kern_synch.c revision 1.149.2.7 1 1.149.2.7 yamt /* $NetBSD: kern_synch.c,v 1.149.2.7 2007/12/07 17:32:51 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.149.2.3 yamt * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.149.2.4 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.149.2.4 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.149.2.7 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.149.2.7 2007/12/07 17:32:51 yamt Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.149.2.3 yamt #define __MUTEX_PRIVATE
86 1.149.2.3 yamt
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.149.2.4 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.149.2.3 yamt #include <sys/syscall_stats.h>
98 1.149.2.3 yamt #include <sys/sleepq.h>
99 1.149.2.3 yamt #include <sys/lockdebug.h>
100 1.149.2.4 yamt #include <sys/evcnt.h>
101 1.149.2.5 yamt #include <sys/intr.h>
102 1.149.2.6 yamt #include <sys/lwpctl.h>
103 1.149.2.7 yamt #include <sys/atomic.h>
104 1.47 mrg
105 1.47 mrg #include <uvm/uvm_extern.h>
106 1.47 mrg
107 1.149.2.4 yamt callout_t sched_pstats_ch;
108 1.149.2.4 yamt unsigned int sched_pstats_ticks;
109 1.34 christos
110 1.149.2.4 yamt kcondvar_t lbolt; /* once a second sleep address */
111 1.26 cgd
112 1.149.2.4 yamt static void sched_unsleep(struct lwp *);
113 1.149.2.4 yamt static void sched_changepri(struct lwp *, pri_t);
114 1.149.2.4 yamt static void sched_lendpri(struct lwp *, pri_t);
115 1.122 thorpej
116 1.149.2.3 yamt syncobj_t sleep_syncobj = {
117 1.149.2.3 yamt SOBJ_SLEEPQ_SORTED,
118 1.149.2.3 yamt sleepq_unsleep,
119 1.149.2.4 yamt sleepq_changepri,
120 1.149.2.4 yamt sleepq_lendpri,
121 1.149.2.4 yamt syncobj_noowner,
122 1.149.2.3 yamt };
123 1.149.2.3 yamt
124 1.149.2.3 yamt syncobj_t sched_syncobj = {
125 1.149.2.3 yamt SOBJ_SLEEPQ_SORTED,
126 1.149.2.3 yamt sched_unsleep,
127 1.149.2.4 yamt sched_changepri,
128 1.149.2.4 yamt sched_lendpri,
129 1.149.2.4 yamt syncobj_noowner,
130 1.149.2.3 yamt };
131 1.122 thorpej
132 1.26 cgd /*
133 1.149.2.3 yamt * During autoconfiguration or after a panic, a sleep will simply lower the
134 1.149.2.3 yamt * priority briefly to allow interrupts, then return. The priority to be
135 1.149.2.3 yamt * used (safepri) is machine-dependent, thus this value is initialized and
136 1.149.2.3 yamt * maintained in the machine-dependent layers. This priority will typically
137 1.149.2.3 yamt * be 0, or the lowest priority that is safe for use on the interrupt stack;
138 1.149.2.3 yamt * it can be made higher to block network software interrupts after panics.
139 1.26 cgd */
140 1.149.2.3 yamt int safepri;
141 1.26 cgd
142 1.26 cgd /*
143 1.149.2.3 yamt * OBSOLETE INTERFACE
144 1.149.2.3 yamt *
145 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
146 1.26 cgd * performed on the specified identifier. The process will then be made
147 1.149.2.3 yamt * runnable with the specified priority. Sleeps at most timo/hz seconds (0
148 1.149.2.3 yamt * means no timeout). If pri includes PCATCH flag, signals are checked
149 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
150 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
151 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
152 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
153 1.26 cgd * call should be interrupted by the signal (return EINTR).
154 1.77 thorpej *
155 1.149.2.3 yamt * The interlock is held until we are on a sleep queue. The interlock will
156 1.149.2.3 yamt * be locked before returning back to the caller unless the PNORELOCK flag
157 1.149.2.3 yamt * is specified, in which case the interlock will always be unlocked upon
158 1.149.2.3 yamt * return.
159 1.26 cgd */
160 1.26 cgd int
161 1.149.2.4 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
162 1.149.2.3 yamt volatile struct simplelock *interlock)
163 1.26 cgd {
164 1.122 thorpej struct lwp *l = curlwp;
165 1.149.2.3 yamt sleepq_t *sq;
166 1.149.2.4 yamt int error;
167 1.26 cgd
168 1.149.2.6 yamt KASSERT((l->l_pflag & LP_INTR) == 0);
169 1.149.2.6 yamt
170 1.149.2.3 yamt if (sleepq_dontsleep(l)) {
171 1.149.2.3 yamt (void)sleepq_abort(NULL, 0);
172 1.149.2.3 yamt if ((priority & PNORELOCK) != 0)
173 1.77 thorpej simple_unlock(interlock);
174 1.149.2.3 yamt return 0;
175 1.122 thorpej }
176 1.77 thorpej
177 1.149.2.6 yamt l->l_kpriority = true;
178 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
179 1.149.2.3 yamt sleepq_enter(sq, l);
180 1.149.2.6 yamt sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 1.77 thorpej
182 1.149.2.3 yamt if (interlock != NULL) {
183 1.149.2.6 yamt KASSERT(simple_lock_held(interlock));
184 1.77 thorpej simple_unlock(interlock);
185 1.26 cgd }
186 1.147 perry
187 1.149.2.4 yamt error = sleepq_block(timo, priority & PCATCH);
188 1.139 cl
189 1.149.2.3 yamt if (interlock != NULL && (priority & PNORELOCK) == 0)
190 1.149.2.3 yamt simple_lock(interlock);
191 1.149.2.3 yamt
192 1.149.2.3 yamt return error;
193 1.139 cl }
194 1.139 cl
195 1.149.2.4 yamt int
196 1.149.2.4 yamt mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
197 1.149.2.4 yamt kmutex_t *mtx)
198 1.149.2.4 yamt {
199 1.149.2.4 yamt struct lwp *l = curlwp;
200 1.149.2.4 yamt sleepq_t *sq;
201 1.149.2.4 yamt int error;
202 1.149.2.4 yamt
203 1.149.2.6 yamt KASSERT((l->l_pflag & LP_INTR) == 0);
204 1.149.2.6 yamt
205 1.149.2.4 yamt if (sleepq_dontsleep(l)) {
206 1.149.2.4 yamt (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
207 1.149.2.4 yamt return 0;
208 1.149.2.4 yamt }
209 1.149.2.4 yamt
210 1.149.2.6 yamt l->l_kpriority = true;
211 1.149.2.4 yamt sq = sleeptab_lookup(&sleeptab, ident);
212 1.149.2.4 yamt sleepq_enter(sq, l);
213 1.149.2.6 yamt sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
214 1.149.2.4 yamt mutex_exit(mtx);
215 1.149.2.4 yamt error = sleepq_block(timo, priority & PCATCH);
216 1.149.2.4 yamt
217 1.149.2.4 yamt if ((priority & PNORELOCK) == 0)
218 1.149.2.4 yamt mutex_enter(mtx);
219 1.149.2.4 yamt
220 1.149.2.4 yamt return error;
221 1.149.2.4 yamt }
222 1.149.2.4 yamt
223 1.26 cgd /*
224 1.149.2.3 yamt * General sleep call for situations where a wake-up is not expected.
225 1.63 thorpej */
226 1.149.2.3 yamt int
227 1.149.2.3 yamt kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
228 1.83 thorpej {
229 1.149.2.3 yamt struct lwp *l = curlwp;
230 1.149.2.3 yamt sleepq_t *sq;
231 1.149.2.3 yamt int error;
232 1.83 thorpej
233 1.149.2.3 yamt if (sleepq_dontsleep(l))
234 1.149.2.3 yamt return sleepq_abort(NULL, 0);
235 1.63 thorpej
236 1.149.2.3 yamt if (mtx != NULL)
237 1.149.2.3 yamt mutex_exit(mtx);
238 1.149.2.6 yamt l->l_kpriority = true;
239 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, l);
240 1.149.2.3 yamt sleepq_enter(sq, l);
241 1.149.2.6 yamt sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
242 1.149.2.4 yamt error = sleepq_block(timo, intr);
243 1.149.2.3 yamt if (mtx != NULL)
244 1.149.2.3 yamt mutex_enter(mtx);
245 1.83 thorpej
246 1.149.2.3 yamt return error;
247 1.83 thorpej }
248 1.83 thorpej
249 1.63 thorpej /*
250 1.149.2.3 yamt * OBSOLETE INTERFACE
251 1.149.2.3 yamt *
252 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
253 1.26 cgd */
254 1.26 cgd void
255 1.149.2.3 yamt wakeup(wchan_t ident)
256 1.26 cgd {
257 1.149.2.3 yamt sleepq_t *sq;
258 1.83 thorpej
259 1.149.2.3 yamt if (cold)
260 1.149.2.3 yamt return;
261 1.83 thorpej
262 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
263 1.149.2.3 yamt sleepq_wake(sq, ident, (u_int)-1);
264 1.63 thorpej }
265 1.63 thorpej
266 1.63 thorpej /*
267 1.149.2.3 yamt * OBSOLETE INTERFACE
268 1.149.2.3 yamt *
269 1.63 thorpej * Make the highest priority process first in line on the specified
270 1.63 thorpej * identifier runnable.
271 1.63 thorpej */
272 1.149.2.3 yamt void
273 1.149.2.3 yamt wakeup_one(wchan_t ident)
274 1.63 thorpej {
275 1.149.2.3 yamt sleepq_t *sq;
276 1.63 thorpej
277 1.149.2.3 yamt if (cold)
278 1.149.2.3 yamt return;
279 1.149.2.4 yamt
280 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
281 1.149.2.3 yamt sleepq_wake(sq, ident, 1);
282 1.117 gmcgarry }
283 1.117 gmcgarry
284 1.149.2.3 yamt
285 1.117 gmcgarry /*
286 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
287 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
288 1.149.2.5 yamt * current process explicitly requests it (eg sched_yield(2)).
289 1.117 gmcgarry */
290 1.117 gmcgarry void
291 1.117 gmcgarry yield(void)
292 1.117 gmcgarry {
293 1.122 thorpej struct lwp *l = curlwp;
294 1.117 gmcgarry
295 1.149.2.3 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
296 1.149.2.3 yamt lwp_lock(l);
297 1.149.2.4 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
298 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
299 1.149.2.6 yamt l->l_kpriority = false;
300 1.149.2.6 yamt if (l->l_class == SCHED_OTHER) {
301 1.149.2.6 yamt /*
302 1.149.2.6 yamt * Only for timeshared threads. It will be reset
303 1.149.2.6 yamt * by the scheduler in due course.
304 1.149.2.6 yamt */
305 1.149.2.6 yamt l->l_priority = 0;
306 1.149.2.6 yamt }
307 1.149.2.4 yamt (void)mi_switch(l);
308 1.149.2.3 yamt KERNEL_LOCK(l->l_biglocks, l);
309 1.69 thorpej }
310 1.69 thorpej
311 1.69 thorpej /*
312 1.69 thorpej * General preemption call. Puts the current process back on its run queue
313 1.149.2.1 yamt * and performs an involuntary context switch.
314 1.69 thorpej */
315 1.69 thorpej void
316 1.149.2.3 yamt preempt(void)
317 1.69 thorpej {
318 1.122 thorpej struct lwp *l = curlwp;
319 1.69 thorpej
320 1.149.2.3 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
321 1.149.2.3 yamt lwp_lock(l);
322 1.149.2.4 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
323 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
324 1.149.2.6 yamt l->l_kpriority = false;
325 1.149.2.3 yamt l->l_nivcsw++;
326 1.149.2.4 yamt (void)mi_switch(l);
327 1.149.2.3 yamt KERNEL_LOCK(l->l_biglocks, l);
328 1.69 thorpej }
329 1.69 thorpej
330 1.69 thorpej /*
331 1.149.2.4 yamt * Compute the amount of time during which the current lwp was running.
332 1.130 nathanw *
333 1.149.2.4 yamt * - update l_rtime unless it's an idle lwp.
334 1.149.2.4 yamt */
335 1.149.2.4 yamt
336 1.149.2.5 yamt void
337 1.149.2.5 yamt updatertime(lwp_t *l, const struct timeval *tv)
338 1.149.2.4 yamt {
339 1.149.2.4 yamt long s, u;
340 1.149.2.4 yamt
341 1.149.2.5 yamt if ((l->l_flag & LW_IDLE) != 0)
342 1.149.2.4 yamt return;
343 1.149.2.4 yamt
344 1.149.2.5 yamt u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
345 1.149.2.5 yamt s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
346 1.149.2.4 yamt if (u < 0) {
347 1.149.2.4 yamt u += 1000000;
348 1.149.2.4 yamt s--;
349 1.149.2.4 yamt } else if (u >= 1000000) {
350 1.149.2.4 yamt u -= 1000000;
351 1.149.2.4 yamt s++;
352 1.149.2.4 yamt }
353 1.149.2.4 yamt l->l_rtime.tv_usec = u;
354 1.149.2.4 yamt l->l_rtime.tv_sec = s;
355 1.149.2.4 yamt }
356 1.149.2.4 yamt
357 1.149.2.4 yamt /*
358 1.149.2.4 yamt * The machine independent parts of context switch.
359 1.149.2.4 yamt *
360 1.149.2.4 yamt * Returns 1 if another LWP was actually run.
361 1.26 cgd */
362 1.122 thorpej int
363 1.149.2.5 yamt mi_switch(lwp_t *l)
364 1.26 cgd {
365 1.76 thorpej struct schedstate_percpu *spc;
366 1.149.2.4 yamt struct lwp *newl;
367 1.149.2.3 yamt int retval, oldspl;
368 1.149.2.5 yamt struct cpu_info *ci;
369 1.149.2.5 yamt struct timeval tv;
370 1.149.2.5 yamt bool returning;
371 1.85 sommerfe
372 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
373 1.149.2.4 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
374 1.76 thorpej
375 1.149.2.3 yamt #ifdef KSTACK_CHECK_MAGIC
376 1.149.2.3 yamt kstack_check_magic(l);
377 1.149.2.3 yamt #endif
378 1.149.2.3 yamt
379 1.149.2.5 yamt microtime(&tv);
380 1.149.2.5 yamt
381 1.149.2.7 yamt KDASSERT(l->l_cpu == curcpu());
382 1.149.2.5 yamt ci = l->l_cpu;
383 1.149.2.5 yamt spc = &ci->ci_schedstate;
384 1.149.2.5 yamt returning = false;
385 1.149.2.4 yamt newl = NULL;
386 1.149.2.4 yamt
387 1.149.2.5 yamt /*
388 1.149.2.5 yamt * If we have been asked to switch to a specific LWP, then there
389 1.149.2.5 yamt * is no need to inspect the run queues. If a soft interrupt is
390 1.149.2.5 yamt * blocking, then return to the interrupted thread without adjusting
391 1.149.2.5 yamt * VM context or its start time: neither have been changed in order
392 1.149.2.5 yamt * to take the interrupt.
393 1.149.2.5 yamt */
394 1.149.2.4 yamt if (l->l_switchto != NULL) {
395 1.149.2.6 yamt if ((l->l_pflag & LP_INTR) != 0) {
396 1.149.2.5 yamt returning = true;
397 1.149.2.5 yamt softint_block(l);
398 1.149.2.5 yamt if ((l->l_flag & LW_TIMEINTR) != 0)
399 1.149.2.5 yamt updatertime(l, &tv);
400 1.149.2.5 yamt }
401 1.149.2.4 yamt newl = l->l_switchto;
402 1.149.2.4 yamt l->l_switchto = NULL;
403 1.26 cgd }
404 1.149.2.6 yamt #ifndef __HAVE_FAST_SOFTINTS
405 1.149.2.6 yamt else if (ci->ci_data.cpu_softints != 0) {
406 1.149.2.6 yamt /* There are pending soft interrupts, so pick one. */
407 1.149.2.6 yamt newl = softint_picklwp();
408 1.149.2.6 yamt newl->l_stat = LSONPROC;
409 1.149.2.6 yamt newl->l_flag |= LW_RUNNING;
410 1.149.2.6 yamt }
411 1.149.2.6 yamt #endif /* !__HAVE_FAST_SOFTINTS */
412 1.149.2.3 yamt
413 1.149.2.3 yamt /* Count time spent in current system call */
414 1.149.2.5 yamt if (!returning) {
415 1.149.2.5 yamt SYSCALL_TIME_SLEEP(l);
416 1.26 cgd
417 1.149.2.5 yamt /*
418 1.149.2.5 yamt * XXXSMP If we are using h/w performance counters,
419 1.149.2.5 yamt * save context.
420 1.149.2.5 yamt */
421 1.149.2.3 yamt #if PERFCTRS
422 1.149.2.5 yamt if (PMC_ENABLED(l->l_proc)) {
423 1.149.2.5 yamt pmc_save_context(l->l_proc);
424 1.149.2.5 yamt }
425 1.109 yamt #endif
426 1.149.2.5 yamt updatertime(l, &tv);
427 1.149.2.5 yamt }
428 1.113 gmcgarry
429 1.113 gmcgarry /*
430 1.149.2.3 yamt * If on the CPU and we have gotten this far, then we must yield.
431 1.113 gmcgarry */
432 1.149.2.4 yamt mutex_spin_enter(spc->spc_mutex);
433 1.149.2.3 yamt KASSERT(l->l_stat != LSRUN);
434 1.149.2.6 yamt if (l->l_stat == LSONPROC && l != newl) {
435 1.149.2.4 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
436 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) == 0) {
437 1.149.2.4 yamt l->l_stat = LSRUN;
438 1.149.2.4 yamt lwp_setlock(l, spc->spc_mutex);
439 1.149.2.4 yamt sched_enqueue(l, true);
440 1.149.2.4 yamt } else
441 1.149.2.4 yamt l->l_stat = LSIDL;
442 1.149.2.3 yamt }
443 1.149.2.3 yamt
444 1.149.2.3 yamt /*
445 1.149.2.5 yamt * Let sched_nextlwp() select the LWP to run the CPU next.
446 1.149.2.7 yamt * If no LWP is runnable, select the idle LWP.
447 1.149.2.7 yamt *
448 1.149.2.7 yamt * Note that spc_lwplock might not necessary be held, and
449 1.149.2.7 yamt * new thread would be unlocked after setting the LWP-lock.
450 1.149.2.3 yamt */
451 1.149.2.4 yamt if (newl == NULL) {
452 1.149.2.4 yamt newl = sched_nextlwp();
453 1.149.2.4 yamt if (newl != NULL) {
454 1.149.2.4 yamt sched_dequeue(newl);
455 1.149.2.4 yamt KASSERT(lwp_locked(newl, spc->spc_mutex));
456 1.149.2.4 yamt newl->l_stat = LSONPROC;
457 1.149.2.5 yamt newl->l_cpu = ci;
458 1.149.2.4 yamt newl->l_flag |= LW_RUNNING;
459 1.149.2.4 yamt lwp_setlock(newl, &spc->spc_lwplock);
460 1.149.2.4 yamt } else {
461 1.149.2.5 yamt newl = ci->ci_data.cpu_idlelwp;
462 1.149.2.4 yamt newl->l_stat = LSONPROC;
463 1.149.2.4 yamt newl->l_flag |= LW_RUNNING;
464 1.149.2.4 yamt }
465 1.149.2.6 yamt /*
466 1.149.2.6 yamt * Only clear want_resched if there are no
467 1.149.2.6 yamt * pending (slow) software interrupts.
468 1.149.2.6 yamt */
469 1.149.2.6 yamt ci->ci_want_resched = ci->ci_data.cpu_softints;
470 1.149.2.5 yamt spc->spc_flags &= ~SPCF_SWITCHCLEAR;
471 1.149.2.6 yamt spc->spc_curpriority = lwp_eprio(newl);
472 1.149.2.5 yamt }
473 1.149.2.5 yamt
474 1.149.2.6 yamt /* Items that must be updated with the CPU locked. */
475 1.149.2.5 yamt if (!returning) {
476 1.149.2.6 yamt /* Update the new LWP's start time. */
477 1.149.2.5 yamt newl->l_stime = tv;
478 1.149.2.6 yamt
479 1.149.2.5 yamt /*
480 1.149.2.6 yamt * ci_curlwp changes when a fast soft interrupt occurs.
481 1.149.2.6 yamt * We use cpu_onproc to keep track of which kernel or
482 1.149.2.6 yamt * user thread is running 'underneath' the software
483 1.149.2.6 yamt * interrupt. This is important for time accounting,
484 1.149.2.6 yamt * itimers and forcing user threads to preempt (aston).
485 1.149.2.5 yamt */
486 1.149.2.6 yamt ci->ci_data.cpu_onproc = newl;
487 1.149.2.4 yamt }
488 1.149.2.3 yamt
489 1.149.2.4 yamt if (l != newl) {
490 1.149.2.4 yamt struct lwp *prevlwp;
491 1.149.2.3 yamt
492 1.149.2.7 yamt /* Release all locks, but leave the current LWP locked */
493 1.149.2.4 yamt if (l->l_mutex == spc->spc_mutex) {
494 1.149.2.7 yamt /*
495 1.149.2.7 yamt * Drop spc_lwplock, if the current LWP has been moved
496 1.149.2.7 yamt * to the run queue (it is now locked by spc_mutex).
497 1.149.2.7 yamt */
498 1.149.2.4 yamt mutex_spin_exit(&spc->spc_lwplock);
499 1.149.2.4 yamt } else {
500 1.149.2.7 yamt /*
501 1.149.2.7 yamt * Otherwise, drop the spc_mutex, we are done with the
502 1.149.2.7 yamt * run queues.
503 1.149.2.7 yamt */
504 1.149.2.4 yamt mutex_spin_exit(spc->spc_mutex);
505 1.149.2.4 yamt }
506 1.149.2.4 yamt
507 1.149.2.7 yamt /*
508 1.149.2.7 yamt * Mark that context switch is going to be perfomed
509 1.149.2.7 yamt * for this LWP, to protect it from being switched
510 1.149.2.7 yamt * to on another CPU.
511 1.149.2.7 yamt */
512 1.149.2.7 yamt KASSERT(l->l_ctxswtch == 0);
513 1.149.2.7 yamt l->l_ctxswtch = 1;
514 1.149.2.7 yamt l->l_ncsw++;
515 1.149.2.7 yamt l->l_flag &= ~LW_RUNNING;
516 1.149.2.7 yamt
517 1.149.2.7 yamt /*
518 1.149.2.7 yamt * Increase the count of spin-mutexes before the release
519 1.149.2.7 yamt * of the last lock - we must remain at IPL_SCHED during
520 1.149.2.7 yamt * the context switch.
521 1.149.2.7 yamt */
522 1.149.2.7 yamt oldspl = MUTEX_SPIN_OLDSPL(ci);
523 1.149.2.7 yamt ci->ci_mtx_count--;
524 1.149.2.7 yamt lwp_unlock(l);
525 1.149.2.7 yamt
526 1.149.2.4 yamt /* Unlocked, but for statistics only. */
527 1.149.2.4 yamt uvmexp.swtch++;
528 1.149.2.4 yamt
529 1.149.2.7 yamt /* Update status for lwpctl, if present. */
530 1.149.2.7 yamt if (l->l_lwpctl != NULL)
531 1.149.2.7 yamt l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
532 1.149.2.7 yamt
533 1.149.2.5 yamt /*
534 1.149.2.5 yamt * Save old VM context, unless a soft interrupt
535 1.149.2.5 yamt * handler is blocking.
536 1.149.2.5 yamt */
537 1.149.2.5 yamt if (!returning)
538 1.149.2.5 yamt pmap_deactivate(l);
539 1.149.2.4 yamt
540 1.149.2.7 yamt /*
541 1.149.2.7 yamt * We may need to spin-wait for if 'newl' is still
542 1.149.2.7 yamt * context switching on another CPU.
543 1.149.2.7 yamt */
544 1.149.2.7 yamt if (newl->l_ctxswtch != 0) {
545 1.149.2.7 yamt u_int count;
546 1.149.2.7 yamt count = SPINLOCK_BACKOFF_MIN;
547 1.149.2.7 yamt while (newl->l_ctxswtch)
548 1.149.2.7 yamt SPINLOCK_BACKOFF(count);
549 1.149.2.7 yamt }
550 1.149.2.6 yamt
551 1.149.2.4 yamt /* Switch to the new LWP.. */
552 1.149.2.6 yamt prevlwp = cpu_switchto(l, newl, returning);
553 1.149.2.6 yamt ci = curcpu();
554 1.149.2.4 yamt
555 1.149.2.4 yamt /*
556 1.149.2.7 yamt * Switched away - we have new curlwp.
557 1.149.2.7 yamt * Restore VM context and IPL.
558 1.149.2.4 yamt */
559 1.149.2.7 yamt pmap_activate(l);
560 1.149.2.4 yamt if (prevlwp != NULL) {
561 1.149.2.7 yamt /* Normalize the count of the spin-mutexes */
562 1.149.2.7 yamt ci->ci_mtx_count++;
563 1.149.2.7 yamt /* Unmark the state of context switch */
564 1.149.2.7 yamt membar_exit();
565 1.149.2.7 yamt prevlwp->l_ctxswtch = 0;
566 1.149.2.4 yamt }
567 1.149.2.7 yamt splx(oldspl);
568 1.149.2.6 yamt
569 1.149.2.6 yamt /* Update status for lwpctl, if present. */
570 1.149.2.7 yamt if (l->l_lwpctl != NULL)
571 1.149.2.7 yamt l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
572 1.149.2.7 yamt
573 1.149.2.7 yamt retval = 1;
574 1.149.2.4 yamt } else {
575 1.149.2.4 yamt /* Nothing to do - just unlock and return. */
576 1.149.2.4 yamt mutex_spin_exit(spc->spc_mutex);
577 1.149.2.4 yamt lwp_unlock(l);
578 1.122 thorpej retval = 0;
579 1.122 thorpej }
580 1.110 briggs
581 1.149.2.4 yamt KASSERT(l == curlwp);
582 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
583 1.149.2.6 yamt KASSERT(l->l_cpu == ci);
584 1.149.2.4 yamt
585 1.110 briggs /*
586 1.149.2.3 yamt * XXXSMP If we are using h/w performance counters, restore context.
587 1.26 cgd */
588 1.114 gmcgarry #if PERFCTRS
589 1.149.2.3 yamt if (PMC_ENABLED(l->l_proc)) {
590 1.149.2.3 yamt pmc_restore_context(l->l_proc);
591 1.149.2.2 yamt }
592 1.114 gmcgarry #endif
593 1.149.2.3 yamt SYSCALL_TIME_WAKEUP(l);
594 1.149.2.4 yamt LOCKDEBUG_BARRIER(NULL, 1);
595 1.149.2.2 yamt
596 1.122 thorpej return retval;
597 1.26 cgd }
598 1.26 cgd
599 1.26 cgd /*
600 1.149.2.3 yamt * Change process state to be runnable, placing it on the run queue if it is
601 1.149.2.3 yamt * in memory, and awakening the swapper if it isn't in memory.
602 1.149.2.3 yamt *
603 1.149.2.3 yamt * Call with the process and LWP locked. Will return with the LWP unlocked.
604 1.26 cgd */
605 1.26 cgd void
606 1.122 thorpej setrunnable(struct lwp *l)
607 1.26 cgd {
608 1.122 thorpej struct proc *p = l->l_proc;
609 1.149.2.6 yamt struct cpu_info *ci;
610 1.149.2.3 yamt sigset_t *ss;
611 1.26 cgd
612 1.149.2.4 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
613 1.149.2.3 yamt KASSERT(mutex_owned(&p->p_smutex));
614 1.149.2.3 yamt KASSERT(lwp_locked(l, NULL));
615 1.149.2.6 yamt KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
616 1.83 thorpej
617 1.122 thorpej switch (l->l_stat) {
618 1.122 thorpej case LSSTOP:
619 1.33 mycroft /*
620 1.33 mycroft * If we're being traced (possibly because someone attached us
621 1.33 mycroft * while we were stopped), check for a signal from the debugger.
622 1.33 mycroft */
623 1.149.2.3 yamt if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
624 1.149.2.3 yamt if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
625 1.149.2.3 yamt ss = &l->l_sigpend.sp_set;
626 1.149.2.3 yamt else
627 1.149.2.3 yamt ss = &p->p_sigpend.sp_set;
628 1.149.2.3 yamt sigaddset(ss, p->p_xstat);
629 1.149.2.3 yamt signotify(l);
630 1.53 mycroft }
631 1.149.2.3 yamt p->p_nrlwps++;
632 1.122 thorpej break;
633 1.122 thorpej case LSSUSPENDED:
634 1.149.2.3 yamt l->l_flag &= ~LW_WSUSPEND;
635 1.149.2.3 yamt p->p_nrlwps++;
636 1.149.2.4 yamt cv_broadcast(&p->p_lwpcv);
637 1.149.2.3 yamt break;
638 1.149.2.3 yamt case LSSLEEP:
639 1.149.2.3 yamt KASSERT(l->l_wchan != NULL);
640 1.26 cgd break;
641 1.149.2.3 yamt default:
642 1.149.2.3 yamt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
643 1.26 cgd }
644 1.139 cl
645 1.149.2.3 yamt /*
646 1.149.2.3 yamt * If the LWP was sleeping interruptably, then it's OK to start it
647 1.149.2.3 yamt * again. If not, mark it as still sleeping.
648 1.149.2.3 yamt */
649 1.149.2.3 yamt if (l->l_wchan != NULL) {
650 1.149.2.3 yamt l->l_stat = LSSLEEP;
651 1.149.2.3 yamt /* lwp_unsleep() will release the lock. */
652 1.149.2.3 yamt lwp_unsleep(l);
653 1.149.2.3 yamt return;
654 1.149.2.3 yamt }
655 1.139 cl
656 1.149.2.3 yamt /*
657 1.149.2.3 yamt * If the LWP is still on the CPU, mark it as LSONPROC. It may be
658 1.149.2.3 yamt * about to call mi_switch(), in which case it will yield.
659 1.149.2.3 yamt */
660 1.149.2.4 yamt if ((l->l_flag & LW_RUNNING) != 0) {
661 1.149.2.3 yamt l->l_stat = LSONPROC;
662 1.149.2.3 yamt l->l_slptime = 0;
663 1.149.2.3 yamt lwp_unlock(l);
664 1.149.2.3 yamt return;
665 1.149.2.3 yamt }
666 1.122 thorpej
667 1.149.2.3 yamt /*
668 1.149.2.6 yamt * Look for a CPU to run.
669 1.149.2.6 yamt * Set the LWP runnable.
670 1.149.2.3 yamt */
671 1.149.2.6 yamt ci = sched_takecpu(l);
672 1.149.2.6 yamt l->l_cpu = ci;
673 1.149.2.4 yamt if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
674 1.149.2.6 yamt lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
675 1.149.2.6 yamt lwp_lock(l);
676 1.149.2.4 yamt }
677 1.149.2.4 yamt sched_setrunnable(l);
678 1.149.2.3 yamt l->l_stat = LSRUN;
679 1.122 thorpej l->l_slptime = 0;
680 1.149.2.3 yamt
681 1.149.2.6 yamt /*
682 1.149.2.6 yamt * If thread is swapped out - wake the swapper to bring it back in.
683 1.149.2.6 yamt * Otherwise, enter it into a run queue.
684 1.149.2.6 yamt */
685 1.149.2.3 yamt if (l->l_flag & LW_INMEM) {
686 1.149.2.4 yamt sched_enqueue(l, false);
687 1.149.2.4 yamt resched_cpu(l);
688 1.149.2.3 yamt lwp_unlock(l);
689 1.149.2.3 yamt } else {
690 1.149.2.3 yamt lwp_unlock(l);
691 1.149.2.3 yamt uvm_kick_scheduler();
692 1.149.2.3 yamt }
693 1.26 cgd }
694 1.26 cgd
695 1.26 cgd /*
696 1.149.2.3 yamt * suspendsched:
697 1.149.2.3 yamt *
698 1.149.2.3 yamt * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
699 1.149.2.3 yamt */
700 1.94 bouyer void
701 1.149.2.3 yamt suspendsched(void)
702 1.94 bouyer {
703 1.149.2.3 yamt CPU_INFO_ITERATOR cii;
704 1.149.2.3 yamt struct cpu_info *ci;
705 1.122 thorpej struct lwp *l;
706 1.149.2.3 yamt struct proc *p;
707 1.94 bouyer
708 1.94 bouyer /*
709 1.149.2.3 yamt * We do this by process in order not to violate the locking rules.
710 1.94 bouyer */
711 1.149.2.6 yamt mutex_enter(&proclist_lock);
712 1.149.2.3 yamt PROCLIST_FOREACH(p, &allproc) {
713 1.149.2.3 yamt mutex_enter(&p->p_smutex);
714 1.149.2.3 yamt
715 1.149.2.3 yamt if ((p->p_flag & PK_SYSTEM) != 0) {
716 1.149.2.3 yamt mutex_exit(&p->p_smutex);
717 1.94 bouyer continue;
718 1.149.2.3 yamt }
719 1.149.2.3 yamt
720 1.149.2.3 yamt p->p_stat = SSTOP;
721 1.149.2.3 yamt
722 1.149.2.3 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
723 1.149.2.3 yamt if (l == curlwp)
724 1.149.2.3 yamt continue;
725 1.149.2.3 yamt
726 1.149.2.3 yamt lwp_lock(l);
727 1.122 thorpej
728 1.97 enami /*
729 1.149.2.3 yamt * Set L_WREBOOT so that the LWP will suspend itself
730 1.149.2.3 yamt * when it tries to return to user mode. We want to
731 1.149.2.3 yamt * try and get to get as many LWPs as possible to
732 1.149.2.3 yamt * the user / kernel boundary, so that they will
733 1.149.2.3 yamt * release any locks that they hold.
734 1.97 enami */
735 1.149.2.3 yamt l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
736 1.149.2.3 yamt
737 1.149.2.3 yamt if (l->l_stat == LSSLEEP &&
738 1.149.2.3 yamt (l->l_flag & LW_SINTR) != 0) {
739 1.149.2.3 yamt /* setrunnable() will release the lock. */
740 1.149.2.3 yamt setrunnable(l);
741 1.149.2.3 yamt continue;
742 1.149.2.3 yamt }
743 1.149.2.3 yamt
744 1.149.2.3 yamt lwp_unlock(l);
745 1.94 bouyer }
746 1.149.2.3 yamt
747 1.149.2.3 yamt mutex_exit(&p->p_smutex);
748 1.94 bouyer }
749 1.149.2.6 yamt mutex_exit(&proclist_lock);
750 1.149.2.3 yamt
751 1.149.2.3 yamt /*
752 1.149.2.3 yamt * Kick all CPUs to make them preempt any LWPs running in user mode.
753 1.149.2.3 yamt * They'll trap into the kernel and suspend themselves in userret().
754 1.149.2.3 yamt */
755 1.149.2.6 yamt for (CPU_INFO_FOREACH(cii, ci)) {
756 1.149.2.6 yamt spc_lock(ci);
757 1.149.2.6 yamt cpu_need_resched(ci, RESCHED_IMMED);
758 1.149.2.6 yamt spc_unlock(ci);
759 1.149.2.6 yamt }
760 1.149.2.3 yamt }
761 1.149.2.3 yamt
762 1.149.2.3 yamt /*
763 1.149.2.3 yamt * sched_unsleep:
764 1.149.2.3 yamt *
765 1.149.2.3 yamt * The is called when the LWP has not been awoken normally but instead
766 1.149.2.3 yamt * interrupted: for example, if the sleep timed out. Because of this,
767 1.149.2.3 yamt * it's not a valid action for running or idle LWPs.
768 1.149.2.3 yamt */
769 1.149.2.4 yamt static void
770 1.149.2.3 yamt sched_unsleep(struct lwp *l)
771 1.149.2.3 yamt {
772 1.149.2.3 yamt
773 1.149.2.3 yamt lwp_unlock(l);
774 1.149.2.3 yamt panic("sched_unsleep");
775 1.149.2.3 yamt }
776 1.149.2.3 yamt
777 1.149.2.6 yamt void
778 1.149.2.4 yamt resched_cpu(struct lwp *l)
779 1.149.2.3 yamt {
780 1.149.2.4 yamt struct cpu_info *ci;
781 1.149.2.3 yamt
782 1.149.2.4 yamt /*
783 1.149.2.4 yamt * XXXSMP
784 1.149.2.4 yamt * Since l->l_cpu persists across a context switch,
785 1.149.2.4 yamt * this gives us *very weak* processor affinity, in
786 1.149.2.4 yamt * that we notify the CPU on which the process last
787 1.149.2.4 yamt * ran that it should try to switch.
788 1.149.2.4 yamt *
789 1.149.2.4 yamt * This does not guarantee that the process will run on
790 1.149.2.4 yamt * that processor next, because another processor might
791 1.149.2.4 yamt * grab it the next time it performs a context switch.
792 1.149.2.4 yamt *
793 1.149.2.4 yamt * This also does not handle the case where its last
794 1.149.2.4 yamt * CPU is running a higher-priority process, but every
795 1.149.2.4 yamt * other CPU is running a lower-priority process. There
796 1.149.2.4 yamt * are ways to handle this situation, but they're not
797 1.149.2.4 yamt * currently very pretty, and we also need to weigh the
798 1.149.2.4 yamt * cost of moving a process from one CPU to another.
799 1.149.2.4 yamt */
800 1.149.2.6 yamt ci = l->l_cpu;
801 1.149.2.6 yamt if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
802 1.149.2.4 yamt cpu_need_resched(ci, 0);
803 1.149.2.4 yamt }
804 1.149.2.3 yamt
805 1.149.2.4 yamt static void
806 1.149.2.4 yamt sched_changepri(struct lwp *l, pri_t pri)
807 1.149.2.4 yamt {
808 1.149.2.4 yamt
809 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
810 1.149.2.3 yamt
811 1.149.2.6 yamt if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
812 1.149.2.6 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
813 1.149.2.6 yamt sched_dequeue(l);
814 1.149.2.6 yamt l->l_priority = pri;
815 1.149.2.6 yamt sched_enqueue(l, false);
816 1.149.2.6 yamt } else {
817 1.149.2.3 yamt l->l_priority = pri;
818 1.149.2.1 yamt }
819 1.149.2.4 yamt resched_cpu(l);
820 1.149.2.1 yamt }
821 1.149.2.1 yamt
822 1.146 matt static void
823 1.149.2.4 yamt sched_lendpri(struct lwp *l, pri_t pri)
824 1.146 matt {
825 1.149.2.4 yamt
826 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
827 1.149.2.4 yamt
828 1.149.2.6 yamt if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
829 1.149.2.6 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
830 1.149.2.6 yamt sched_dequeue(l);
831 1.149.2.6 yamt l->l_inheritedprio = pri;
832 1.149.2.6 yamt sched_enqueue(l, false);
833 1.149.2.6 yamt } else {
834 1.149.2.4 yamt l->l_inheritedprio = pri;
835 1.146 matt }
836 1.149.2.4 yamt resched_cpu(l);
837 1.146 matt }
838 1.146 matt
839 1.149.2.4 yamt struct lwp *
840 1.149.2.4 yamt syncobj_noowner(wchan_t wchan)
841 1.113 gmcgarry {
842 1.149.2.3 yamt
843 1.149.2.4 yamt return NULL;
844 1.113 gmcgarry }
845 1.113 gmcgarry
846 1.149.2.4 yamt
847 1.149.2.4 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
848 1.149.2.4 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
849 1.149.2.4 yamt
850 1.149.2.3 yamt /*
851 1.149.2.4 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
852 1.149.2.4 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
853 1.149.2.4 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
854 1.149.2.4 yamt *
855 1.149.2.4 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
856 1.149.2.4 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
857 1.149.2.4 yamt *
858 1.149.2.4 yamt * If you dont want to bother with the faster/more-accurate formula, you
859 1.149.2.4 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
860 1.149.2.4 yamt * (more general) method of calculating the %age of CPU used by a process.
861 1.149.2.3 yamt */
862 1.149.2.4 yamt #define CCPU_SHIFT (FSHIFT + 1)
863 1.149.2.4 yamt
864 1.149.2.4 yamt /*
865 1.149.2.4 yamt * sched_pstats:
866 1.149.2.4 yamt *
867 1.149.2.4 yamt * Update process statistics and check CPU resource allocation.
868 1.149.2.4 yamt * Call scheduler-specific hook to eventually adjust process/LWP
869 1.149.2.4 yamt * priorities.
870 1.149.2.4 yamt */
871 1.149.2.4 yamt /* ARGSUSED */
872 1.113 gmcgarry void
873 1.149.2.4 yamt sched_pstats(void *arg)
874 1.113 gmcgarry {
875 1.149.2.4 yamt struct rlimit *rlim;
876 1.149.2.4 yamt struct lwp *l;
877 1.149.2.4 yamt struct proc *p;
878 1.149.2.6 yamt int sig, clkhz;
879 1.149.2.4 yamt long runtm;
880 1.149.2.3 yamt
881 1.149.2.4 yamt sched_pstats_ticks++;
882 1.149.2.3 yamt
883 1.149.2.7 yamt mutex_enter(&proclist_lock);
884 1.149.2.4 yamt PROCLIST_FOREACH(p, &allproc) {
885 1.149.2.4 yamt /*
886 1.149.2.4 yamt * Increment time in/out of memory and sleep time (if
887 1.149.2.4 yamt * sleeping). We ignore overflow; with 16-bit int's
888 1.149.2.4 yamt * (remember them?) overflow takes 45 days.
889 1.149.2.4 yamt */
890 1.149.2.4 yamt mutex_enter(&p->p_smutex);
891 1.149.2.4 yamt mutex_spin_enter(&p->p_stmutex);
892 1.149.2.4 yamt runtm = p->p_rtime.tv_sec;
893 1.149.2.4 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
894 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) != 0)
895 1.149.2.4 yamt continue;
896 1.149.2.4 yamt lwp_lock(l);
897 1.149.2.4 yamt runtm += l->l_rtime.tv_sec;
898 1.149.2.4 yamt l->l_swtime++;
899 1.149.2.5 yamt sched_pstats_hook(l);
900 1.149.2.4 yamt lwp_unlock(l);
901 1.149.2.4 yamt
902 1.149.2.4 yamt /*
903 1.149.2.4 yamt * p_pctcpu is only for ps.
904 1.149.2.4 yamt */
905 1.149.2.4 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
906 1.149.2.4 yamt if (l->l_slptime < 1) {
907 1.149.2.4 yamt clkhz = stathz != 0 ? stathz : hz;
908 1.149.2.4 yamt #if (FSHIFT >= CCPU_SHIFT)
909 1.149.2.4 yamt l->l_pctcpu += (clkhz == 100) ?
910 1.149.2.4 yamt ((fixpt_t)l->l_cpticks) <<
911 1.149.2.4 yamt (FSHIFT - CCPU_SHIFT) :
912 1.149.2.4 yamt 100 * (((fixpt_t) p->p_cpticks)
913 1.149.2.4 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
914 1.149.2.4 yamt #else
915 1.149.2.4 yamt l->l_pctcpu += ((FSCALE - ccpu) *
916 1.149.2.4 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
917 1.146 matt #endif
918 1.149.2.4 yamt l->l_cpticks = 0;
919 1.149.2.4 yamt }
920 1.149.2.4 yamt }
921 1.149.2.4 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
922 1.149.2.4 yamt mutex_spin_exit(&p->p_stmutex);
923 1.149.2.3 yamt
924 1.149.2.4 yamt /*
925 1.149.2.4 yamt * Check if the process exceeds its CPU resource allocation.
926 1.149.2.4 yamt * If over max, kill it.
927 1.149.2.4 yamt */
928 1.149.2.4 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
929 1.149.2.4 yamt sig = 0;
930 1.149.2.4 yamt if (runtm >= rlim->rlim_cur) {
931 1.149.2.4 yamt if (runtm >= rlim->rlim_max)
932 1.149.2.4 yamt sig = SIGKILL;
933 1.149.2.4 yamt else {
934 1.149.2.4 yamt sig = SIGXCPU;
935 1.149.2.4 yamt if (rlim->rlim_cur < rlim->rlim_max)
936 1.149.2.4 yamt rlim->rlim_cur += 5;
937 1.149.2.4 yamt }
938 1.149.2.4 yamt }
939 1.149.2.4 yamt mutex_exit(&p->p_smutex);
940 1.149.2.4 yamt if (sig) {
941 1.149.2.4 yamt psignal(p, sig);
942 1.149.2.4 yamt }
943 1.149.2.3 yamt }
944 1.149.2.7 yamt mutex_exit(&proclist_lock);
945 1.149.2.4 yamt uvm_meter();
946 1.149.2.4 yamt cv_wakeup(&lbolt);
947 1.149.2.4 yamt callout_schedule(&sched_pstats_ch, hz);
948 1.113 gmcgarry }
949 1.113 gmcgarry
950 1.149.2.4 yamt void
951 1.149.2.4 yamt sched_init(void)
952 1.149.2.4 yamt {
953 1.149.2.4 yamt
954 1.149.2.7 yamt cv_init(&lbolt, "lbolt");
955 1.149.2.4 yamt callout_init(&sched_pstats_ch, 0);
956 1.149.2.4 yamt callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
957 1.149.2.4 yamt sched_setup();
958 1.149.2.4 yamt sched_pstats(NULL);
959 1.149.2.4 yamt }
960