Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.149.2.2
      1  1.149.2.2      yamt /*	$NetBSD: kern_synch.c,v 1.149.2.2 2006/12/30 20:50:06 yamt Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.148   mycroft  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.63   thorpej  * NASA Ames Research Center.
     10      1.148   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11      1.148   mycroft  * by Charles M. Hannum.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     22       1.63   thorpej  *    must display the following acknowledgement:
     23       1.63   thorpej  *	This product includes software developed by the NetBSD
     24       1.63   thorpej  *	Foundation, Inc. and its contributors.
     25       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     27       1.63   thorpej  *    from this software without specific prior written permission.
     28       1.63   thorpej  *
     29       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40       1.63   thorpej  */
     41       1.26       cgd 
     42       1.26       cgd /*-
     43       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     45       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     46       1.26       cgd  * All or some portions of this file are derived from material licensed
     47       1.26       cgd  * to the University of California by American Telephone and Telegraph
     48       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     50       1.26       cgd  *
     51       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     52       1.26       cgd  * modification, are permitted provided that the following conditions
     53       1.26       cgd  * are met:
     54       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     55       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     56       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     58       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     59      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     60       1.26       cgd  *    may be used to endorse or promote products derived from this software
     61       1.26       cgd  *    without specific prior written permission.
     62       1.26       cgd  *
     63       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73       1.26       cgd  * SUCH DAMAGE.
     74       1.26       cgd  *
     75       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76       1.26       cgd  */
     77      1.106     lukem 
     78      1.106     lukem #include <sys/cdefs.h>
     79  1.149.2.2      yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.149.2.2 2006/12/30 20:50:06 yamt Exp $");
     80       1.48       mrg 
     81       1.52  jonathan #include "opt_ddb.h"
     82       1.51   thorpej #include "opt_ktrace.h"
     83      1.109      yamt #include "opt_kstack.h"
     84       1.82   thorpej #include "opt_lockdebug.h"
     85       1.83   thorpej #include "opt_multiprocessor.h"
     86      1.110    briggs #include "opt_perfctrs.h"
     87       1.26       cgd 
     88       1.26       cgd #include <sys/param.h>
     89       1.26       cgd #include <sys/systm.h>
     90       1.68   thorpej #include <sys/callout.h>
     91       1.26       cgd #include <sys/proc.h>
     92       1.26       cgd #include <sys/kernel.h>
     93       1.26       cgd #include <sys/buf.h>
     94      1.111    briggs #if defined(PERFCTRS)
     95      1.110    briggs #include <sys/pmc.h>
     96      1.111    briggs #endif
     97       1.26       cgd #include <sys/signalvar.h>
     98       1.26       cgd #include <sys/resourcevar.h>
     99       1.55      ross #include <sys/sched.h>
    100      1.122   thorpej #include <sys/sa.h>
    101      1.122   thorpej #include <sys/savar.h>
    102  1.149.2.1      yamt #include <sys/kauth.h>
    103       1.47       mrg 
    104       1.47       mrg #include <uvm/uvm_extern.h>
    105       1.47       mrg 
    106       1.26       cgd #ifdef KTRACE
    107       1.26       cgd #include <sys/ktrace.h>
    108       1.26       cgd #endif
    109       1.26       cgd 
    110       1.26       cgd #include <machine/cpu.h>
    111       1.34  christos 
    112       1.26       cgd int	lbolt;			/* once a second sleep address */
    113       1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    114       1.26       cgd 
    115  1.149.2.2      yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    116  1.149.2.2      yamt #define	XXX_SCHED_LOCK		simple_lock(&sched_lock)
    117  1.149.2.2      yamt #define	XXX_SCHED_UNLOCK	simple_unlock(&sched_lock)
    118  1.149.2.2      yamt #else
    119  1.149.2.2      yamt #define	XXX_SCHED_LOCK		/* nothing */
    120  1.149.2.2      yamt #define	XXX_SCHED_UNLOCK	/* nothing */
    121  1.149.2.2      yamt #endif
    122  1.149.2.2      yamt 
    123       1.73   thorpej /*
    124  1.149.2.1      yamt  * Sleep queues.
    125  1.149.2.1      yamt  *
    126  1.149.2.1      yamt  * We're only looking at 7 bits of the address; everything is
    127  1.149.2.1      yamt  * aligned to 4, lots of things are aligned to greater powers
    128  1.149.2.1      yamt  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    129  1.149.2.1      yamt  */
    130  1.149.2.1      yamt #define	SLPQUE_TABLESIZE	128
    131  1.149.2.1      yamt #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    132  1.149.2.1      yamt 
    133  1.149.2.1      yamt #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    134  1.149.2.1      yamt 
    135  1.149.2.1      yamt /*
    136       1.73   thorpej  * The global scheduler state.
    137       1.73   thorpej  */
    138       1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    139  1.149.2.1      yamt volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    140       1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    141       1.73   thorpej 
    142       1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    143       1.83   thorpej 
    144       1.77   thorpej void schedcpu(void *);
    145      1.122   thorpej void updatepri(struct lwp *);
    146       1.77   thorpej void endtsleep(void *);
    147       1.34  christos 
    148  1.149.2.1      yamt inline void sa_awaken(struct lwp *);
    149  1.149.2.1      yamt inline void awaken(struct lwp *);
    150       1.63   thorpej 
    151      1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    152  1.149.2.1      yamt static unsigned int schedcpu_ticks;
    153      1.122   thorpej 
    154      1.122   thorpej 
    155       1.26       cgd /*
    156       1.26       cgd  * Force switch among equal priority processes every 100ms.
    157       1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    158       1.26       cgd  */
    159       1.26       cgd /* ARGSUSED */
    160       1.26       cgd void
    161       1.89  sommerfe roundrobin(struct cpu_info *ci)
    162       1.26       cgd {
    163       1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    164       1.26       cgd 
    165       1.88  sommerfe 	spc->spc_rrticks = rrticks;
    166      1.130   nathanw 
    167      1.122   thorpej 	if (curlwp != NULL) {
    168       1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    169       1.69   thorpej 			/*
    170       1.69   thorpej 			 * The process has already been through a roundrobin
    171       1.69   thorpej 			 * without switching and may be hogging the CPU.
    172       1.69   thorpej 			 * Indicate that the process should yield.
    173       1.69   thorpej 			 */
    174       1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    175       1.69   thorpej 		} else
    176       1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    177       1.69   thorpej 	}
    178       1.87   thorpej 	need_resched(curcpu());
    179       1.26       cgd }
    180       1.26       cgd 
    181  1.149.2.1      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    182  1.149.2.1      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    183  1.149.2.1      yamt 
    184  1.149.2.1      yamt #define	ESTCPU_SHIFT	11
    185  1.149.2.1      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    186  1.149.2.1      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    187  1.149.2.1      yamt 
    188       1.26       cgd /*
    189       1.26       cgd  * Constants for digital decay and forget:
    190       1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    191       1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    192       1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    193       1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    194       1.26       cgd  *
    195       1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    196       1.26       cgd  *
    197       1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    198       1.26       cgd  * That is, the system wants to compute a value of decay such
    199       1.26       cgd  * that the following for loop:
    200       1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    201       1.26       cgd  * 		p_estcpu *= decay;
    202       1.26       cgd  * will compute
    203       1.26       cgd  * 	p_estcpu *= 0.1;
    204       1.26       cgd  * for all values of loadavg:
    205       1.26       cgd  *
    206       1.26       cgd  * Mathematically this loop can be expressed by saying:
    207       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    208       1.26       cgd  *
    209       1.26       cgd  * The system computes decay as:
    210       1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    211       1.26       cgd  *
    212       1.26       cgd  * We wish to prove that the system's computation of decay
    213       1.26       cgd  * will always fulfill the equation:
    214       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    215       1.26       cgd  *
    216       1.26       cgd  * If we compute b as:
    217       1.26       cgd  * 	b = 2 * loadavg
    218       1.26       cgd  * then
    219       1.26       cgd  * 	decay = b / (b + 1)
    220       1.26       cgd  *
    221       1.26       cgd  * We now need to prove two things:
    222       1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    223       1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    224      1.130   nathanw  *
    225       1.26       cgd  * Facts:
    226       1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    227       1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    228       1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    229       1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    230       1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    231       1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    232       1.26       cgd  *         ln(.1) =~ -2.30
    233       1.26       cgd  *
    234       1.26       cgd  * Proof of (1):
    235       1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    236       1.26       cgd  *	solving for factor,
    237       1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    238       1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    239       1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    240       1.26       cgd  *
    241       1.26       cgd  * Proof of (2):
    242       1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    243       1.26       cgd  *	solving for power,
    244       1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    245       1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    246       1.26       cgd  *
    247       1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    248       1.26       cgd  *      loadav: 1       2       3       4
    249       1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    250       1.26       cgd  */
    251       1.26       cgd 
    252       1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    253       1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    254  1.149.2.1      yamt 
    255  1.149.2.1      yamt static fixpt_t
    256  1.149.2.1      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    257  1.149.2.1      yamt {
    258  1.149.2.1      yamt 
    259  1.149.2.1      yamt 	if (estcpu == 0) {
    260  1.149.2.1      yamt 		return 0;
    261  1.149.2.1      yamt 	}
    262  1.149.2.1      yamt 
    263  1.149.2.1      yamt #if !defined(_LP64)
    264  1.149.2.1      yamt 	/* avoid 64bit arithmetics. */
    265  1.149.2.1      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    266  1.149.2.1      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    267  1.149.2.1      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    268  1.149.2.1      yamt 	}
    269  1.149.2.1      yamt #endif /* !defined(_LP64) */
    270  1.149.2.1      yamt 
    271  1.149.2.1      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    272  1.149.2.1      yamt }
    273  1.149.2.1      yamt 
    274  1.149.2.1      yamt /*
    275  1.149.2.1      yamt  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    276  1.149.2.1      yamt  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    277  1.149.2.1      yamt  * less than (1 << ESTCPU_SHIFT).
    278  1.149.2.1      yamt  *
    279  1.149.2.1      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    280  1.149.2.1      yamt  */
    281  1.149.2.1      yamt static fixpt_t
    282  1.149.2.1      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    283  1.149.2.1      yamt {
    284  1.149.2.1      yamt 
    285  1.149.2.1      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    286  1.149.2.1      yamt 		return 0;
    287  1.149.2.1      yamt 	}
    288  1.149.2.1      yamt 
    289  1.149.2.1      yamt 	while (estcpu != 0 && n > 1) {
    290  1.149.2.1      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    291  1.149.2.1      yamt 		n--;
    292  1.149.2.1      yamt 	}
    293  1.149.2.1      yamt 
    294  1.149.2.1      yamt 	return estcpu;
    295  1.149.2.1      yamt }
    296       1.26       cgd 
    297       1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    298       1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    299       1.26       cgd 
    300       1.26       cgd /*
    301       1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    302       1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    303       1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    304       1.26       cgd  *
    305       1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    306       1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    307       1.26       cgd  *
    308       1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    309       1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    310       1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    311       1.26       cgd  */
    312       1.26       cgd #define	CCPU_SHIFT	11
    313       1.26       cgd 
    314       1.26       cgd /*
    315       1.26       cgd  * Recompute process priorities, every hz ticks.
    316       1.26       cgd  */
    317       1.26       cgd /* ARGSUSED */
    318       1.26       cgd void
    319       1.77   thorpej schedcpu(void *arg)
    320       1.26       cgd {
    321       1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    322      1.122   thorpej 	struct lwp *l;
    323       1.71  augustss 	struct proc *p;
    324      1.122   thorpej 	int s, minslp;
    325       1.66      ross 	int clkhz;
    326       1.26       cgd 
    327  1.149.2.1      yamt 	schedcpu_ticks++;
    328  1.149.2.1      yamt 
    329       1.62   thorpej 	proclist_lock_read();
    330      1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    331       1.26       cgd 		/*
    332       1.26       cgd 		 * Increment time in/out of memory and sleep time
    333       1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    334       1.26       cgd 		 * (remember them?) overflow takes 45 days.
    335       1.26       cgd 		 */
    336      1.122   thorpej 		minslp = 2;
    337      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338      1.122   thorpej 			l->l_swtime++;
    339      1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    340      1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    341      1.122   thorpej 				l->l_slptime++;
    342      1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    343      1.122   thorpej 			} else
    344      1.122   thorpej 				minslp = 0;
    345      1.122   thorpej 		}
    346       1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    347       1.26       cgd 		/*
    348       1.26       cgd 		 * If the process has slept the entire second,
    349       1.26       cgd 		 * stop recalculating its priority until it wakes up.
    350       1.26       cgd 		 */
    351      1.122   thorpej 		if (minslp > 1)
    352       1.26       cgd 			continue;
    353       1.26       cgd 		s = splstatclock();	/* prevent state changes */
    354       1.26       cgd 		/*
    355       1.26       cgd 		 * p_pctcpu is only for ps.
    356       1.26       cgd 		 */
    357       1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    358       1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    359       1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    360       1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    361       1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    362       1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    363       1.26       cgd #else
    364       1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    365       1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    366       1.26       cgd #endif
    367       1.26       cgd 		p->p_cpticks = 0;
    368  1.149.2.1      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    369      1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    370      1.120        pk 		SCHED_LOCK(s);
    371      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    372      1.122   thorpej 			if (l->l_slptime > 1)
    373      1.122   thorpej 				continue;
    374      1.122   thorpej 			resetpriority(l);
    375      1.122   thorpej 			if (l->l_priority >= PUSER) {
    376      1.122   thorpej 				if (l->l_stat == LSRUN &&
    377      1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    378      1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    379      1.122   thorpej 					remrunqueue(l);
    380      1.122   thorpej 					l->l_priority = l->l_usrpri;
    381      1.122   thorpej 					setrunqueue(l);
    382      1.122   thorpej 				} else
    383      1.122   thorpej 					l->l_priority = l->l_usrpri;
    384      1.122   thorpej 			}
    385       1.26       cgd 		}
    386      1.120        pk 		SCHED_UNLOCK(s);
    387       1.26       cgd 	}
    388       1.61   thorpej 	proclist_unlock_read();
    389       1.47       mrg 	uvm_meter();
    390       1.67      fvdl 	wakeup((caddr_t)&lbolt);
    391      1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    392       1.26       cgd }
    393       1.26       cgd 
    394       1.26       cgd /*
    395       1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    396       1.26       cgd  */
    397       1.26       cgd void
    398      1.122   thorpej updatepri(struct lwp *l)
    399       1.26       cgd {
    400      1.122   thorpej 	struct proc *p = l->l_proc;
    401       1.83   thorpej 	fixpt_t loadfac;
    402       1.83   thorpej 
    403       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    404  1.149.2.1      yamt 	KASSERT(l->l_slptime > 1);
    405       1.83   thorpej 
    406       1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    407       1.26       cgd 
    408  1.149.2.1      yamt 	l->l_slptime--; /* the first time was done in schedcpu */
    409  1.149.2.1      yamt 	/* XXX NJWLWP */
    410  1.149.2.1      yamt 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    411      1.122   thorpej 	resetpriority(l);
    412       1.26       cgd }
    413       1.26       cgd 
    414       1.26       cgd /*
    415       1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    416       1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    417       1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    418       1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    419       1.26       cgd  * This priority will typically be 0, or the lowest priority
    420       1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    421       1.26       cgd  * higher to block network software interrupts after panics.
    422       1.26       cgd  */
    423       1.26       cgd int safepri;
    424       1.26       cgd 
    425       1.26       cgd /*
    426       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    427       1.26       cgd  * performed on the specified identifier.  The process will then be made
    428       1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    429       1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    430       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    431       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    432       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    433       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    434       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    435       1.77   thorpej  *
    436      1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    437       1.77   thorpej  * interlock will be locked before returning back to the caller
    438       1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    439       1.77   thorpej  * interlock will always be unlocked upon return.
    440       1.26       cgd  */
    441       1.26       cgd int
    442  1.149.2.1      yamt ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    443  1.149.2.1      yamt     volatile struct simplelock *interlock)
    444       1.26       cgd {
    445      1.122   thorpej 	struct lwp *l = curlwp;
    446      1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    447       1.71  augustss 	struct slpque *qp;
    448  1.149.2.1      yamt 	struct sadata_upcall *sau;
    449       1.77   thorpej 	int sig, s;
    450       1.77   thorpej 	int catch = priority & PCATCH;
    451       1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    452      1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    453       1.26       cgd 
    454       1.77   thorpej 	/*
    455       1.77   thorpej 	 * XXXSMP
    456       1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    457       1.77   thorpej 	 * thing to do here really is.
    458      1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    459       1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    460       1.78  sommerfe 	 * how shutdown (barely) works.
    461       1.77   thorpej 	 */
    462      1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    463       1.26       cgd 		/*
    464       1.26       cgd 		 * After a panic, or during autoconfiguration,
    465       1.26       cgd 		 * just give interrupts a chance, then just return;
    466       1.26       cgd 		 * don't run any other procs or panic below,
    467       1.26       cgd 		 * in case this is the idle process and already asleep.
    468       1.26       cgd 		 */
    469       1.42       cgd 		s = splhigh();
    470       1.26       cgd 		splx(safepri);
    471       1.26       cgd 		splx(s);
    472       1.77   thorpej 		if (interlock != NULL && relock == 0)
    473       1.77   thorpej 			simple_unlock(interlock);
    474       1.26       cgd 		return (0);
    475       1.26       cgd 	}
    476       1.78  sommerfe 
    477      1.102   thorpej 	KASSERT(p != NULL);
    478      1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    479       1.42       cgd 
    480       1.42       cgd #ifdef KTRACE
    481       1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    482  1.149.2.1      yamt 		ktrcsw(l, 1, 0);
    483       1.42       cgd #endif
    484       1.77   thorpej 
    485  1.149.2.1      yamt 	/*
    486  1.149.2.1      yamt 	 * XXX We need to allocate the sadata_upcall structure here,
    487  1.149.2.1      yamt 	 * XXX since we can't sleep while waiting for memory inside
    488  1.149.2.1      yamt 	 * XXX sa_upcall().  It would be nice if we could safely
    489  1.149.2.1      yamt 	 * XXX allocate the sadata_upcall structure on the stack, here.
    490  1.149.2.1      yamt 	 */
    491  1.149.2.1      yamt 	if (l->l_flag & L_SA) {
    492  1.149.2.1      yamt 		sau = sadata_upcall_alloc(0);
    493  1.149.2.1      yamt 	} else {
    494  1.149.2.1      yamt 		sau = NULL;
    495  1.149.2.1      yamt 	}
    496  1.149.2.1      yamt 
    497       1.83   thorpej 	SCHED_LOCK(s);
    498       1.42       cgd 
    499       1.26       cgd #ifdef DIAGNOSTIC
    500       1.64   thorpej 	if (ident == NULL)
    501       1.77   thorpej 		panic("ltsleep: ident == NULL");
    502      1.122   thorpej 	if (l->l_stat != LSONPROC)
    503      1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    504      1.122   thorpej 	if (l->l_back != NULL)
    505       1.77   thorpej 		panic("ltsleep: p_back != NULL");
    506       1.26       cgd #endif
    507       1.77   thorpej 
    508      1.122   thorpej 	l->l_wchan = ident;
    509      1.122   thorpej 	l->l_wmesg = wmesg;
    510      1.122   thorpej 	l->l_slptime = 0;
    511      1.122   thorpej 	l->l_priority = priority & PRIMASK;
    512       1.77   thorpej 
    513       1.73   thorpej 	qp = SLPQUE(ident);
    514       1.26       cgd 	if (qp->sq_head == 0)
    515      1.122   thorpej 		qp->sq_head = l;
    516      1.122   thorpej 	else {
    517      1.122   thorpej 		*qp->sq_tailp = l;
    518      1.122   thorpej 	}
    519      1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    520       1.77   thorpej 
    521       1.26       cgd 	if (timo)
    522      1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    523       1.77   thorpej 
    524       1.77   thorpej 	/*
    525       1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    526       1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    527       1.77   thorpej 	 * we do the switch.
    528       1.77   thorpej 	 *
    529       1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    530       1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    531       1.77   thorpej 	 * data structure for the sleep queues at some point.
    532       1.77   thorpej 	 */
    533       1.77   thorpej 	if (interlock != NULL)
    534       1.77   thorpej 		simple_unlock(interlock);
    535       1.77   thorpej 
    536       1.26       cgd 	/*
    537       1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    538       1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    539       1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    540       1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    541       1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    542       1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    543       1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    544       1.26       cgd 	 */
    545       1.26       cgd 	if (catch) {
    546  1.149.2.2      yamt 		XXX_SCHED_UNLOCK;
    547      1.122   thorpej 		l->l_flag |= L_SINTR;
    548      1.137    itojun 		if (((sig = CURSIG(l)) != 0) ||
    549      1.137    itojun 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    550  1.149.2.2      yamt 			XXX_SCHED_LOCK;
    551      1.122   thorpej 			if (l->l_wchan != NULL)
    552      1.122   thorpej 				unsleep(l);
    553      1.122   thorpej 			l->l_stat = LSONPROC;
    554       1.83   thorpej 			SCHED_UNLOCK(s);
    555       1.26       cgd 			goto resume;
    556       1.26       cgd 		}
    557  1.149.2.2      yamt 		XXX_SCHED_LOCK;
    558      1.122   thorpej 		if (l->l_wchan == NULL) {
    559       1.83   thorpej 			SCHED_UNLOCK(s);
    560  1.149.2.2      yamt 			catch = 0;
    561       1.26       cgd 			goto resume;
    562       1.26       cgd 		}
    563       1.26       cgd 	} else
    564       1.26       cgd 		sig = 0;
    565      1.122   thorpej 	l->l_stat = LSSLEEP;
    566      1.122   thorpej 	p->p_nrlwps--;
    567       1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    568       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    569      1.122   thorpej 	if (l->l_flag & L_SA)
    570  1.149.2.1      yamt 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    571      1.122   thorpej 	else
    572      1.122   thorpej 		mi_switch(l, NULL);
    573       1.83   thorpej 
    574  1.149.2.2      yamt #ifdef KERN_SYNCH_BPENDTSLEEP_LABEL
    575  1.149.2.2      yamt 	/*
    576  1.149.2.2      yamt 	 * XXX
    577  1.149.2.2      yamt 	 * gcc4 optimizer will duplicate this asm statement on some arch
    578  1.149.2.2      yamt 	 * and it will cause a multiple symbol definition error in gas.
    579  1.149.2.2      yamt 	 * the kernel Makefile is setup to use -fno-reorder-blocks if
    580  1.149.2.2      yamt 	 * this option is set.
    581  1.149.2.2      yamt 	 */
    582       1.26       cgd 	/* handy breakpoint location after process "wakes" */
    583      1.140    kleink 	__asm(".globl bpendtsleep\nbpendtsleep:");
    584       1.26       cgd #endif
    585      1.122   thorpej 	/*
    586      1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    587      1.122   thorpej 	 * either setrunnable() or awaken().
    588      1.122   thorpej 	 */
    589       1.77   thorpej 
    590       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    591       1.83   thorpej 	splx(s);
    592       1.83   thorpej 
    593       1.77   thorpej  resume:
    594      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    595      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    596      1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    597      1.122   thorpej 
    598      1.122   thorpej 	l->l_flag &= ~L_SINTR;
    599      1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    600      1.135      matt 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    601       1.26       cgd 		if (sig == 0) {
    602       1.26       cgd #ifdef KTRACE
    603       1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    604  1.149.2.1      yamt 				ktrcsw(l, 0, 0);
    605       1.26       cgd #endif
    606       1.77   thorpej 			if (relock && interlock != NULL)
    607       1.77   thorpej 				simple_lock(interlock);
    608       1.26       cgd 			return (EWOULDBLOCK);
    609       1.26       cgd 		}
    610       1.26       cgd 	} else if (timo)
    611      1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    612      1.135      matt 
    613      1.135      matt 	if (catch) {
    614      1.135      matt 		const int cancelled = l->l_flag & L_CANCELLED;
    615      1.135      matt 		l->l_flag &= ~L_CANCELLED;
    616      1.135      matt 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    617       1.26       cgd #ifdef KTRACE
    618      1.135      matt 			if (KTRPOINT(p, KTR_CSW))
    619  1.149.2.1      yamt 				ktrcsw(l, 0, 0);
    620       1.26       cgd #endif
    621      1.135      matt 			if (relock && interlock != NULL)
    622      1.135      matt 				simple_lock(interlock);
    623      1.135      matt 			/*
    624      1.135      matt 			 * If this sleep was canceled, don't let the syscall
    625      1.135      matt 			 * restart.
    626      1.135      matt 			 */
    627      1.135      matt 			if (cancelled ||
    628      1.135      matt 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    629      1.135      matt 				return (EINTR);
    630      1.135      matt 			return (ERESTART);
    631      1.135      matt 		}
    632       1.26       cgd 	}
    633      1.126        pk 
    634      1.126        pk #ifdef KTRACE
    635      1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    636  1.149.2.1      yamt 		ktrcsw(l, 0, 0);
    637      1.126        pk #endif
    638      1.126        pk 	if (relock && interlock != NULL)
    639      1.126        pk 		simple_lock(interlock);
    640      1.126        pk 
    641      1.122   thorpej 	/* XXXNJW this is very much a kluge.
    642      1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    643      1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    644      1.122   thorpej 	 * would be preferred.
    645      1.122   thorpej 	 */
    646      1.137    itojun 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    647      1.122   thorpej 		return (EINTR);
    648       1.26       cgd 	return (0);
    649       1.26       cgd }
    650       1.26       cgd 
    651       1.26       cgd /*
    652       1.26       cgd  * Implement timeout for tsleep.
    653       1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    654       1.26       cgd  * set timeout flag and undo the sleep.  If proc
    655       1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    656       1.26       cgd  */
    657       1.26       cgd void
    658       1.77   thorpej endtsleep(void *arg)
    659       1.26       cgd {
    660      1.122   thorpej 	struct lwp *l;
    661       1.26       cgd 	int s;
    662       1.26       cgd 
    663      1.122   thorpej 	l = (struct lwp *)arg;
    664       1.83   thorpej 	SCHED_LOCK(s);
    665      1.122   thorpej 	if (l->l_wchan) {
    666      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    667      1.122   thorpej 			setrunnable(l);
    668       1.26       cgd 		else
    669      1.122   thorpej 			unsleep(l);
    670      1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    671       1.26       cgd 	}
    672       1.83   thorpej 	SCHED_UNLOCK(s);
    673       1.26       cgd }
    674       1.26       cgd 
    675       1.26       cgd /*
    676       1.26       cgd  * Remove a process from its wait queue
    677       1.26       cgd  */
    678       1.26       cgd void
    679      1.122   thorpej unsleep(struct lwp *l)
    680       1.26       cgd {
    681       1.71  augustss 	struct slpque *qp;
    682      1.122   thorpej 	struct lwp **hp;
    683       1.26       cgd 
    684       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    685       1.83   thorpej 
    686      1.122   thorpej 	if (l->l_wchan) {
    687      1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    688      1.122   thorpej 		while (*hp != l)
    689      1.122   thorpej 			hp = &(*hp)->l_forw;
    690      1.122   thorpej 		*hp = l->l_forw;
    691      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    692       1.26       cgd 			qp->sq_tailp = hp;
    693      1.122   thorpej 		l->l_wchan = 0;
    694       1.26       cgd 	}
    695       1.26       cgd }
    696       1.26       cgd 
    697  1.149.2.1      yamt inline void
    698      1.139        cl sa_awaken(struct lwp *l)
    699      1.139        cl {
    700      1.147     perry 
    701      1.139        cl 	SCHED_ASSERT_LOCKED();
    702      1.139        cl 
    703      1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    704      1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    705      1.139        cl }
    706      1.139        cl 
    707       1.26       cgd /*
    708       1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    709       1.63   thorpej  */
    710  1.149.2.1      yamt inline void
    711      1.122   thorpej awaken(struct lwp *l)
    712       1.63   thorpej {
    713       1.63   thorpej 
    714       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    715      1.130   nathanw 
    716      1.139        cl 	if (l->l_proc->p_sa)
    717      1.139        cl 		sa_awaken(l);
    718      1.139        cl 
    719      1.122   thorpej 	if (l->l_slptime > 1)
    720      1.122   thorpej 		updatepri(l);
    721      1.122   thorpej 	l->l_slptime = 0;
    722      1.122   thorpej 	l->l_stat = LSRUN;
    723      1.122   thorpej 	l->l_proc->p_nrlwps++;
    724       1.93    bouyer 	/*
    725       1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    726      1.119   thorpej 	 * is always better than curpriority on the last CPU on
    727      1.119   thorpej 	 * which it ran.
    728      1.118   thorpej 	 *
    729      1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    730       1.93    bouyer 	 */
    731      1.122   thorpej 	if (l->l_flag & L_INMEM) {
    732      1.122   thorpej 		setrunqueue(l);
    733      1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    734      1.122   thorpej 		need_resched(l->l_cpu);
    735       1.93    bouyer 	} else
    736       1.93    bouyer 		sched_wakeup(&proc0);
    737       1.83   thorpej }
    738       1.83   thorpej 
    739       1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    740       1.83   thorpej void
    741       1.83   thorpej sched_unlock_idle(void)
    742       1.83   thorpej {
    743       1.83   thorpej 
    744       1.83   thorpej 	simple_unlock(&sched_lock);
    745       1.63   thorpej }
    746       1.63   thorpej 
    747       1.83   thorpej void
    748       1.83   thorpej sched_lock_idle(void)
    749       1.83   thorpej {
    750       1.83   thorpej 
    751       1.83   thorpej 	simple_lock(&sched_lock);
    752       1.83   thorpej }
    753       1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    754       1.83   thorpej 
    755       1.63   thorpej /*
    756       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    757       1.26       cgd  */
    758       1.83   thorpej 
    759       1.26       cgd void
    760  1.149.2.1      yamt wakeup(volatile const void *ident)
    761       1.26       cgd {
    762       1.83   thorpej 	int s;
    763       1.83   thorpej 
    764       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    765       1.83   thorpej 
    766       1.83   thorpej 	SCHED_LOCK(s);
    767       1.83   thorpej 	sched_wakeup(ident);
    768       1.83   thorpej 	SCHED_UNLOCK(s);
    769       1.83   thorpej }
    770       1.83   thorpej 
    771       1.83   thorpej void
    772  1.149.2.1      yamt sched_wakeup(volatile const void *ident)
    773       1.83   thorpej {
    774       1.71  augustss 	struct slpque *qp;
    775      1.122   thorpej 	struct lwp *l, **q;
    776       1.26       cgd 
    777       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    778       1.77   thorpej 
    779       1.73   thorpej 	qp = SLPQUE(ident);
    780       1.77   thorpej  restart:
    781      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    782       1.26       cgd #ifdef DIAGNOSTIC
    783      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    784      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    785       1.26       cgd 			panic("wakeup");
    786       1.26       cgd #endif
    787      1.122   thorpej 		if (l->l_wchan == ident) {
    788      1.122   thorpej 			l->l_wchan = 0;
    789      1.122   thorpej 			*q = l->l_forw;
    790      1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    791       1.26       cgd 				qp->sq_tailp = q;
    792      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    793      1.122   thorpej 				awaken(l);
    794       1.26       cgd 				goto restart;
    795       1.26       cgd 			}
    796       1.26       cgd 		} else
    797      1.122   thorpej 			q = &l->l_forw;
    798       1.63   thorpej 	}
    799       1.63   thorpej }
    800       1.63   thorpej 
    801       1.63   thorpej /*
    802       1.63   thorpej  * Make the highest priority process first in line on the specified
    803       1.63   thorpej  * identifier runnable.
    804       1.63   thorpej  */
    805       1.63   thorpej void
    806  1.149.2.1      yamt wakeup_one(volatile const void *ident)
    807       1.63   thorpej {
    808       1.63   thorpej 	struct slpque *qp;
    809      1.122   thorpej 	struct lwp *l, **q;
    810      1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    811      1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    812       1.63   thorpej 	int s;
    813       1.63   thorpej 
    814       1.63   thorpej 	best_sleepp = best_stopp = NULL;
    815       1.63   thorpej 	best_sleepq = best_stopq = NULL;
    816       1.63   thorpej 
    817       1.83   thorpej 	SCHED_LOCK(s);
    818       1.77   thorpej 
    819       1.73   thorpej 	qp = SLPQUE(ident);
    820       1.77   thorpej 
    821      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    822       1.63   thorpej #ifdef DIAGNOSTIC
    823      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    824      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    825       1.63   thorpej 			panic("wakeup_one");
    826       1.63   thorpej #endif
    827      1.122   thorpej 		if (l->l_wchan == ident) {
    828      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    829       1.63   thorpej 				if (best_sleepp == NULL ||
    830      1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    831      1.122   thorpej 					best_sleepp = l;
    832       1.63   thorpej 					best_sleepq = q;
    833       1.63   thorpej 				}
    834       1.63   thorpej 			} else {
    835       1.63   thorpej 				if (best_stopp == NULL ||
    836      1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    837      1.122   thorpej 				    	best_stopp = l;
    838       1.63   thorpej 					best_stopq = q;
    839       1.63   thorpej 				}
    840       1.63   thorpej 			}
    841       1.63   thorpej 		}
    842       1.63   thorpej 	}
    843       1.63   thorpej 
    844       1.63   thorpej 	/*
    845       1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    846       1.63   thorpej 	 * process.
    847       1.63   thorpej 	 */
    848       1.63   thorpej 	if (best_sleepp != NULL) {
    849      1.122   thorpej 		l = best_sleepp;
    850       1.63   thorpej 		q = best_sleepq;
    851       1.63   thorpej 	} else {
    852      1.122   thorpej 		l = best_stopp;
    853       1.63   thorpej 		q = best_stopq;
    854       1.63   thorpej 	}
    855       1.63   thorpej 
    856      1.122   thorpej 	if (l != NULL) {
    857      1.122   thorpej 		l->l_wchan = NULL;
    858      1.122   thorpej 		*q = l->l_forw;
    859      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    860       1.63   thorpej 			qp->sq_tailp = q;
    861      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    862      1.122   thorpej 			awaken(l);
    863       1.26       cgd 	}
    864       1.83   thorpej 	SCHED_UNLOCK(s);
    865      1.117  gmcgarry }
    866      1.117  gmcgarry 
    867      1.117  gmcgarry /*
    868      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    869      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    870      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    871      1.117  gmcgarry  */
    872      1.117  gmcgarry void
    873      1.117  gmcgarry yield(void)
    874      1.117  gmcgarry {
    875      1.122   thorpej 	struct lwp *l = curlwp;
    876      1.117  gmcgarry 	int s;
    877      1.117  gmcgarry 
    878      1.117  gmcgarry 	SCHED_LOCK(s);
    879      1.122   thorpej 	l->l_priority = l->l_usrpri;
    880      1.122   thorpej 	l->l_stat = LSRUN;
    881      1.122   thorpej 	setrunqueue(l);
    882      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    883      1.122   thorpej 	mi_switch(l, NULL);
    884      1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    885      1.117  gmcgarry 	splx(s);
    886       1.69   thorpej }
    887       1.69   thorpej 
    888       1.69   thorpej /*
    889       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    890  1.149.2.1      yamt  * and performs an involuntary context switch.
    891  1.149.2.1      yamt  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    892  1.149.2.1      yamt  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    893  1.149.2.1      yamt  * This will be used to indicate to the SA subsystem that the LWP is
    894  1.149.2.1      yamt  * not yet finished in the kernel.
    895       1.69   thorpej  */
    896      1.122   thorpej 
    897       1.69   thorpej void
    898      1.122   thorpej preempt(int more)
    899       1.69   thorpej {
    900      1.122   thorpej 	struct lwp *l = curlwp;
    901      1.122   thorpej 	int r, s;
    902       1.69   thorpej 
    903       1.83   thorpej 	SCHED_LOCK(s);
    904      1.122   thorpej 	l->l_priority = l->l_usrpri;
    905      1.122   thorpej 	l->l_stat = LSRUN;
    906      1.122   thorpej 	setrunqueue(l);
    907      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    908      1.122   thorpej 	r = mi_switch(l, NULL);
    909       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    910       1.69   thorpej 	splx(s);
    911      1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    912      1.122   thorpej 		sa_preempt(l);
    913       1.69   thorpej }
    914       1.69   thorpej 
    915       1.69   thorpej /*
    916       1.72   thorpej  * The machine independent parts of context switch.
    917       1.86   thorpej  * Must be called at splsched() (no higher!) and with
    918       1.86   thorpej  * the sched_lock held.
    919      1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    920      1.122   thorpej  * the next lwp.
    921      1.130   nathanw  *
    922      1.122   thorpej  * Returns 1 if another process was actually run.
    923       1.26       cgd  */
    924      1.122   thorpej int
    925      1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    926       1.26       cgd {
    927       1.76   thorpej 	struct schedstate_percpu *spc;
    928       1.71  augustss 	struct rlimit *rlim;
    929       1.71  augustss 	long s, u;
    930       1.26       cgd 	struct timeval tv;
    931      1.144      yamt 	int hold_count;
    932      1.122   thorpej 	struct proc *p = l->l_proc;
    933      1.122   thorpej 	int retval;
    934       1.26       cgd 
    935       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    936       1.83   thorpej 
    937       1.90  sommerfe 	/*
    938       1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    939       1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    940       1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    941       1.90  sommerfe 	 */
    942      1.144      yamt 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    943       1.85  sommerfe 
    944      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    945      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    946      1.113  gmcgarry 
    947      1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    948       1.76   thorpej 
    949       1.54       chs #ifdef LOCKDEBUG
    950  1.149.2.1      yamt 	spinlock_switchcheck();
    951       1.81   thorpej 	simple_lock_switchcheck();
    952       1.50      fvdl #endif
    953       1.81   thorpej 
    954       1.26       cgd 	/*
    955       1.26       cgd 	 * Compute the amount of time during which the current
    956      1.113  gmcgarry 	 * process was running.
    957       1.26       cgd 	 */
    958       1.26       cgd 	microtime(&tv);
    959      1.130   nathanw 	u = p->p_rtime.tv_usec +
    960      1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    961       1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    962       1.26       cgd 	if (u < 0) {
    963       1.26       cgd 		u += 1000000;
    964       1.26       cgd 		s--;
    965       1.26       cgd 	} else if (u >= 1000000) {
    966       1.26       cgd 		u -= 1000000;
    967       1.26       cgd 		s++;
    968       1.26       cgd 	}
    969      1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    970      1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    971       1.26       cgd 
    972       1.26       cgd 	/*
    973       1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    974       1.69   thorpej 	 * scheduling flags.
    975       1.69   thorpej 	 */
    976       1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    977      1.109      yamt 
    978      1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    979      1.124      yamt 	kstack_check_magic(l);
    980      1.109      yamt #endif
    981       1.26       cgd 
    982      1.113  gmcgarry 	/*
    983      1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    984      1.113  gmcgarry 	 */
    985      1.114  gmcgarry #if PERFCTRS
    986  1.149.2.2      yamt 	if (PMC_ENABLED(p)) {
    987      1.114  gmcgarry 		pmc_save_context(p);
    988  1.149.2.2      yamt 	}
    989      1.110    briggs #endif
    990      1.113  gmcgarry 
    991      1.113  gmcgarry 	/*
    992      1.114  gmcgarry 	 * Switch to the new current process.  When we
    993      1.114  gmcgarry 	 * run again, we'll return back here.
    994      1.113  gmcgarry 	 */
    995      1.114  gmcgarry 	uvmexp.swtch++;
    996      1.122   thorpej 	if (newl == NULL) {
    997      1.122   thorpej 		retval = cpu_switch(l, NULL);
    998      1.122   thorpej 	} else {
    999      1.122   thorpej 		remrunqueue(newl);
   1000      1.122   thorpej 		cpu_switchto(l, newl);
   1001      1.122   thorpej 		retval = 0;
   1002      1.122   thorpej 	}
   1003      1.110    briggs 
   1004      1.110    briggs 	/*
   1005      1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
   1006       1.26       cgd 	 */
   1007      1.114  gmcgarry #if PERFCTRS
   1008  1.149.2.2      yamt 	if (PMC_ENABLED(p)) {
   1009      1.114  gmcgarry 		pmc_restore_context(p);
   1010  1.149.2.2      yamt 	}
   1011      1.114  gmcgarry #endif
   1012      1.110    briggs 
   1013      1.110    briggs 	/*
   1014      1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
   1015      1.114  gmcgarry 	 * resuming us.
   1016      1.110    briggs 	 */
   1017      1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
   1018       1.83   thorpej 
   1019       1.83   thorpej 	/*
   1020       1.76   thorpej 	 * We're running again; record our new start time.  We might
   1021       1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
   1022       1.76   thorpej 	 * schedstate_percpu pointer.
   1023       1.76   thorpej 	 */
   1024      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
   1025      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
   1026      1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1027       1.85  sommerfe 
   1028       1.90  sommerfe 	/*
   1029       1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
   1030       1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
   1031       1.90  sommerfe 	 * we reacquire the interlock.
   1032       1.90  sommerfe 	 */
   1033      1.144      yamt 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1034      1.122   thorpej 
   1035  1.149.2.2      yamt 	/*
   1036  1.149.2.2      yamt 	 * Check if the process exceeds its CPU resource allocation.
   1037  1.149.2.2      yamt 	 * If over max, kill it.  In any case, if it has run for more
   1038  1.149.2.2      yamt 	 * than 10 minutes, reduce priority to give others a chance.
   1039  1.149.2.2      yamt 	 */
   1040  1.149.2.2      yamt 	rlim = &p->p_rlimit[RLIMIT_CPU];
   1041  1.149.2.2      yamt 	if (s >= rlim->rlim_cur) {
   1042  1.149.2.2      yamt 		if (s >= rlim->rlim_max) {
   1043  1.149.2.2      yamt 			psignal(p, SIGKILL);
   1044  1.149.2.2      yamt 		} else {
   1045  1.149.2.2      yamt 			psignal(p, SIGXCPU);
   1046  1.149.2.2      yamt 			if (rlim->rlim_cur < rlim->rlim_max)
   1047  1.149.2.2      yamt 				rlim->rlim_cur += 5;
   1048  1.149.2.2      yamt 		}
   1049  1.149.2.2      yamt 	}
   1050  1.149.2.2      yamt 	if (autonicetime && s > autonicetime &&
   1051  1.149.2.2      yamt 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
   1052  1.149.2.2      yamt 		SCHED_LOCK(s);
   1053  1.149.2.2      yamt 		p->p_nice = autoniceval + NZERO;
   1054  1.149.2.2      yamt 		resetpriority(l);
   1055  1.149.2.2      yamt 		SCHED_UNLOCK(s);
   1056  1.149.2.2      yamt 	}
   1057  1.149.2.2      yamt 
   1058      1.122   thorpej 	return retval;
   1059       1.26       cgd }
   1060       1.26       cgd 
   1061       1.26       cgd /*
   1062       1.26       cgd  * Initialize the (doubly-linked) run queues
   1063       1.26       cgd  * to be empty.
   1064       1.26       cgd  */
   1065       1.26       cgd void
   1066       1.26       cgd rqinit()
   1067       1.26       cgd {
   1068       1.71  augustss 	int i;
   1069       1.26       cgd 
   1070       1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
   1071       1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1072      1.122   thorpej 		    (struct lwp *)&sched_qs[i];
   1073       1.26       cgd }
   1074       1.26       cgd 
   1075  1.149.2.1      yamt static inline void
   1076      1.122   thorpej resched_proc(struct lwp *l, u_char pri)
   1077      1.119   thorpej {
   1078      1.119   thorpej 	struct cpu_info *ci;
   1079      1.119   thorpej 
   1080      1.119   thorpej 	/*
   1081      1.119   thorpej 	 * XXXSMP
   1082      1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
   1083      1.119   thorpej 	 * this gives us *very weak* processor affinity, in
   1084      1.119   thorpej 	 * that we notify the CPU on which the process last
   1085      1.119   thorpej 	 * ran that it should try to switch.
   1086      1.119   thorpej 	 *
   1087      1.119   thorpej 	 * This does not guarantee that the process will run on
   1088      1.119   thorpej 	 * that processor next, because another processor might
   1089      1.119   thorpej 	 * grab it the next time it performs a context switch.
   1090      1.119   thorpej 	 *
   1091      1.119   thorpej 	 * This also does not handle the case where its last
   1092      1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1093      1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1094      1.119   thorpej 	 * are ways to handle this situation, but they're not
   1095      1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1096      1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1097      1.119   thorpej 	 *
   1098      1.119   thorpej 	 * XXXSMP
   1099      1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1100      1.119   thorpej 	 * sched state, which we currently do not do.
   1101      1.119   thorpej 	 */
   1102      1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1103      1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1104      1.119   thorpej 		need_resched(ci);
   1105      1.119   thorpej }
   1106      1.119   thorpej 
   1107       1.26       cgd /*
   1108       1.26       cgd  * Change process state to be runnable,
   1109       1.26       cgd  * placing it on the run queue if it is in memory,
   1110       1.26       cgd  * and awakening the swapper if it isn't in memory.
   1111       1.26       cgd  */
   1112       1.26       cgd void
   1113      1.122   thorpej setrunnable(struct lwp *l)
   1114       1.26       cgd {
   1115      1.122   thorpej 	struct proc *p = l->l_proc;
   1116       1.26       cgd 
   1117       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1118       1.83   thorpej 
   1119      1.122   thorpej 	switch (l->l_stat) {
   1120       1.26       cgd 	case 0:
   1121      1.122   thorpej 	case LSRUN:
   1122      1.122   thorpej 	case LSONPROC:
   1123      1.122   thorpej 	case LSZOMB:
   1124      1.122   thorpej 	case LSDEAD:
   1125       1.26       cgd 	default:
   1126      1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1127      1.122   thorpej 	case LSSTOP:
   1128       1.33   mycroft 		/*
   1129       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1130       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1131       1.33   mycroft 		 */
   1132       1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1133       1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1134      1.101   thorpej 			CHECKSIGS(p);
   1135       1.53   mycroft 		}
   1136      1.122   thorpej 	case LSSLEEP:
   1137      1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1138       1.26       cgd 		break;
   1139       1.26       cgd 
   1140      1.122   thorpej 	case LSIDL:
   1141      1.122   thorpej 		break;
   1142      1.122   thorpej 	case LSSUSPENDED:
   1143       1.26       cgd 		break;
   1144       1.26       cgd 	}
   1145      1.139        cl 
   1146      1.139        cl 	if (l->l_proc->p_sa)
   1147      1.139        cl 		sa_awaken(l);
   1148      1.139        cl 
   1149      1.122   thorpej 	l->l_stat = LSRUN;
   1150      1.122   thorpej 	p->p_nrlwps++;
   1151      1.122   thorpej 
   1152      1.122   thorpej 	if (l->l_flag & L_INMEM)
   1153      1.122   thorpej 		setrunqueue(l);
   1154      1.122   thorpej 
   1155      1.122   thorpej 	if (l->l_slptime > 1)
   1156      1.122   thorpej 		updatepri(l);
   1157      1.122   thorpej 	l->l_slptime = 0;
   1158      1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1159       1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1160      1.119   thorpej 	else
   1161      1.122   thorpej 		resched_proc(l, l->l_priority);
   1162       1.26       cgd }
   1163       1.26       cgd 
   1164       1.26       cgd /*
   1165       1.26       cgd  * Compute the priority of a process when running in user mode.
   1166       1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1167       1.26       cgd  * than that of the current process.
   1168       1.26       cgd  */
   1169       1.26       cgd void
   1170      1.122   thorpej resetpriority(struct lwp *l)
   1171       1.26       cgd {
   1172       1.71  augustss 	unsigned int newpriority;
   1173      1.122   thorpej 	struct proc *p = l->l_proc;
   1174       1.26       cgd 
   1175       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1176       1.83   thorpej 
   1177  1.149.2.1      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1178      1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1179       1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1180      1.122   thorpej 	l->l_usrpri = newpriority;
   1181      1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1182      1.122   thorpej }
   1183      1.122   thorpej 
   1184      1.130   nathanw /*
   1185      1.122   thorpej  * Recompute priority for all LWPs in a process.
   1186      1.122   thorpej  */
   1187      1.122   thorpej void
   1188      1.122   thorpej resetprocpriority(struct proc *p)
   1189      1.122   thorpej {
   1190      1.122   thorpej 	struct lwp *l;
   1191      1.122   thorpej 
   1192      1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1193      1.122   thorpej 	    resetpriority(l);
   1194       1.55      ross }
   1195       1.55      ross 
   1196       1.55      ross /*
   1197       1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1198      1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1199       1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1200       1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1201       1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1202      1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1203       1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1204       1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1205       1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1206       1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1207       1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1208       1.56      ross  * processes.
   1209       1.55      ross  */
   1210       1.55      ross 
   1211       1.55      ross void
   1212      1.122   thorpej schedclock(struct lwp *l)
   1213       1.55      ross {
   1214      1.122   thorpej 	struct proc *p = l->l_proc;
   1215       1.83   thorpej 	int s;
   1216       1.77   thorpej 
   1217  1.149.2.1      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1218       1.83   thorpej 	SCHED_LOCK(s);
   1219      1.122   thorpej 	resetpriority(l);
   1220       1.83   thorpej 	SCHED_UNLOCK(s);
   1221      1.130   nathanw 
   1222      1.122   thorpej 	if (l->l_priority >= PUSER)
   1223      1.122   thorpej 		l->l_priority = l->l_usrpri;
   1224       1.26       cgd }
   1225       1.94    bouyer 
   1226       1.94    bouyer void
   1227       1.94    bouyer suspendsched()
   1228       1.94    bouyer {
   1229      1.122   thorpej 	struct lwp *l;
   1230       1.97     enami 	int s;
   1231       1.94    bouyer 
   1232       1.94    bouyer 	/*
   1233      1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1234      1.122   thorpej 	 * LSSUSPENDED.
   1235       1.94    bouyer 	 */
   1236       1.95   thorpej 	proclist_lock_read();
   1237       1.95   thorpej 	SCHED_LOCK(s);
   1238      1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1239      1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1240       1.94    bouyer 			continue;
   1241      1.122   thorpej 
   1242      1.122   thorpej 		switch (l->l_stat) {
   1243      1.122   thorpej 		case LSRUN:
   1244      1.122   thorpej 			l->l_proc->p_nrlwps--;
   1245      1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1246      1.122   thorpej 				remrunqueue(l);
   1247       1.97     enami 			/* FALLTHROUGH */
   1248      1.122   thorpej 		case LSSLEEP:
   1249      1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1250       1.97     enami 			break;
   1251      1.122   thorpej 		case LSONPROC:
   1252       1.97     enami 			/*
   1253       1.97     enami 			 * XXX SMP: we need to deal with processes on
   1254       1.97     enami 			 * others CPU !
   1255       1.97     enami 			 */
   1256       1.97     enami 			break;
   1257       1.97     enami 		default:
   1258       1.97     enami 			break;
   1259       1.94    bouyer 		}
   1260       1.94    bouyer 	}
   1261       1.94    bouyer 	SCHED_UNLOCK(s);
   1262       1.97     enami 	proclist_unlock_read();
   1263       1.94    bouyer }
   1264      1.113  gmcgarry 
   1265      1.113  gmcgarry /*
   1266  1.149.2.1      yamt  * scheduler_fork_hook:
   1267  1.149.2.1      yamt  *
   1268  1.149.2.1      yamt  *	Inherit the parent's scheduler history.
   1269  1.149.2.1      yamt  */
   1270  1.149.2.1      yamt void
   1271  1.149.2.1      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1272  1.149.2.1      yamt {
   1273  1.149.2.1      yamt 
   1274  1.149.2.1      yamt 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1275  1.149.2.1      yamt 	child->p_forktime = schedcpu_ticks;
   1276  1.149.2.1      yamt }
   1277  1.149.2.1      yamt 
   1278  1.149.2.1      yamt /*
   1279  1.149.2.1      yamt  * scheduler_wait_hook:
   1280  1.149.2.1      yamt  *
   1281  1.149.2.1      yamt  *	Chargeback parents for the sins of their children.
   1282  1.149.2.1      yamt  */
   1283  1.149.2.1      yamt void
   1284  1.149.2.1      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1285  1.149.2.1      yamt {
   1286  1.149.2.1      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1287  1.149.2.1      yamt 	fixpt_t estcpu;
   1288  1.149.2.1      yamt 
   1289  1.149.2.1      yamt 	/* XXX Only if parent != init?? */
   1290  1.149.2.1      yamt 
   1291  1.149.2.1      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1292  1.149.2.1      yamt 	    schedcpu_ticks - child->p_forktime);
   1293  1.149.2.1      yamt 	if (child->p_estcpu > estcpu) {
   1294  1.149.2.1      yamt 		parent->p_estcpu =
   1295  1.149.2.1      yamt 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1296  1.149.2.1      yamt 	}
   1297  1.149.2.1      yamt }
   1298  1.149.2.1      yamt 
   1299  1.149.2.1      yamt /*
   1300      1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1301      1.113  gmcgarry  * routines can override these.
   1302      1.113  gmcgarry  */
   1303      1.113  gmcgarry 
   1304      1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1305      1.115  nisimura 
   1306      1.130   nathanw /*
   1307      1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1308      1.134      matt  * than the traditional LSB ordering.
   1309      1.134      matt  */
   1310      1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1311      1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1312      1.134      matt #else
   1313      1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1314      1.134      matt #endif
   1315      1.134      matt 
   1316      1.134      matt /*
   1317      1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1318      1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1319      1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1320      1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1321      1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1322      1.115  nisimura  * available queues.
   1323      1.130   nathanw  */
   1324      1.113  gmcgarry 
   1325      1.146      matt #ifdef RQDEBUG
   1326      1.146      matt static void
   1327      1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1328      1.146      matt {
   1329      1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1330      1.146      matt 	struct lwp *l2;
   1331      1.146      matt 	int found = 0;
   1332      1.146      matt 	int die = 0;
   1333      1.146      matt 	int empty = 1;
   1334  1.149.2.2      yamt 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1335      1.146      matt 		if (l2->l_stat != LSRUN) {
   1336      1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1337      1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1338      1.146      matt 		}
   1339      1.146      matt 		if (l2->l_back->l_forw != l2) {
   1340      1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1341      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1342      1.146      matt 			    l2->l_back->l_forw);
   1343      1.146      matt 			die = 1;
   1344      1.146      matt 		}
   1345      1.146      matt 		if (l2->l_forw->l_back != l2) {
   1346      1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1347      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1348      1.146      matt 			    l2->l_forw->l_back);
   1349      1.146      matt 			die = 1;
   1350      1.146      matt 		}
   1351      1.146      matt 		if (l2 == l)
   1352      1.146      matt 			found = 1;
   1353      1.146      matt 		empty = 0;
   1354      1.146      matt 	}
   1355      1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1356      1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1357      1.146      matt 		    whichq, rq);
   1358      1.146      matt 		die = 1;
   1359      1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1360      1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1361      1.146      matt 		    "run-queue %p\n", whichq, rq);
   1362      1.146      matt 		die = 1;
   1363      1.146      matt 	}
   1364      1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1365      1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1366      1.146      matt 		    whichq, l);
   1367      1.146      matt 		die = 1;
   1368      1.146      matt 	}
   1369      1.146      matt 	if (l != NULL && empty) {
   1370      1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1371      1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1372      1.146      matt 		die = 1;
   1373      1.146      matt 	}
   1374      1.146      matt 	if (l != NULL && !found) {
   1375      1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1376      1.146      matt 		    whichq, l, rq);
   1377      1.146      matt 		die = 1;
   1378      1.146      matt 	}
   1379      1.146      matt 	if (die)
   1380      1.146      matt 		panic("checkrunqueue: inconsistency found");
   1381      1.146      matt }
   1382      1.146      matt #endif /* RQDEBUG */
   1383      1.146      matt 
   1384      1.113  gmcgarry void
   1385      1.122   thorpej setrunqueue(struct lwp *l)
   1386      1.113  gmcgarry {
   1387      1.113  gmcgarry 	struct prochd *rq;
   1388      1.122   thorpej 	struct lwp *prev;
   1389  1.149.2.1      yamt 	const int whichq = l->l_priority / PPQ;
   1390      1.113  gmcgarry 
   1391      1.146      matt #ifdef RQDEBUG
   1392      1.146      matt 	checkrunqueue(whichq, NULL);
   1393      1.146      matt #endif
   1394      1.113  gmcgarry #ifdef DIAGNOSTIC
   1395      1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1396      1.113  gmcgarry 		panic("setrunqueue");
   1397      1.113  gmcgarry #endif
   1398      1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1399      1.113  gmcgarry 	rq = &sched_qs[whichq];
   1400      1.113  gmcgarry 	prev = rq->ph_rlink;
   1401      1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1402      1.122   thorpej 	rq->ph_rlink = l;
   1403      1.122   thorpej 	prev->l_forw = l;
   1404      1.122   thorpej 	l->l_back = prev;
   1405      1.146      matt #ifdef RQDEBUG
   1406      1.146      matt 	checkrunqueue(whichq, l);
   1407      1.146      matt #endif
   1408      1.113  gmcgarry }
   1409      1.113  gmcgarry 
   1410      1.113  gmcgarry void
   1411      1.122   thorpej remrunqueue(struct lwp *l)
   1412      1.113  gmcgarry {
   1413      1.122   thorpej 	struct lwp *prev, *next;
   1414  1.149.2.1      yamt 	const int whichq = l->l_priority / PPQ;
   1415      1.146      matt #ifdef RQDEBUG
   1416      1.146      matt 	checkrunqueue(whichq, l);
   1417      1.146      matt #endif
   1418      1.113  gmcgarry #ifdef DIAGNOSTIC
   1419      1.134      matt 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1420      1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1421      1.113  gmcgarry #endif
   1422      1.122   thorpej 	prev = l->l_back;
   1423      1.122   thorpej 	l->l_back = NULL;
   1424      1.122   thorpej 	next = l->l_forw;
   1425      1.122   thorpej 	prev->l_forw = next;
   1426      1.122   thorpej 	next->l_back = prev;
   1427      1.113  gmcgarry 	if (prev == next)
   1428      1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1429      1.146      matt #ifdef RQDEBUG
   1430      1.146      matt 	checkrunqueue(whichq, NULL);
   1431      1.146      matt #endif
   1432      1.113  gmcgarry }
   1433      1.113  gmcgarry 
   1434      1.134      matt #undef RQMASK
   1435      1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1436