kern_synch.c revision 1.149.2.4 1 1.149.2.4 yamt /* $NetBSD: kern_synch.c,v 1.149.2.4 2007/09/03 14:40:56 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.149.2.3 yamt * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.149.2.4 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.149.2.4 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.149.2.4 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.149.2.4 2007/09/03 14:40:56 yamt Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.149.2.3 yamt #define __MUTEX_PRIVATE
86 1.149.2.3 yamt
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.149.2.4 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.149.2.3 yamt #include <sys/syscall_stats.h>
98 1.149.2.3 yamt #include <sys/sleepq.h>
99 1.149.2.3 yamt #include <sys/lockdebug.h>
100 1.149.2.4 yamt #include <sys/evcnt.h>
101 1.47 mrg
102 1.47 mrg #include <uvm/uvm_extern.h>
103 1.47 mrg
104 1.149.2.4 yamt callout_t sched_pstats_ch;
105 1.149.2.4 yamt unsigned int sched_pstats_ticks;
106 1.34 christos
107 1.149.2.4 yamt kcondvar_t lbolt; /* once a second sleep address */
108 1.26 cgd
109 1.149.2.4 yamt static void sched_unsleep(struct lwp *);
110 1.149.2.4 yamt static void sched_changepri(struct lwp *, pri_t);
111 1.149.2.4 yamt static void sched_lendpri(struct lwp *, pri_t);
112 1.122 thorpej
113 1.149.2.3 yamt syncobj_t sleep_syncobj = {
114 1.149.2.3 yamt SOBJ_SLEEPQ_SORTED,
115 1.149.2.3 yamt sleepq_unsleep,
116 1.149.2.4 yamt sleepq_changepri,
117 1.149.2.4 yamt sleepq_lendpri,
118 1.149.2.4 yamt syncobj_noowner,
119 1.149.2.3 yamt };
120 1.149.2.3 yamt
121 1.149.2.3 yamt syncobj_t sched_syncobj = {
122 1.149.2.3 yamt SOBJ_SLEEPQ_SORTED,
123 1.149.2.3 yamt sched_unsleep,
124 1.149.2.4 yamt sched_changepri,
125 1.149.2.4 yamt sched_lendpri,
126 1.149.2.4 yamt syncobj_noowner,
127 1.149.2.3 yamt };
128 1.122 thorpej
129 1.26 cgd /*
130 1.149.2.3 yamt * During autoconfiguration or after a panic, a sleep will simply lower the
131 1.149.2.3 yamt * priority briefly to allow interrupts, then return. The priority to be
132 1.149.2.3 yamt * used (safepri) is machine-dependent, thus this value is initialized and
133 1.149.2.3 yamt * maintained in the machine-dependent layers. This priority will typically
134 1.149.2.3 yamt * be 0, or the lowest priority that is safe for use on the interrupt stack;
135 1.149.2.3 yamt * it can be made higher to block network software interrupts after panics.
136 1.26 cgd */
137 1.149.2.3 yamt int safepri;
138 1.26 cgd
139 1.26 cgd /*
140 1.149.2.3 yamt * OBSOLETE INTERFACE
141 1.149.2.3 yamt *
142 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
143 1.26 cgd * performed on the specified identifier. The process will then be made
144 1.149.2.3 yamt * runnable with the specified priority. Sleeps at most timo/hz seconds (0
145 1.149.2.3 yamt * means no timeout). If pri includes PCATCH flag, signals are checked
146 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
147 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
148 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
149 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
150 1.26 cgd * call should be interrupted by the signal (return EINTR).
151 1.77 thorpej *
152 1.149.2.3 yamt * The interlock is held until we are on a sleep queue. The interlock will
153 1.149.2.3 yamt * be locked before returning back to the caller unless the PNORELOCK flag
154 1.149.2.3 yamt * is specified, in which case the interlock will always be unlocked upon
155 1.149.2.3 yamt * return.
156 1.26 cgd */
157 1.26 cgd int
158 1.149.2.4 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
159 1.149.2.3 yamt volatile struct simplelock *interlock)
160 1.26 cgd {
161 1.122 thorpej struct lwp *l = curlwp;
162 1.149.2.3 yamt sleepq_t *sq;
163 1.149.2.4 yamt int error;
164 1.26 cgd
165 1.149.2.3 yamt if (sleepq_dontsleep(l)) {
166 1.149.2.3 yamt (void)sleepq_abort(NULL, 0);
167 1.149.2.3 yamt if ((priority & PNORELOCK) != 0)
168 1.77 thorpej simple_unlock(interlock);
169 1.149.2.3 yamt return 0;
170 1.122 thorpej }
171 1.77 thorpej
172 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
173 1.149.2.3 yamt sleepq_enter(sq, l);
174 1.149.2.4 yamt sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
175 1.77 thorpej
176 1.149.2.3 yamt if (interlock != NULL) {
177 1.149.2.3 yamt LOCK_ASSERT(simple_lock_held(interlock));
178 1.77 thorpej simple_unlock(interlock);
179 1.26 cgd }
180 1.147 perry
181 1.149.2.4 yamt error = sleepq_block(timo, priority & PCATCH);
182 1.139 cl
183 1.149.2.3 yamt if (interlock != NULL && (priority & PNORELOCK) == 0)
184 1.149.2.3 yamt simple_lock(interlock);
185 1.149.2.3 yamt
186 1.149.2.3 yamt return error;
187 1.139 cl }
188 1.139 cl
189 1.149.2.4 yamt int
190 1.149.2.4 yamt mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 1.149.2.4 yamt kmutex_t *mtx)
192 1.149.2.4 yamt {
193 1.149.2.4 yamt struct lwp *l = curlwp;
194 1.149.2.4 yamt sleepq_t *sq;
195 1.149.2.4 yamt int error;
196 1.149.2.4 yamt
197 1.149.2.4 yamt if (sleepq_dontsleep(l)) {
198 1.149.2.4 yamt (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
199 1.149.2.4 yamt return 0;
200 1.149.2.4 yamt }
201 1.149.2.4 yamt
202 1.149.2.4 yamt sq = sleeptab_lookup(&sleeptab, ident);
203 1.149.2.4 yamt sleepq_enter(sq, l);
204 1.149.2.4 yamt sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
205 1.149.2.4 yamt mutex_exit(mtx);
206 1.149.2.4 yamt error = sleepq_block(timo, priority & PCATCH);
207 1.149.2.4 yamt
208 1.149.2.4 yamt if ((priority & PNORELOCK) == 0)
209 1.149.2.4 yamt mutex_enter(mtx);
210 1.149.2.4 yamt
211 1.149.2.4 yamt return error;
212 1.149.2.4 yamt }
213 1.149.2.4 yamt
214 1.26 cgd /*
215 1.149.2.3 yamt * General sleep call for situations where a wake-up is not expected.
216 1.63 thorpej */
217 1.149.2.3 yamt int
218 1.149.2.3 yamt kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 1.83 thorpej {
220 1.149.2.3 yamt struct lwp *l = curlwp;
221 1.149.2.3 yamt sleepq_t *sq;
222 1.149.2.3 yamt int error;
223 1.83 thorpej
224 1.149.2.3 yamt if (sleepq_dontsleep(l))
225 1.149.2.3 yamt return sleepq_abort(NULL, 0);
226 1.63 thorpej
227 1.149.2.3 yamt if (mtx != NULL)
228 1.149.2.3 yamt mutex_exit(mtx);
229 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, l);
230 1.149.2.3 yamt sleepq_enter(sq, l);
231 1.149.2.4 yamt sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
232 1.149.2.4 yamt error = sleepq_block(timo, intr);
233 1.149.2.3 yamt if (mtx != NULL)
234 1.149.2.3 yamt mutex_enter(mtx);
235 1.83 thorpej
236 1.149.2.3 yamt return error;
237 1.83 thorpej }
238 1.83 thorpej
239 1.63 thorpej /*
240 1.149.2.3 yamt * OBSOLETE INTERFACE
241 1.149.2.3 yamt *
242 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
243 1.26 cgd */
244 1.26 cgd void
245 1.149.2.3 yamt wakeup(wchan_t ident)
246 1.26 cgd {
247 1.149.2.3 yamt sleepq_t *sq;
248 1.83 thorpej
249 1.149.2.3 yamt if (cold)
250 1.149.2.3 yamt return;
251 1.83 thorpej
252 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
253 1.149.2.3 yamt sleepq_wake(sq, ident, (u_int)-1);
254 1.63 thorpej }
255 1.63 thorpej
256 1.63 thorpej /*
257 1.149.2.3 yamt * OBSOLETE INTERFACE
258 1.149.2.3 yamt *
259 1.63 thorpej * Make the highest priority process first in line on the specified
260 1.63 thorpej * identifier runnable.
261 1.63 thorpej */
262 1.149.2.3 yamt void
263 1.149.2.3 yamt wakeup_one(wchan_t ident)
264 1.63 thorpej {
265 1.149.2.3 yamt sleepq_t *sq;
266 1.63 thorpej
267 1.149.2.3 yamt if (cold)
268 1.149.2.3 yamt return;
269 1.149.2.4 yamt
270 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
271 1.149.2.3 yamt sleepq_wake(sq, ident, 1);
272 1.117 gmcgarry }
273 1.117 gmcgarry
274 1.149.2.3 yamt
275 1.117 gmcgarry /*
276 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
277 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
278 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
279 1.117 gmcgarry */
280 1.117 gmcgarry void
281 1.117 gmcgarry yield(void)
282 1.117 gmcgarry {
283 1.122 thorpej struct lwp *l = curlwp;
284 1.117 gmcgarry
285 1.149.2.3 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
286 1.149.2.3 yamt lwp_lock(l);
287 1.149.2.4 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
288 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
289 1.149.2.4 yamt l->l_priority = l->l_usrpri;
290 1.149.2.4 yamt (void)mi_switch(l);
291 1.149.2.3 yamt KERNEL_LOCK(l->l_biglocks, l);
292 1.69 thorpej }
293 1.69 thorpej
294 1.69 thorpej /*
295 1.69 thorpej * General preemption call. Puts the current process back on its run queue
296 1.149.2.1 yamt * and performs an involuntary context switch.
297 1.69 thorpej */
298 1.69 thorpej void
299 1.149.2.3 yamt preempt(void)
300 1.69 thorpej {
301 1.122 thorpej struct lwp *l = curlwp;
302 1.69 thorpej
303 1.149.2.3 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 1.149.2.3 yamt lwp_lock(l);
305 1.149.2.4 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
306 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
307 1.149.2.4 yamt l->l_priority = l->l_usrpri;
308 1.149.2.3 yamt l->l_nivcsw++;
309 1.149.2.4 yamt (void)mi_switch(l);
310 1.149.2.3 yamt KERNEL_LOCK(l->l_biglocks, l);
311 1.69 thorpej }
312 1.69 thorpej
313 1.69 thorpej /*
314 1.149.2.4 yamt * Compute the amount of time during which the current lwp was running.
315 1.130 nathanw *
316 1.149.2.4 yamt * - update l_rtime unless it's an idle lwp.
317 1.149.2.4 yamt * - update spc_runtime for the next lwp.
318 1.149.2.4 yamt */
319 1.149.2.4 yamt
320 1.149.2.4 yamt static inline void
321 1.149.2.4 yamt updatertime(struct lwp *l, struct schedstate_percpu *spc)
322 1.149.2.4 yamt {
323 1.149.2.4 yamt struct timeval tv;
324 1.149.2.4 yamt long s, u;
325 1.149.2.4 yamt
326 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) != 0) {
327 1.149.2.4 yamt microtime(&spc->spc_runtime);
328 1.149.2.4 yamt return;
329 1.149.2.4 yamt }
330 1.149.2.4 yamt
331 1.149.2.4 yamt microtime(&tv);
332 1.149.2.4 yamt u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
333 1.149.2.4 yamt s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
334 1.149.2.4 yamt if (u < 0) {
335 1.149.2.4 yamt u += 1000000;
336 1.149.2.4 yamt s--;
337 1.149.2.4 yamt } else if (u >= 1000000) {
338 1.149.2.4 yamt u -= 1000000;
339 1.149.2.4 yamt s++;
340 1.149.2.4 yamt }
341 1.149.2.4 yamt l->l_rtime.tv_usec = u;
342 1.149.2.4 yamt l->l_rtime.tv_sec = s;
343 1.149.2.4 yamt
344 1.149.2.4 yamt spc->spc_runtime = tv;
345 1.149.2.4 yamt }
346 1.149.2.4 yamt
347 1.149.2.4 yamt /*
348 1.149.2.4 yamt * The machine independent parts of context switch.
349 1.149.2.4 yamt *
350 1.149.2.4 yamt * Returns 1 if another LWP was actually run.
351 1.26 cgd */
352 1.122 thorpej int
353 1.149.2.4 yamt mi_switch(struct lwp *l)
354 1.26 cgd {
355 1.76 thorpej struct schedstate_percpu *spc;
356 1.149.2.4 yamt struct lwp *newl;
357 1.149.2.3 yamt int retval, oldspl;
358 1.85 sommerfe
359 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
360 1.149.2.4 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
361 1.76 thorpej
362 1.149.2.3 yamt #ifdef KSTACK_CHECK_MAGIC
363 1.149.2.3 yamt kstack_check_magic(l);
364 1.149.2.3 yamt #endif
365 1.149.2.3 yamt
366 1.149.2.3 yamt /*
367 1.149.2.3 yamt * It's safe to read the per CPU schedstate unlocked here, as all we
368 1.149.2.3 yamt * are after is the run time and that's guarenteed to have been last
369 1.149.2.3 yamt * updated by this CPU.
370 1.149.2.3 yamt */
371 1.149.2.3 yamt KDASSERT(l->l_cpu == curcpu());
372 1.81 thorpej
373 1.26 cgd /*
374 1.149.2.4 yamt * Process is about to yield the CPU; clear the appropriate
375 1.149.2.4 yamt * scheduling flags.
376 1.26 cgd */
377 1.149.2.4 yamt spc = &l->l_cpu->ci_schedstate;
378 1.149.2.4 yamt newl = NULL;
379 1.149.2.4 yamt
380 1.149.2.4 yamt if (l->l_switchto != NULL) {
381 1.149.2.4 yamt newl = l->l_switchto;
382 1.149.2.4 yamt l->l_switchto = NULL;
383 1.26 cgd }
384 1.149.2.3 yamt
385 1.149.2.3 yamt /* Count time spent in current system call */
386 1.149.2.3 yamt SYSCALL_TIME_SLEEP(l);
387 1.26 cgd
388 1.26 cgd /*
389 1.149.2.4 yamt * XXXSMP If we are using h/w performance counters,
390 1.149.2.4 yamt * save context.
391 1.69 thorpej */
392 1.149.2.3 yamt #if PERFCTRS
393 1.149.2.3 yamt if (PMC_ENABLED(l->l_proc)) {
394 1.149.2.3 yamt pmc_save_context(l->l_proc);
395 1.149.2.3 yamt }
396 1.109 yamt #endif
397 1.149.2.4 yamt updatertime(l, spc);
398 1.113 gmcgarry
399 1.113 gmcgarry /*
400 1.149.2.3 yamt * If on the CPU and we have gotten this far, then we must yield.
401 1.113 gmcgarry */
402 1.149.2.4 yamt mutex_spin_enter(spc->spc_mutex);
403 1.149.2.4 yamt spc->spc_flags &= ~SPCF_SWITCHCLEAR;
404 1.149.2.3 yamt KASSERT(l->l_stat != LSRUN);
405 1.149.2.3 yamt if (l->l_stat == LSONPROC) {
406 1.149.2.4 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
407 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) == 0) {
408 1.149.2.4 yamt l->l_stat = LSRUN;
409 1.149.2.4 yamt lwp_setlock(l, spc->spc_mutex);
410 1.149.2.4 yamt sched_enqueue(l, true);
411 1.149.2.4 yamt } else
412 1.149.2.4 yamt l->l_stat = LSIDL;
413 1.149.2.3 yamt }
414 1.149.2.3 yamt
415 1.149.2.3 yamt /*
416 1.149.2.4 yamt * Let sched_nextlwp() select the LWP to run the CPU next.
417 1.149.2.4 yamt * If no LWP is runnable, switch to the idle LWP.
418 1.149.2.3 yamt */
419 1.149.2.4 yamt if (newl == NULL) {
420 1.149.2.4 yamt newl = sched_nextlwp();
421 1.149.2.4 yamt if (newl != NULL) {
422 1.149.2.4 yamt sched_dequeue(newl);
423 1.149.2.4 yamt KASSERT(lwp_locked(newl, spc->spc_mutex));
424 1.149.2.4 yamt newl->l_stat = LSONPROC;
425 1.149.2.4 yamt newl->l_cpu = l->l_cpu;
426 1.149.2.4 yamt newl->l_flag |= LW_RUNNING;
427 1.149.2.4 yamt lwp_setlock(newl, &spc->spc_lwplock);
428 1.149.2.4 yamt } else {
429 1.149.2.4 yamt newl = l->l_cpu->ci_data.cpu_idlelwp;
430 1.149.2.4 yamt newl->l_stat = LSONPROC;
431 1.149.2.4 yamt newl->l_flag |= LW_RUNNING;
432 1.149.2.4 yamt }
433 1.149.2.4 yamt spc->spc_curpriority = newl->l_usrpri;
434 1.149.2.4 yamt newl->l_priority = newl->l_usrpri;
435 1.149.2.4 yamt cpu_did_resched();
436 1.149.2.4 yamt }
437 1.149.2.3 yamt
438 1.149.2.4 yamt if (l != newl) {
439 1.149.2.4 yamt struct lwp *prevlwp;
440 1.149.2.3 yamt
441 1.149.2.4 yamt /*
442 1.149.2.4 yamt * If the old LWP has been moved to a run queue above,
443 1.149.2.4 yamt * drop the general purpose LWP lock: it's now locked
444 1.149.2.4 yamt * by the scheduler lock.
445 1.149.2.4 yamt *
446 1.149.2.4 yamt * Otherwise, drop the scheduler lock. We're done with
447 1.149.2.4 yamt * the run queues for now.
448 1.149.2.4 yamt */
449 1.149.2.4 yamt if (l->l_mutex == spc->spc_mutex) {
450 1.149.2.4 yamt mutex_spin_exit(&spc->spc_lwplock);
451 1.149.2.4 yamt } else {
452 1.149.2.4 yamt mutex_spin_exit(spc->spc_mutex);
453 1.149.2.4 yamt }
454 1.149.2.4 yamt
455 1.149.2.4 yamt /* Unlocked, but for statistics only. */
456 1.149.2.4 yamt uvmexp.swtch++;
457 1.149.2.4 yamt
458 1.149.2.4 yamt /* Save old VM context. */
459 1.149.2.4 yamt pmap_deactivate(l);
460 1.149.2.4 yamt
461 1.149.2.4 yamt /* Switch to the new LWP.. */
462 1.149.2.4 yamt l->l_ncsw++;
463 1.149.2.4 yamt l->l_flag &= ~LW_RUNNING;
464 1.149.2.4 yamt oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
465 1.149.2.4 yamt prevlwp = cpu_switchto(l, newl);
466 1.149.2.4 yamt
467 1.149.2.4 yamt /*
468 1.149.2.4 yamt * .. we have switched away and are now back so we must
469 1.149.2.4 yamt * be the new curlwp. prevlwp is who we replaced.
470 1.149.2.4 yamt */
471 1.149.2.4 yamt curlwp = l;
472 1.149.2.4 yamt if (prevlwp != NULL) {
473 1.149.2.4 yamt curcpu()->ci_mtx_oldspl = oldspl;
474 1.149.2.4 yamt lwp_unlock(prevlwp);
475 1.149.2.4 yamt } else {
476 1.149.2.4 yamt splx(oldspl);
477 1.149.2.4 yamt }
478 1.149.2.3 yamt
479 1.149.2.4 yamt /* Restore VM context. */
480 1.149.2.4 yamt pmap_activate(l);
481 1.149.2.4 yamt retval = 1;
482 1.149.2.4 yamt } else {
483 1.149.2.4 yamt /* Nothing to do - just unlock and return. */
484 1.149.2.4 yamt mutex_spin_exit(spc->spc_mutex);
485 1.149.2.4 yamt lwp_unlock(l);
486 1.122 thorpej retval = 0;
487 1.122 thorpej }
488 1.110 briggs
489 1.149.2.4 yamt KASSERT(l == curlwp);
490 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
491 1.149.2.4 yamt
492 1.110 briggs /*
493 1.149.2.3 yamt * XXXSMP If we are using h/w performance counters, restore context.
494 1.26 cgd */
495 1.114 gmcgarry #if PERFCTRS
496 1.149.2.3 yamt if (PMC_ENABLED(l->l_proc)) {
497 1.149.2.3 yamt pmc_restore_context(l->l_proc);
498 1.149.2.2 yamt }
499 1.114 gmcgarry #endif
500 1.110 briggs
501 1.110 briggs /*
502 1.76 thorpej * We're running again; record our new start time. We might
503 1.149.2.3 yamt * be running on a new CPU now, so don't use the cached
504 1.76 thorpej * schedstate_percpu pointer.
505 1.76 thorpej */
506 1.149.2.3 yamt SYSCALL_TIME_WAKEUP(l);
507 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
508 1.149.2.4 yamt LOCKDEBUG_BARRIER(NULL, 1);
509 1.149.2.2 yamt
510 1.122 thorpej return retval;
511 1.26 cgd }
512 1.26 cgd
513 1.26 cgd /*
514 1.149.2.3 yamt * Change process state to be runnable, placing it on the run queue if it is
515 1.149.2.3 yamt * in memory, and awakening the swapper if it isn't in memory.
516 1.149.2.3 yamt *
517 1.149.2.3 yamt * Call with the process and LWP locked. Will return with the LWP unlocked.
518 1.26 cgd */
519 1.26 cgd void
520 1.122 thorpej setrunnable(struct lwp *l)
521 1.26 cgd {
522 1.122 thorpej struct proc *p = l->l_proc;
523 1.149.2.3 yamt sigset_t *ss;
524 1.26 cgd
525 1.149.2.4 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
526 1.149.2.3 yamt KASSERT(mutex_owned(&p->p_smutex));
527 1.149.2.3 yamt KASSERT(lwp_locked(l, NULL));
528 1.83 thorpej
529 1.122 thorpej switch (l->l_stat) {
530 1.122 thorpej case LSSTOP:
531 1.33 mycroft /*
532 1.33 mycroft * If we're being traced (possibly because someone attached us
533 1.33 mycroft * while we were stopped), check for a signal from the debugger.
534 1.33 mycroft */
535 1.149.2.3 yamt if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
536 1.149.2.3 yamt if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
537 1.149.2.3 yamt ss = &l->l_sigpend.sp_set;
538 1.149.2.3 yamt else
539 1.149.2.3 yamt ss = &p->p_sigpend.sp_set;
540 1.149.2.3 yamt sigaddset(ss, p->p_xstat);
541 1.149.2.3 yamt signotify(l);
542 1.53 mycroft }
543 1.149.2.3 yamt p->p_nrlwps++;
544 1.122 thorpej break;
545 1.122 thorpej case LSSUSPENDED:
546 1.149.2.3 yamt l->l_flag &= ~LW_WSUSPEND;
547 1.149.2.3 yamt p->p_nrlwps++;
548 1.149.2.4 yamt cv_broadcast(&p->p_lwpcv);
549 1.149.2.3 yamt break;
550 1.149.2.3 yamt case LSSLEEP:
551 1.149.2.3 yamt KASSERT(l->l_wchan != NULL);
552 1.26 cgd break;
553 1.149.2.3 yamt default:
554 1.149.2.3 yamt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
555 1.26 cgd }
556 1.139 cl
557 1.149.2.3 yamt /*
558 1.149.2.3 yamt * If the LWP was sleeping interruptably, then it's OK to start it
559 1.149.2.3 yamt * again. If not, mark it as still sleeping.
560 1.149.2.3 yamt */
561 1.149.2.3 yamt if (l->l_wchan != NULL) {
562 1.149.2.3 yamt l->l_stat = LSSLEEP;
563 1.149.2.3 yamt /* lwp_unsleep() will release the lock. */
564 1.149.2.3 yamt lwp_unsleep(l);
565 1.149.2.3 yamt return;
566 1.149.2.3 yamt }
567 1.139 cl
568 1.149.2.3 yamt /*
569 1.149.2.3 yamt * If the LWP is still on the CPU, mark it as LSONPROC. It may be
570 1.149.2.3 yamt * about to call mi_switch(), in which case it will yield.
571 1.149.2.3 yamt */
572 1.149.2.4 yamt if ((l->l_flag & LW_RUNNING) != 0) {
573 1.149.2.3 yamt l->l_stat = LSONPROC;
574 1.149.2.3 yamt l->l_slptime = 0;
575 1.149.2.3 yamt lwp_unlock(l);
576 1.149.2.3 yamt return;
577 1.149.2.3 yamt }
578 1.122 thorpej
579 1.149.2.3 yamt /*
580 1.149.2.3 yamt * Set the LWP runnable. If it's swapped out, we need to wake the swapper
581 1.149.2.3 yamt * to bring it back in. Otherwise, enter it into a run queue.
582 1.149.2.3 yamt */
583 1.149.2.4 yamt if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
584 1.149.2.4 yamt spc_lock(l->l_cpu);
585 1.149.2.4 yamt lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
586 1.149.2.4 yamt }
587 1.149.2.4 yamt
588 1.149.2.4 yamt sched_setrunnable(l);
589 1.149.2.3 yamt l->l_stat = LSRUN;
590 1.122 thorpej l->l_slptime = 0;
591 1.149.2.3 yamt
592 1.149.2.3 yamt if (l->l_flag & LW_INMEM) {
593 1.149.2.4 yamt sched_enqueue(l, false);
594 1.149.2.4 yamt resched_cpu(l);
595 1.149.2.3 yamt lwp_unlock(l);
596 1.149.2.3 yamt } else {
597 1.149.2.3 yamt lwp_unlock(l);
598 1.149.2.3 yamt uvm_kick_scheduler();
599 1.149.2.3 yamt }
600 1.26 cgd }
601 1.26 cgd
602 1.26 cgd /*
603 1.149.2.3 yamt * suspendsched:
604 1.149.2.3 yamt *
605 1.149.2.3 yamt * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
606 1.149.2.3 yamt */
607 1.94 bouyer void
608 1.149.2.3 yamt suspendsched(void)
609 1.94 bouyer {
610 1.149.2.3 yamt CPU_INFO_ITERATOR cii;
611 1.149.2.3 yamt struct cpu_info *ci;
612 1.122 thorpej struct lwp *l;
613 1.149.2.3 yamt struct proc *p;
614 1.94 bouyer
615 1.94 bouyer /*
616 1.149.2.3 yamt * We do this by process in order not to violate the locking rules.
617 1.94 bouyer */
618 1.149.2.3 yamt mutex_enter(&proclist_mutex);
619 1.149.2.3 yamt PROCLIST_FOREACH(p, &allproc) {
620 1.149.2.3 yamt mutex_enter(&p->p_smutex);
621 1.149.2.3 yamt
622 1.149.2.3 yamt if ((p->p_flag & PK_SYSTEM) != 0) {
623 1.149.2.3 yamt mutex_exit(&p->p_smutex);
624 1.94 bouyer continue;
625 1.149.2.3 yamt }
626 1.149.2.3 yamt
627 1.149.2.3 yamt p->p_stat = SSTOP;
628 1.149.2.3 yamt
629 1.149.2.3 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
630 1.149.2.3 yamt if (l == curlwp)
631 1.149.2.3 yamt continue;
632 1.149.2.3 yamt
633 1.149.2.3 yamt lwp_lock(l);
634 1.122 thorpej
635 1.97 enami /*
636 1.149.2.3 yamt * Set L_WREBOOT so that the LWP will suspend itself
637 1.149.2.3 yamt * when it tries to return to user mode. We want to
638 1.149.2.3 yamt * try and get to get as many LWPs as possible to
639 1.149.2.3 yamt * the user / kernel boundary, so that they will
640 1.149.2.3 yamt * release any locks that they hold.
641 1.97 enami */
642 1.149.2.3 yamt l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
643 1.149.2.3 yamt
644 1.149.2.3 yamt if (l->l_stat == LSSLEEP &&
645 1.149.2.3 yamt (l->l_flag & LW_SINTR) != 0) {
646 1.149.2.3 yamt /* setrunnable() will release the lock. */
647 1.149.2.3 yamt setrunnable(l);
648 1.149.2.3 yamt continue;
649 1.149.2.3 yamt }
650 1.149.2.3 yamt
651 1.149.2.3 yamt lwp_unlock(l);
652 1.94 bouyer }
653 1.149.2.3 yamt
654 1.149.2.3 yamt mutex_exit(&p->p_smutex);
655 1.94 bouyer }
656 1.149.2.3 yamt mutex_exit(&proclist_mutex);
657 1.149.2.3 yamt
658 1.149.2.3 yamt /*
659 1.149.2.3 yamt * Kick all CPUs to make them preempt any LWPs running in user mode.
660 1.149.2.3 yamt * They'll trap into the kernel and suspend themselves in userret().
661 1.149.2.3 yamt */
662 1.149.2.3 yamt for (CPU_INFO_FOREACH(cii, ci))
663 1.149.2.4 yamt cpu_need_resched(ci, 0);
664 1.149.2.3 yamt }
665 1.149.2.3 yamt
666 1.149.2.3 yamt /*
667 1.149.2.3 yamt * sched_kpri:
668 1.149.2.3 yamt *
669 1.149.2.3 yamt * Scale a priority level to a kernel priority level, usually
670 1.149.2.3 yamt * for an LWP that is about to sleep.
671 1.149.2.3 yamt */
672 1.149.2.4 yamt pri_t
673 1.149.2.3 yamt sched_kpri(struct lwp *l)
674 1.149.2.3 yamt {
675 1.149.2.3 yamt /*
676 1.149.2.3 yamt * Scale user priorities (127 -> 50) up to kernel priorities
677 1.149.2.3 yamt * in the range (49 -> 8). Reserve the top 8 kernel priorities
678 1.149.2.3 yamt * for high priority kthreads. Kernel priorities passed in
679 1.149.2.3 yamt * are left "as is". XXX This is somewhat arbitrary.
680 1.149.2.3 yamt */
681 1.149.2.3 yamt static const uint8_t kpri_tab[] = {
682 1.149.2.3 yamt 0, 1, 2, 3, 4, 5, 6, 7,
683 1.149.2.3 yamt 8, 9, 10, 11, 12, 13, 14, 15,
684 1.149.2.3 yamt 16, 17, 18, 19, 20, 21, 22, 23,
685 1.149.2.3 yamt 24, 25, 26, 27, 28, 29, 30, 31,
686 1.149.2.3 yamt 32, 33, 34, 35, 36, 37, 38, 39,
687 1.149.2.3 yamt 40, 41, 42, 43, 44, 45, 46, 47,
688 1.149.2.3 yamt 48, 49, 8, 8, 9, 9, 10, 10,
689 1.149.2.3 yamt 11, 11, 12, 12, 13, 14, 14, 15,
690 1.149.2.3 yamt 15, 16, 16, 17, 17, 18, 18, 19,
691 1.149.2.3 yamt 20, 20, 21, 21, 22, 22, 23, 23,
692 1.149.2.3 yamt 24, 24, 25, 26, 26, 27, 27, 28,
693 1.149.2.3 yamt 28, 29, 29, 30, 30, 31, 32, 32,
694 1.149.2.3 yamt 33, 33, 34, 34, 35, 35, 36, 36,
695 1.149.2.3 yamt 37, 38, 38, 39, 39, 40, 40, 41,
696 1.149.2.3 yamt 41, 42, 42, 43, 44, 44, 45, 45,
697 1.149.2.3 yamt 46, 46, 47, 47, 48, 48, 49, 49,
698 1.149.2.3 yamt };
699 1.149.2.3 yamt
700 1.149.2.4 yamt return (pri_t)kpri_tab[l->l_usrpri];
701 1.149.2.3 yamt }
702 1.149.2.3 yamt
703 1.149.2.3 yamt /*
704 1.149.2.3 yamt * sched_unsleep:
705 1.149.2.3 yamt *
706 1.149.2.3 yamt * The is called when the LWP has not been awoken normally but instead
707 1.149.2.3 yamt * interrupted: for example, if the sleep timed out. Because of this,
708 1.149.2.3 yamt * it's not a valid action for running or idle LWPs.
709 1.149.2.3 yamt */
710 1.149.2.4 yamt static void
711 1.149.2.3 yamt sched_unsleep(struct lwp *l)
712 1.149.2.3 yamt {
713 1.149.2.3 yamt
714 1.149.2.3 yamt lwp_unlock(l);
715 1.149.2.3 yamt panic("sched_unsleep");
716 1.149.2.3 yamt }
717 1.149.2.3 yamt
718 1.149.2.4 yamt inline void
719 1.149.2.4 yamt resched_cpu(struct lwp *l)
720 1.149.2.3 yamt {
721 1.149.2.4 yamt struct cpu_info *ci;
722 1.149.2.4 yamt const pri_t pri = lwp_eprio(l);
723 1.149.2.3 yamt
724 1.149.2.4 yamt /*
725 1.149.2.4 yamt * XXXSMP
726 1.149.2.4 yamt * Since l->l_cpu persists across a context switch,
727 1.149.2.4 yamt * this gives us *very weak* processor affinity, in
728 1.149.2.4 yamt * that we notify the CPU on which the process last
729 1.149.2.4 yamt * ran that it should try to switch.
730 1.149.2.4 yamt *
731 1.149.2.4 yamt * This does not guarantee that the process will run on
732 1.149.2.4 yamt * that processor next, because another processor might
733 1.149.2.4 yamt * grab it the next time it performs a context switch.
734 1.149.2.4 yamt *
735 1.149.2.4 yamt * This also does not handle the case where its last
736 1.149.2.4 yamt * CPU is running a higher-priority process, but every
737 1.149.2.4 yamt * other CPU is running a lower-priority process. There
738 1.149.2.4 yamt * are ways to handle this situation, but they're not
739 1.149.2.4 yamt * currently very pretty, and we also need to weigh the
740 1.149.2.4 yamt * cost of moving a process from one CPU to another.
741 1.149.2.4 yamt */
742 1.149.2.4 yamt ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
743 1.149.2.4 yamt if (pri < ci->ci_schedstate.spc_curpriority)
744 1.149.2.4 yamt cpu_need_resched(ci, 0);
745 1.149.2.4 yamt }
746 1.149.2.3 yamt
747 1.149.2.4 yamt static void
748 1.149.2.4 yamt sched_changepri(struct lwp *l, pri_t pri)
749 1.149.2.4 yamt {
750 1.149.2.4 yamt
751 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
752 1.149.2.3 yamt
753 1.149.2.4 yamt l->l_usrpri = pri;
754 1.149.2.3 yamt if (l->l_priority < PUSER)
755 1.149.2.3 yamt return;
756 1.149.2.4 yamt
757 1.149.2.4 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
758 1.149.2.3 yamt l->l_priority = pri;
759 1.149.2.3 yamt return;
760 1.149.2.1 yamt }
761 1.149.2.3 yamt
762 1.149.2.4 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
763 1.149.2.4 yamt
764 1.149.2.4 yamt sched_dequeue(l);
765 1.149.2.3 yamt l->l_priority = pri;
766 1.149.2.4 yamt sched_enqueue(l, false);
767 1.149.2.4 yamt resched_cpu(l);
768 1.149.2.1 yamt }
769 1.149.2.1 yamt
770 1.146 matt static void
771 1.149.2.4 yamt sched_lendpri(struct lwp *l, pri_t pri)
772 1.146 matt {
773 1.149.2.4 yamt
774 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
775 1.149.2.4 yamt
776 1.149.2.4 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
777 1.149.2.4 yamt l->l_inheritedprio = pri;
778 1.149.2.4 yamt return;
779 1.146 matt }
780 1.149.2.4 yamt
781 1.149.2.4 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
782 1.149.2.4 yamt
783 1.149.2.4 yamt sched_dequeue(l);
784 1.149.2.4 yamt l->l_inheritedprio = pri;
785 1.149.2.4 yamt sched_enqueue(l, false);
786 1.149.2.4 yamt resched_cpu(l);
787 1.146 matt }
788 1.146 matt
789 1.149.2.4 yamt struct lwp *
790 1.149.2.4 yamt syncobj_noowner(wchan_t wchan)
791 1.113 gmcgarry {
792 1.149.2.3 yamt
793 1.149.2.4 yamt return NULL;
794 1.113 gmcgarry }
795 1.113 gmcgarry
796 1.149.2.4 yamt
797 1.149.2.4 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
798 1.149.2.4 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
799 1.149.2.4 yamt
800 1.149.2.3 yamt /*
801 1.149.2.4 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
802 1.149.2.4 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
803 1.149.2.4 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
804 1.149.2.4 yamt *
805 1.149.2.4 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
806 1.149.2.4 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
807 1.149.2.4 yamt *
808 1.149.2.4 yamt * If you dont want to bother with the faster/more-accurate formula, you
809 1.149.2.4 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
810 1.149.2.4 yamt * (more general) method of calculating the %age of CPU used by a process.
811 1.149.2.3 yamt */
812 1.149.2.4 yamt #define CCPU_SHIFT (FSHIFT + 1)
813 1.149.2.4 yamt
814 1.149.2.4 yamt /*
815 1.149.2.4 yamt * sched_pstats:
816 1.149.2.4 yamt *
817 1.149.2.4 yamt * Update process statistics and check CPU resource allocation.
818 1.149.2.4 yamt * Call scheduler-specific hook to eventually adjust process/LWP
819 1.149.2.4 yamt * priorities.
820 1.149.2.4 yamt *
821 1.149.2.4 yamt * XXXSMP This needs to be reorganised in order to reduce the locking
822 1.149.2.4 yamt * burden.
823 1.149.2.4 yamt */
824 1.149.2.4 yamt /* ARGSUSED */
825 1.113 gmcgarry void
826 1.149.2.4 yamt sched_pstats(void *arg)
827 1.113 gmcgarry {
828 1.149.2.4 yamt struct rlimit *rlim;
829 1.149.2.4 yamt struct lwp *l;
830 1.149.2.4 yamt struct proc *p;
831 1.149.2.4 yamt int minslp, sig, clkhz;
832 1.149.2.4 yamt long runtm;
833 1.149.2.3 yamt
834 1.149.2.4 yamt sched_pstats_ticks++;
835 1.149.2.3 yamt
836 1.149.2.4 yamt mutex_enter(&proclist_mutex);
837 1.149.2.4 yamt PROCLIST_FOREACH(p, &allproc) {
838 1.149.2.4 yamt /*
839 1.149.2.4 yamt * Increment time in/out of memory and sleep time (if
840 1.149.2.4 yamt * sleeping). We ignore overflow; with 16-bit int's
841 1.149.2.4 yamt * (remember them?) overflow takes 45 days.
842 1.149.2.4 yamt */
843 1.149.2.4 yamt minslp = 2;
844 1.149.2.4 yamt mutex_enter(&p->p_smutex);
845 1.149.2.4 yamt mutex_spin_enter(&p->p_stmutex);
846 1.149.2.4 yamt runtm = p->p_rtime.tv_sec;
847 1.149.2.4 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
848 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) != 0)
849 1.149.2.4 yamt continue;
850 1.149.2.4 yamt lwp_lock(l);
851 1.149.2.4 yamt runtm += l->l_rtime.tv_sec;
852 1.149.2.4 yamt l->l_swtime++;
853 1.149.2.4 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
854 1.149.2.4 yamt l->l_stat == LSSUSPENDED) {
855 1.149.2.4 yamt l->l_slptime++;
856 1.149.2.4 yamt minslp = min(minslp, l->l_slptime);
857 1.149.2.4 yamt } else
858 1.149.2.4 yamt minslp = 0;
859 1.149.2.4 yamt lwp_unlock(l);
860 1.149.2.4 yamt
861 1.149.2.4 yamt /*
862 1.149.2.4 yamt * p_pctcpu is only for ps.
863 1.149.2.4 yamt */
864 1.149.2.4 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
865 1.149.2.4 yamt if (l->l_slptime < 1) {
866 1.149.2.4 yamt clkhz = stathz != 0 ? stathz : hz;
867 1.149.2.4 yamt #if (FSHIFT >= CCPU_SHIFT)
868 1.149.2.4 yamt l->l_pctcpu += (clkhz == 100) ?
869 1.149.2.4 yamt ((fixpt_t)l->l_cpticks) <<
870 1.149.2.4 yamt (FSHIFT - CCPU_SHIFT) :
871 1.149.2.4 yamt 100 * (((fixpt_t) p->p_cpticks)
872 1.149.2.4 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
873 1.149.2.4 yamt #else
874 1.149.2.4 yamt l->l_pctcpu += ((FSCALE - ccpu) *
875 1.149.2.4 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
876 1.146 matt #endif
877 1.149.2.4 yamt l->l_cpticks = 0;
878 1.149.2.4 yamt }
879 1.149.2.4 yamt }
880 1.149.2.4 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
881 1.149.2.4 yamt sched_pstats_hook(p, minslp);
882 1.149.2.4 yamt mutex_spin_exit(&p->p_stmutex);
883 1.149.2.3 yamt
884 1.149.2.4 yamt /*
885 1.149.2.4 yamt * Check if the process exceeds its CPU resource allocation.
886 1.149.2.4 yamt * If over max, kill it.
887 1.149.2.4 yamt */
888 1.149.2.4 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
889 1.149.2.4 yamt sig = 0;
890 1.149.2.4 yamt if (runtm >= rlim->rlim_cur) {
891 1.149.2.4 yamt if (runtm >= rlim->rlim_max)
892 1.149.2.4 yamt sig = SIGKILL;
893 1.149.2.4 yamt else {
894 1.149.2.4 yamt sig = SIGXCPU;
895 1.149.2.4 yamt if (rlim->rlim_cur < rlim->rlim_max)
896 1.149.2.4 yamt rlim->rlim_cur += 5;
897 1.149.2.4 yamt }
898 1.149.2.4 yamt }
899 1.149.2.4 yamt mutex_exit(&p->p_smutex);
900 1.149.2.4 yamt if (sig) {
901 1.149.2.4 yamt psignal(p, sig);
902 1.149.2.4 yamt }
903 1.149.2.3 yamt }
904 1.149.2.4 yamt mutex_exit(&proclist_mutex);
905 1.149.2.4 yamt uvm_meter();
906 1.149.2.4 yamt cv_wakeup(&lbolt);
907 1.149.2.4 yamt callout_schedule(&sched_pstats_ch, hz);
908 1.113 gmcgarry }
909 1.113 gmcgarry
910 1.149.2.4 yamt void
911 1.149.2.4 yamt sched_init(void)
912 1.149.2.4 yamt {
913 1.149.2.4 yamt
914 1.149.2.4 yamt cv_init(&lbolt, "lbolt");
915 1.149.2.4 yamt callout_init(&sched_pstats_ch, 0);
916 1.149.2.4 yamt callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
917 1.149.2.4 yamt sched_setup();
918 1.149.2.4 yamt sched_pstats(NULL);
919 1.149.2.4 yamt }
920