.2.5      yamt 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    493   1.149.2.6      yamt 		spc->spc_curpriority = lwp_eprio(newl);
    494   1.149.2.5      yamt 	}
    495   1.149.2.5      yamt 
    496   1.149.2.6      yamt 	/* Items that must be updated with the CPU locked. */
    497   1.149.2.5      yamt 	if (!returning) {
    498   1.149.2.6      yamt 		/* Update the new LWP's start time. */
    499   1.149.2.8      yamt 		newl->l_stime = bt;
    500   1.149.2.6      yamt 
    501   1.149.2.5      yamt 		/*
    502   1.149.2.6      yamt 		 * ci_curlwp changes when a fast soft interrupt occurs.
    503   1.149.2.6      yamt 		 * We use cpu_onproc to keep track of which kernel or
    504   1.149.2.6      yamt 		 * user thread is running 'underneath' the software
    505   1.149.2.6      yamt 		 * interrupt.  This is important for time accounting,
    506   1.149.2.6      yamt 		 * itimers and forcing user threads to preempt (aston).
    507   1.149.2.5      yamt 		 */
    508   1.149.2.6      yamt 		ci->ci_data.cpu_onproc = newl;
    509   1.149.2.4      yamt 	}
    510   1.149.2.3      yamt 
    511   1.149.2.4      yamt 	if (l != newl) {
    512   1.149.2.4      yamt 		struct lwp *prevlwp;
    513   1.149.2.3      yamt 
    514   1.149.2.7      yamt 		/* Release all locks, but leave the current LWP locked */
    515   1.149.2.8      yamt 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    516   1.149.2.8      yamt 			/*
    517   1.149.2.8      yamt 			 * In case of migration, drop the local runqueue
    518   1.149.2.8      yamt 			 * lock, thread is on other runqueue now.
    519   1.149.2.8      yamt 			 */
    520   1.149.2.8      yamt 			if (__predict_false(tci != NULL))
    521   1.149.2.8      yamt 				spc_unlock(ci);
    522   1.149.2.7      yamt 			/*
    523   1.149.2.7      yamt 			 * Drop spc_lwplock, if the current LWP has been moved
    524   1.149.2.7      yamt 			 * to the run queue (it is now locked by spc_mutex).
    525   1.149.2.7      yamt 			 */
    526   1.149.2.9      yamt 			mutex_spin_exit(spc->spc_lwplock);
    527   1.149.2.4      yamt 		} else {
    528   1.149.2.7      yamt 			/*
    529   1.149.2.7      yamt 			 * Otherwise, drop the spc_mutex, we are done with the
    530   1.149.2.7      yamt 			 * run queues.
    531   1.149.2.7      yamt 			 */
    532   1.149.2.4      yamt 			mutex_spin_exit(spc->spc_mutex);
    533   1.149.2.8      yamt 			KASSERT(tci == NULL);
    534   1.149.2.4      yamt 		}
    535   1.149.2.4      yamt 
    536   1.149.2.7      yamt 		/*
    537   1.149.2.7      yamt 		 * Mark that context switch is going to be perfomed
    538   1.149.2.7      yamt 		 * for this LWP, to protect it from being switched
    539   1.149.2.7      yamt 		 * to on another CPU.
    540   1.149.2.7      yamt 		 */
    541   1.149.2.7      yamt 		KASSERT(l->l_ctxswtch == 0);
    542   1.149.2.7      yamt 		l->l_ctxswtch = 1;
    543   1.149.2.7      yamt 		l->l_ncsw++;
    544   1.149.2.7      yamt 		l->l_flag &= ~LW_RUNNING;
    545   1.149.2.7      yamt 
    546   1.149.2.7      yamt 		/*
    547   1.149.2.7      yamt 		 * Increase the count of spin-mutexes before the release
    548   1.149.2.7      yamt 		 * of the last lock - we must remain at IPL_SCHED during
    549   1.149.2.7      yamt 		 * the context switch.
    550   1.149.2.7      yamt 		 */
    551   1.149.2.7      yamt 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    552   1.149.2.7      yamt 		ci->ci_mtx_count--;
    553   1.149.2.7      yamt 		lwp_unlock(l);
    554   1.149.2.7      yamt 
    555  1.149.2.10      yamt 		/* Count the context switch on this CPU. */
    556  1.149.2.10      yamt 		ci->ci_data.cpu_nswtch++;
    557   1.149.2.4      yamt 
    558   1.149.2.7      yamt 		/* Update status for lwpctl, if present. */
    559   1.149.2.7      yamt 		if (l->l_lwpctl != NULL)
    560   1.149.2.7      yamt 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    561   1.149.2.7      yamt 
    562   1.149.2.5      yamt 		/*
    563   1.149.2.5      yamt 		 * Save old VM context, unless a soft interrupt
    564   1.149.2.5      yamt 		 * handler is blocking.
    565   1.149.2.5      yamt 		 */
    566   1.149.2.5      yamt 		if (!returning)
    567   1.149.2.5      yamt 			pmap_deactivate(l);
    568   1.149.2.4      yamt 
    569   1.149.2.7      yamt 		/*
    570   1.149.2.7      yamt 		 * We may need to spin-wait for if 'newl' is still
    571   1.149.2.7      yamt 		 * context switching on another CPU.
    572   1.149.2.7      yamt 		 */
    573   1.149.2.7      yamt 		if (newl->l_ctxswtch != 0) {
    574   1.149.2.7      yamt 			u_int count;
    575   1.149.2.7      yamt 			count = SPINLOCK_BACKOFF_MIN;
    576   1.149.2.7      yamt 			while (newl->l_ctxswtch)
    577   1.149.2.7      yamt 				SPINLOCK_BACKOFF(count);
    578   1.149.2.7      yamt 		}
    579   1.149.2.6      yamt 
    580   1.149.2.4      yamt 		/* Switch to the new LWP.. */
    581   1.149.2.6      yamt 		prevlwp = cpu_switchto(l, newl, returning);
    582   1.149.2.6      yamt 		ci = curcpu();
    583   1.149.2.4      yamt 
    584   1.149.2.4      yamt 		/*
    585   1.149.2.7      yamt 		 * Switched away - we have new curlwp.
    586   1.149.2.7      yamt 		 * Restore VM context and IPL.
    587   1.149.2.4      yamt 		 */
    588   1.149.2.7      yamt 		pmap_activate(l);
    589   1.149.2.4      yamt 		if (prevlwp != NULL) {
    590   1.149.2.7      yamt 			/* Normalize the count of the spin-mutexes */
    591   1.149.2.7      yamt 			ci->ci_mtx_count++;
    592   1.149.2.7      yamt 			/* Unmark the state of context switch */
    593   1.149.2.7      yamt 			membar_exit();
    594   1.149.2.7      yamt 			prevlwp->l_ctxswtch = 0;
    595   1.149.2.4      yamt 		}
    596   1.149.2.7      yamt 		splx(oldspl);
    597   1.149.2.6      yamt 
    598   1.149.2.6      yamt 		/* Update status for lwpctl, if present. */
    599  1.149.2.10      yamt 		if (l->l_lwpctl != NULL) {
    600   1.149.2.7      yamt 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    601  1.149.2.10      yamt 			l->l_lwpctl->lc_pctr++;
    602  1.149.2.10      yamt 		}
    603   1.149.2.7      yamt 
    604   1.149.2.7      yamt 		retval = 1;
    605   1.149.2.4      yamt 	} else {
    606   1.149.2.4      yamt 		/* Nothing to do - just unlock and return. */
    607   1.149.2.8      yamt 		KASSERT(tci == NULL);
    608   1.149.2.8      yamt 		spc_unlock(ci);
    609   1.149.2.4      yamt 		lwp_unlock(l);
    610       1.122   thorpej 		retval = 0;
    611       1.122   thorpej 	}
    612       1.110    briggs 
    613   1.149.2.4      yamt 	KASSERT(l == curlwp);
    614   1.149.2.4      yamt 	KASSERT(l->l_stat == LSONPROC);
    615   1.149.2.6      yamt 	KASSERT(l->l_cpu == ci);
    616   1.149.2.4      yamt 
    617       1.110    briggs 	/*
    618   1.149.2.3      yamt 	 * XXXSMP If we are using h/w performance counters, restore context.
    619        1.26       cgd 	 */
    620       1.114  gmcgarry #if PERFCTRS
    621   1.149.2.3      yamt 	if (PMC_ENABLED(l->l_proc)) {
    622   1.149.2.3      yamt 		pmc_restore_context(l->l_proc);
    623   1.149.2.2      yamt 	}
    624       1.114  gmcgarry #endif
    625   1.149.2.3      yamt 	SYSCALL_TIME_WAKEUP(l);
    626   1.149.2.4      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    627   1.149.2.2      yamt 
    628       1.122   thorpej 	return retval;
    629        1.26       cgd }
    630        1.26       cgd 
    631        1.26       cgd /*
    632   1.149.2.3      yamt  * Change process state to be runnable, placing it on the run queue if it is
    633   1.149.2.3      yamt  * in memory, and awakening the swapper if it isn't in memory.
    634   1.149.2.3      yamt  *
    635   1.149.2.3      yamt  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    636        1.26       cgd  */
    637        1.26       cgd void
    638       1.122   thorpej setrunnable(struct lwp *l)
    639        1.26       cgd {
    640       1.122   thorpej 	struct proc *p = l->l_proc;
    641   1.149.2.6      yamt 	struct cpu_info *ci;
    642   1.149.2.3      yamt 	sigset_t *ss;
    643        1.26       cgd 
    644   1.149.2.4      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    645   1.149.2.3      yamt 	KASSERT(mutex_owned(&p->p_smutex));
    646   1.149.2.3      yamt 	KASSERT(lwp_locked(l, NULL));
    647   1.149.2.6      yamt 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    648        1.83   thorpej 
    649       1.122   thorpej 	switch (l->l_stat) {
    650       1.122   thorpej 	case LSSTOP:
    651        1.33   mycroft 		/*
    652        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    653        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    654        1.33   mycroft 		 */
    655   1.149.2.3      yamt 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    656   1.149.2.3      yamt 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    657   1.149.2.3      yamt 				ss = &l->l_sigpend.sp_set;
    658   1.149.2.3      yamt 			else
    659   1.149.2.3      yamt 				ss = &p->p_sigpend.sp_set;
    660   1.149.2.3      yamt 			sigaddset(ss, p->p_xstat);
    661   1.149.2.3      yamt 			signotify(l);
    662        1.53   mycroft 		}
    663   1.149.2.3      yamt 		p->p_nrlwps++;
    664       1.122   thorpej 		break;
    665       1.122   thorpej 	case LSSUSPENDED:
    666   1.149.2.3      yamt 		l->l_flag &= ~LW_WSUSPEND;
    667   1.149.2.3      yamt 		p->p_nrlwps++;
    668   1.149.2.4      yamt 		cv_broadcast(&p->p_lwpcv);
    669   1.149.2.3      yamt 		break;
    670   1.149.2.3      yamt 	case LSSLEEP:
    671   1.149.2.3      yamt 		KASSERT(l->l_wchan != NULL);
    672        1.26       cgd 		break;
    673   1.149.2.3      yamt 	default:
    674   1.149.2.3      yamt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    675        1.26       cgd 	}
    676       1.139        cl 
    677   1.149.2.3      yamt 	/*
    678   1.149.2.3      yamt 	 * If the LWP was sleeping interruptably, then it's OK to start it
    679   1.149.2.3      yamt 	 * again.  If not, mark it as still sleeping.
    680   1.149.2.3      yamt 	 */
    681   1.149.2.3      yamt 	if (l->l_wchan != NULL) {
    682   1.149.2.3      yamt 		l->l_stat = LSSLEEP;
    683   1.149.2.3      yamt 		/* lwp_unsleep() will release the lock. */
    684   1.149.2.3      yamt 		lwp_unsleep(l);
    685   1.149.2.3      yamt 		return;
    686   1.149.2.3      yamt 	}
    687       1.139        cl 
    688   1.149.2.3      yamt 	/*
    689   1.149.2.3      yamt 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    690   1.149.2.3      yamt 	 * about to call mi_switch(), in which case it will yield.
    691   1.149.2.3      yamt 	 */
    692   1.149.2.4      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    693   1.149.2.3      yamt 		l->l_stat = LSONPROC;
    694   1.149.2.3      yamt 		l->l_slptime = 0;
    695   1.149.2.3      yamt 		lwp_unlock(l);
    696   1.149.2.3      yamt 		return;
    697   1.149.2.3      yamt 	}
    698       1.122   thorpej 
    699   1.149.2.3      yamt 	/*
    700   1.149.2.6      yamt 	 * Look for a CPU to run.
    701   1.149.2.6      yamt 	 * Set the LWP runnable.
    702   1.149.2.3      yamt 	 */
    703   1.149.2.6      yamt 	ci = sched_takecpu(l);
    704   1.149.2.6      yamt 	l->l_cpu = ci;
    705   1.149.2.4      yamt 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    706   1.149.2.6      yamt 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    707   1.149.2.6      yamt 		lwp_lock(l);
    708   1.149.2.4      yamt 	}
    709   1.149.2.4      yamt 	sched_setrunnable(l);
    710   1.149.2.3      yamt 	l->l_stat = LSRUN;
    711       1.122   thorpej 	l->l_slptime = 0;
    712   1.149.2.3      yamt 
    713   1.149.2.6      yamt 	/*
    714   1.149.2.6      yamt 	 * If thread is swapped out - wake the swapper to bring it back in.
    715   1.149.2.6      yamt 	 * Otherwise, enter it into a run queue.
    716   1.149.2.6      yamt 	 */
    717   1.149.2.3      yamt 	if (l->l_flag & LW_INMEM) {
    718   1.149.2.4      yamt 		sched_enqueue(l, false);
    719   1.149.2.4      yamt 		resched_cpu(l);
    720   1.149.2.3      yamt 		lwp_unlock(l);
    721   1.149.2.3      yamt 	} else {
    722   1.149.2.3      yamt 		lwp_unlock(l);
    723   1.149.2.3      yamt 		uvm_kick_scheduler();
    724   1.149.2.3      yamt 	}
    725        1.26       cgd }
    726        1.26       cgd 
    727        1.26       cgd /*
    728   1.149.2.3      yamt  * suspendsched:
    729   1.149.2.3      yamt  *
    730   1.149.2.3      yamt  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    731   1.149.2.3      yamt  */
    732        1.94    bouyer void
    733   1.149.2.3      yamt suspendsched(void)
    734        1.94    bouyer {
    735   1.149.2.3      yamt 	CPU_INFO_ITERATOR cii;
    736   1.149.2.3      yamt 	struct cpu_info *ci;
    737       1.122   thorpej 	struct lwp *l;
    738   1.149.2.3      yamt 	struct proc *p;
    739        1.94    bouyer 
    740        1.94    bouyer 	/*
    741   1.149.2.3      yamt 	 * We do this by process in order not to violate the locking rules.
    742        1.94    bouyer 	 */
    743   1.149.2.6      yamt 	mutex_enter(&proclist_lock);
    744   1.149.2.3      yamt 	PROCLIST_FOREACH(p, &allproc) {
    745   1.149.2.3      yamt 		mutex_enter(&p->p_smutex);
    746   1.149.2.3      yamt 
    747   1.149.2.3      yamt 		if ((p->p_flag & PK_SYSTEM) != 0) {
    748   1.149.2.3      yamt 			mutex_exit(&p->p_smutex);
    749        1.94    bouyer 			continue;
    750   1.149.2.3      yamt 		}
    751   1.149.2.3      yamt 
    752   1.149.2.3      yamt 		p->p_stat = SSTOP;
    753   1.149.2.3      yamt 
    754   1.149.2.3      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    755   1.149.2.3      yamt 			if (l == curlwp)
    756   1.149.2.3      yamt 				continue;
    757   1.149.2.3      yamt 
    758   1.149.2.3      yamt 			lwp_lock(l);
    759       1.122   thorpej 
    760        1.97     enami 			/*
    761   1.149.2.3      yamt 			 * Set L_WREBOOT so that the LWP will suspend itself
    762   1.149.2.3      yamt 			 * when it tries to return to user mode.  We want to
    763   1.149.2.3      yamt 			 * try and get to get as many LWPs as possible to
    764   1.149.2.3      yamt 			 * the user / kernel boundary, so that they will
    765   1.149.2.3      yamt 			 * release any locks that they hold.
    766        1.97     enami 			 */
    767   1.149.2.3      yamt 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    768   1.149.2.3      yamt 
    769   1.149.2.3      yamt 			if (l->l_stat == LSSLEEP &&
    770   1.149.2.3      yamt 			    (l->l_flag & LW_SINTR) != 0) {
    771   1.149.2.3      yamt 				/* setrunnable() will release the lock. */
    772   1.149.2.3      yamt 				setrunnable(l);
    773   1.149.2.3      yamt 				continue;
    774   1.149.2.3      yamt 			}
    775   1.149.2.3      yamt 
    776   1.149.2.3      yamt 			lwp_unlock(l);
    777        1.94    bouyer 		}
    778   1.149.2.3      yamt 
    779   1.149.2.3      yamt 		mutex_exit(&p->p_smutex);
    780        1.94    bouyer 	}
    781   1.149.2.6      yamt 	mutex_exit(&proclist_lock);
    782   1.149.2.3      yamt 
    783   1.149.2.3      yamt 	/*
    784   1.149.2.3      yamt 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    785   1.149.2.3      yamt 	 * They'll trap into the kernel and suspend themselves in userret().
    786   1.149.2.3      yamt 	 */
    787   1.149.2.6      yamt 	for (CPU_INFO_FOREACH(cii, ci)) {
    788   1.149.2.6      yamt 		spc_lock(ci);
    789   1.149.2.6      yamt 		cpu_need_resched(ci, RESCHED_IMMED);
    790   1.149.2.6      yamt 		spc_unlock(ci);
    791   1.149.2.6      yamt 	}
    792   1.149.2.3      yamt }
    793   1.149.2.3      yamt 
    794   1.149.2.3      yamt /*
    795   1.149.2.3      yamt  * sched_unsleep:
    796   1.149.2.3      yamt  *
    797   1.149.2.3      yamt  *	The is called when the LWP has not been awoken normally but instead
    798   1.149.2.3      yamt  *	interrupted: for example, if the sleep timed out.  Because of this,
    799   1.149.2.3      yamt  *	it's not a valid action for running or idle LWPs.
    800   1.149.2.3      yamt  */
    801   1.149.2.4      yamt static void
    802   1.149.2.3      yamt sched_unsleep(struct lwp *l)
    803   1.149.2.3      yamt {
    804   1.149.2.3      yamt 
    805   1.149.2.3      yamt 	lwp_unlock(l);
    806   1.149.2.3      yamt 	panic("sched_unsleep");
    807   1.149.2.3      yamt }
    808   1.149.2.3      yamt 
    809   1.149.2.6      yamt void
    810   1.149.2.4      yamt resched_cpu(struct lwp *l)
    811   1.149.2.3      yamt {
    812   1.149.2.4      yamt 	struct cpu_info *ci;
    813   1.149.2.3      yamt 
    814   1.149.2.4      yamt 	/*
    815   1.149.2.4      yamt 	 * XXXSMP
    816   1.149.2.4      yamt 	 * Since l->l_cpu persists across a context switch,
    817   1.149.2.4      yamt 	 * this gives us *very weak* processor affinity, in
    818   1.149.2.4      yamt 	 * that we notify the CPU on which the process last
    819   1.149.2.4      yamt 	 * ran that it should try to switch.
    820   1.149.2.4      yamt 	 *
    821   1.149.2.4      yamt 	 * This does not guarantee that the process will run on
    822   1.149.2.4      yamt 	 * that processor next, because another processor might
    823   1.149.2.4      yamt 	 * grab it the next time it performs a context switch.
    824   1.149.2.4      yamt 	 *
    825   1.149.2.4      yamt 	 * This also does not handle the case where its last
    826   1.149.2.4      yamt 	 * CPU is running a higher-priority process, but every
    827   1.149.2.4      yamt 	 * other CPU is running a lower-priority process.  There
    828   1.149.2.4      yamt 	 * are ways to handle this situation, but they're not
    829   1.149.2.4      yamt 	 * currently very pretty, and we also need to weigh the
    830   1.149.2.4      yamt 	 * cost of moving a process from one CPU to another.
    831   1.149.2.4      yamt 	 */
    832   1.149.2.6      yamt 	ci = l->l_cpu;
    833   1.149.2.6      yamt 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    834   1.149.2.4      yamt 		cpu_need_resched(ci, 0);
    835   1.149.2.4      yamt }
    836   1.149.2.3      yamt 
    837   1.149.2.4      yamt static void
    838   1.149.2.4      yamt sched_changepri(struct lwp *l, pri_t pri)
    839   1.149.2.4      yamt {
    840   1.149.2.4      yamt 
    841   1.149.2.4      yamt 	KASSERT(lwp_locked(l, NULL));
    842   1.149.2.3      yamt 
    843   1.149.2.6      yamt 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    844   1.149.2.6      yamt 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    845   1.149.2.6      yamt 		sched_dequeue(l);
    846   1.149.2.6      yamt 		l->l_priority = pri;
    847   1.149.2.6      yamt 		sched_enqueue(l, false);
    848   1.149.2.6      yamt 	} else {
    849   1.149.2.3      yamt 		l->l_priority = pri;
    850   1.149.2.1      yamt 	}
    851   1.149.2.4      yamt 	resched_cpu(l);
    852   1.149.2.1      yamt }
    853   1.149.2.1      yamt 
    854       1.146      matt static void
    855   1.149.2.4      yamt sched_lendpri(struct lwp *l, pri_t pri)
    856       1.146      matt {
    857   1.149.2.4      yamt 
    858   1.149.2.4      yamt 	KASSERT(lwp_locked(l, NULL));
    859   1.149.2.4      yamt 
    860   1.149.2.6      yamt 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    861   1.149.2.6      yamt 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    862   1.149.2.6      yamt 		sched_dequeue(l);
    863   1.149.2.6      yamt 		l->l_inheritedprio = pri;
    864   1.149.2.6      yamt 		sched_enqueue(l, false);
    865   1.149.2.6      yamt 	} else {
    866   1.149.2.4      yamt 		l->l_inheritedprio = pri;
    867       1.146      matt 	}
    868   1.149.2.4      yamt 	resched_cpu(l);
    869       1.146      matt }
    870       1.146      matt 
    871   1.149.2.4      yamt struct lwp *
    872   1.149.2.4      yamt syncobj_noowner(wchan_t wchan)
    873       1.113  gmcgarry {
    874   1.149.2.3      yamt 
    875   1.149.2.4      yamt 	return NULL;
    876       1.113  gmcgarry }
    877       1.113  gmcgarry 
    878   1.149.2.4      yamt 
    879   1.149.2.4      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    880   1.149.2.4      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    881   1.149.2.4      yamt 
    882   1.149.2.3      yamt /*
    883   1.149.2.4      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    884   1.149.2.4      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    885   1.149.2.4      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    886   1.149.2.4      yamt  *
    887   1.149.2.4      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    888   1.149.2.4      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    889   1.149.2.4      yamt  *
    890   1.149.2.4      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    891   1.149.2.4      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    892   1.149.2.4      yamt  * (more general) method of calculating the %age of CPU used by a process.
    893   1.149.2.3      yamt  */
    894   1.149.2.4      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    895   1.149.2.4      yamt 
    896   1.149.2.4      yamt /*
    897   1.149.2.4      yamt  * sched_pstats:
    898   1.149.2.4      yamt  *
    899   1.149.2.4      yamt  * Update process statistics and check CPU resource allocation.
    900   1.149.2.4      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    901   1.149.2.4      yamt  * priorities.
    902   1.149.2.4      yamt  */
    903   1.149.2.4      yamt /* ARGSUSED */
    904       1.113  gmcgarry void
    905   1.149.2.4      yamt sched_pstats(void *arg)
    906       1.113  gmcgarry {
    907   1.149.2.4      yamt 	struct rlimit *rlim;
    908   1.149.2.4      yamt 	struct lwp *l;
    909   1.149.2.4      yamt 	struct proc *p;
    910   1.149.2.6      yamt 	int sig, clkhz;
    911   1.149.2.4      yamt 	long runtm;
    912   1.149.2.3      yamt 
    913   1.149.2.4      yamt 	sched_pstats_ticks++;
    914   1.149.2.3      yamt 
    915   1.149.2.7      yamt 	mutex_enter(&proclist_lock);
    916   1.149.2.4      yamt 	PROCLIST_FOREACH(p, &allproc) {
    917   1.149.2.4      yamt 		/*
    918   1.149.2.4      yamt 		 * Increment time in/out of memory and sleep time (if
    919   1.149.2.4      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    920   1.149.2.4      yamt 		 * (remember them?) overflow takes 45 days.
    921   1.149.2.4      yamt 		 */
    922   1.149.2.4      yamt 		mutex_enter(&p->p_smutex);
    923   1.149.2.4      yamt 		mutex_spin_enter(&p->p_stmutex);
    924   1.149.2.8      yamt 		runtm = p->p_rtime.sec;
    925   1.149.2.4      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    926   1.149.2.4      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    927   1.149.2.4      yamt 				continue;
    928   1.149.2.4      yamt 			lwp_lock(l);
    929   1.149.2.8      yamt 			runtm += l->l_rtime.sec;
    930   1.149.2.4      yamt 			l->l_swtime++;
    931   1.149.2.5      yamt 			sched_pstats_hook(l);
    932   1.149.2.4      yamt 			lwp_unlock(l);
    933   1.149.2.4      yamt 
    934   1.149.2.4      yamt 			/*
    935   1.149.2.4      yamt 			 * p_pctcpu is only for ps.
    936   1.149.2.4      yamt 			 */
    937   1.149.2.4      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    938   1.149.2.4      yamt 			if (l->l_slptime < 1) {
    939   1.149.2.4      yamt 				clkhz = stathz != 0 ? stathz : hz;
    940   1.149.2.4      yamt #if	(FSHIFT >= CCPU_SHIFT)
    941   1.149.2.4      yamt 				l->l_pctcpu += (clkhz == 100) ?
    942   1.149.2.4      yamt 				    ((fixpt_t)l->l_cpticks) <<
    943   1.149.2.4      yamt 				        (FSHIFT - CCPU_SHIFT) :
    944   1.149.2.4      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    945   1.149.2.4      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    946   1.149.2.4      yamt #else
    947   1.149.2.4      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    948   1.149.2.4      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    949       1.146      matt #endif
    950   1.149.2.4      yamt 				l->l_cpticks = 0;
    951   1.149.2.4      yamt 			}
    952   1.149.2.4      yamt 		}
    953   1.149.2.4      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    954   1.149.2.4      yamt 		mutex_spin_exit(&p->p_stmutex);
    955   1.149.2.3      yamt 
    956   1.149.2.4      yamt 		/*
    957   1.149.2.4      yamt 		 * Check if the process exceeds its CPU resource allocation.
    958   1.149.2.4      yamt 		 * If over max, kill it.
    959   1.149.2.4      yamt 		 */
    960   1.149.2.4      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    961   1.149.2.4      yamt 		sig = 0;
    962   1.149.2.4      yamt 		if (runtm >= rlim->rlim_cur) {
    963   1.149.2.4      yamt 			if (runtm >= rlim->rlim_max)
    964   1.149.2.4      yamt 				sig = SIGKILL;
    965   1.149.2.4      yamt 			else {
    966   1.149.2.4      yamt 				sig = SIGXCPU;
    967   1.149.2.4      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    968   1.149.2.4      yamt 					rlim->rlim_cur += 5;
    969   1.149.2.4      yamt 			}
    970   1.149.2.4      yamt 		}
    971   1.149.2.4      yamt 		mutex_exit(&p->p_smutex);
    972   1.149.2.4      yamt 		if (sig) {
    973   1.149.2.8      yamt 			mutex_enter(&proclist_mutex);
    974   1.149.2.4      yamt 			psignal(p, sig);
    975   1.149.2.8      yamt 			mutex_exit(&proclist_mutex);
    976   1.149.2.4      yamt 		}
    977   1.149.2.3      yamt 	}
    978   1.149.2.7      yamt 	mutex_exit(&proclist_lock);
    979   1.149.2.4      yamt 	uvm_meter();
    980   1.149.2.4      yamt 	cv_wakeup(&lbolt);
    981   1.149.2.4      yamt 	callout_schedule(&sched_pstats_ch, hz);
    982       1.113  gmcgarry }
    983       1.113  gmcgarry 
    984   1.149.2.4      yamt void
    985   1.149.2.4      yamt sched_init(void)
    986   1.149.2.4      yamt {
    987   1.149.2.4      yamt 
    988   1.149.2.7      yamt 	cv_init(&lbolt, "lbolt");
    989   1.149.2.8      yamt 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    990   1.149.2.4      yamt 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    991   1.149.2.4      yamt 	sched_setup();
    992   1.149.2.4      yamt 	sched_pstats(NULL);
    993   1.149.2.4      yamt }
    994