kern_synch.c revision 1.149.2.8 1 1.149.2.8 yamt /* $NetBSD: kern_synch.c,v 1.149.2.8 2008/01/21 09:46:13 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.149.2.3 yamt * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.149.2.4 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.149.2.4 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.149.2.8 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.149.2.8 2008/01/21 09:46:13 yamt Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.149.2.3 yamt #define __MUTEX_PRIVATE
86 1.149.2.3 yamt
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.149.2.4 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.149.2.3 yamt #include <sys/syscall_stats.h>
98 1.149.2.3 yamt #include <sys/sleepq.h>
99 1.149.2.3 yamt #include <sys/lockdebug.h>
100 1.149.2.4 yamt #include <sys/evcnt.h>
101 1.149.2.5 yamt #include <sys/intr.h>
102 1.149.2.6 yamt #include <sys/lwpctl.h>
103 1.149.2.7 yamt #include <sys/atomic.h>
104 1.149.2.8 yamt #include <sys/simplelock.h>
105 1.47 mrg
106 1.47 mrg #include <uvm/uvm_extern.h>
107 1.47 mrg
108 1.149.2.4 yamt callout_t sched_pstats_ch;
109 1.149.2.4 yamt unsigned int sched_pstats_ticks;
110 1.34 christos
111 1.149.2.4 yamt kcondvar_t lbolt; /* once a second sleep address */
112 1.26 cgd
113 1.149.2.4 yamt static void sched_unsleep(struct lwp *);
114 1.149.2.4 yamt static void sched_changepri(struct lwp *, pri_t);
115 1.149.2.4 yamt static void sched_lendpri(struct lwp *, pri_t);
116 1.122 thorpej
117 1.149.2.3 yamt syncobj_t sleep_syncobj = {
118 1.149.2.3 yamt SOBJ_SLEEPQ_SORTED,
119 1.149.2.3 yamt sleepq_unsleep,
120 1.149.2.4 yamt sleepq_changepri,
121 1.149.2.4 yamt sleepq_lendpri,
122 1.149.2.4 yamt syncobj_noowner,
123 1.149.2.3 yamt };
124 1.149.2.3 yamt
125 1.149.2.3 yamt syncobj_t sched_syncobj = {
126 1.149.2.3 yamt SOBJ_SLEEPQ_SORTED,
127 1.149.2.3 yamt sched_unsleep,
128 1.149.2.4 yamt sched_changepri,
129 1.149.2.4 yamt sched_lendpri,
130 1.149.2.4 yamt syncobj_noowner,
131 1.149.2.3 yamt };
132 1.122 thorpej
133 1.26 cgd /*
134 1.149.2.3 yamt * During autoconfiguration or after a panic, a sleep will simply lower the
135 1.149.2.3 yamt * priority briefly to allow interrupts, then return. The priority to be
136 1.149.2.3 yamt * used (safepri) is machine-dependent, thus this value is initialized and
137 1.149.2.3 yamt * maintained in the machine-dependent layers. This priority will typically
138 1.149.2.3 yamt * be 0, or the lowest priority that is safe for use on the interrupt stack;
139 1.149.2.3 yamt * it can be made higher to block network software interrupts after panics.
140 1.26 cgd */
141 1.149.2.3 yamt int safepri;
142 1.26 cgd
143 1.26 cgd /*
144 1.149.2.3 yamt * OBSOLETE INTERFACE
145 1.149.2.3 yamt *
146 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
147 1.26 cgd * performed on the specified identifier. The process will then be made
148 1.149.2.3 yamt * runnable with the specified priority. Sleeps at most timo/hz seconds (0
149 1.149.2.3 yamt * means no timeout). If pri includes PCATCH flag, signals are checked
150 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
151 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
152 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
153 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
154 1.26 cgd * call should be interrupted by the signal (return EINTR).
155 1.77 thorpej *
156 1.149.2.3 yamt * The interlock is held until we are on a sleep queue. The interlock will
157 1.149.2.3 yamt * be locked before returning back to the caller unless the PNORELOCK flag
158 1.149.2.3 yamt * is specified, in which case the interlock will always be unlocked upon
159 1.149.2.3 yamt * return.
160 1.26 cgd */
161 1.26 cgd int
162 1.149.2.4 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
163 1.149.2.3 yamt volatile struct simplelock *interlock)
164 1.26 cgd {
165 1.122 thorpej struct lwp *l = curlwp;
166 1.149.2.3 yamt sleepq_t *sq;
167 1.149.2.4 yamt int error;
168 1.26 cgd
169 1.149.2.6 yamt KASSERT((l->l_pflag & LP_INTR) == 0);
170 1.149.2.6 yamt
171 1.149.2.3 yamt if (sleepq_dontsleep(l)) {
172 1.149.2.3 yamt (void)sleepq_abort(NULL, 0);
173 1.149.2.3 yamt if ((priority & PNORELOCK) != 0)
174 1.77 thorpej simple_unlock(interlock);
175 1.149.2.3 yamt return 0;
176 1.122 thorpej }
177 1.77 thorpej
178 1.149.2.6 yamt l->l_kpriority = true;
179 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
180 1.149.2.3 yamt sleepq_enter(sq, l);
181 1.149.2.6 yamt sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
182 1.77 thorpej
183 1.149.2.3 yamt if (interlock != NULL) {
184 1.149.2.6 yamt KASSERT(simple_lock_held(interlock));
185 1.77 thorpej simple_unlock(interlock);
186 1.26 cgd }
187 1.147 perry
188 1.149.2.4 yamt error = sleepq_block(timo, priority & PCATCH);
189 1.139 cl
190 1.149.2.3 yamt if (interlock != NULL && (priority & PNORELOCK) == 0)
191 1.149.2.3 yamt simple_lock(interlock);
192 1.149.2.3 yamt
193 1.149.2.3 yamt return error;
194 1.139 cl }
195 1.139 cl
196 1.149.2.4 yamt int
197 1.149.2.4 yamt mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
198 1.149.2.4 yamt kmutex_t *mtx)
199 1.149.2.4 yamt {
200 1.149.2.4 yamt struct lwp *l = curlwp;
201 1.149.2.4 yamt sleepq_t *sq;
202 1.149.2.4 yamt int error;
203 1.149.2.4 yamt
204 1.149.2.6 yamt KASSERT((l->l_pflag & LP_INTR) == 0);
205 1.149.2.6 yamt
206 1.149.2.4 yamt if (sleepq_dontsleep(l)) {
207 1.149.2.4 yamt (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
208 1.149.2.4 yamt return 0;
209 1.149.2.4 yamt }
210 1.149.2.4 yamt
211 1.149.2.6 yamt l->l_kpriority = true;
212 1.149.2.4 yamt sq = sleeptab_lookup(&sleeptab, ident);
213 1.149.2.4 yamt sleepq_enter(sq, l);
214 1.149.2.6 yamt sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
215 1.149.2.4 yamt mutex_exit(mtx);
216 1.149.2.4 yamt error = sleepq_block(timo, priority & PCATCH);
217 1.149.2.4 yamt
218 1.149.2.4 yamt if ((priority & PNORELOCK) == 0)
219 1.149.2.4 yamt mutex_enter(mtx);
220 1.149.2.4 yamt
221 1.149.2.4 yamt return error;
222 1.149.2.4 yamt }
223 1.149.2.4 yamt
224 1.26 cgd /*
225 1.149.2.3 yamt * General sleep call for situations where a wake-up is not expected.
226 1.63 thorpej */
227 1.149.2.3 yamt int
228 1.149.2.3 yamt kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
229 1.83 thorpej {
230 1.149.2.3 yamt struct lwp *l = curlwp;
231 1.149.2.3 yamt sleepq_t *sq;
232 1.149.2.3 yamt int error;
233 1.83 thorpej
234 1.149.2.3 yamt if (sleepq_dontsleep(l))
235 1.149.2.3 yamt return sleepq_abort(NULL, 0);
236 1.63 thorpej
237 1.149.2.3 yamt if (mtx != NULL)
238 1.149.2.3 yamt mutex_exit(mtx);
239 1.149.2.6 yamt l->l_kpriority = true;
240 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, l);
241 1.149.2.3 yamt sleepq_enter(sq, l);
242 1.149.2.6 yamt sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
243 1.149.2.4 yamt error = sleepq_block(timo, intr);
244 1.149.2.3 yamt if (mtx != NULL)
245 1.149.2.3 yamt mutex_enter(mtx);
246 1.83 thorpej
247 1.149.2.3 yamt return error;
248 1.83 thorpej }
249 1.83 thorpej
250 1.63 thorpej /*
251 1.149.2.3 yamt * OBSOLETE INTERFACE
252 1.149.2.3 yamt *
253 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
254 1.26 cgd */
255 1.26 cgd void
256 1.149.2.3 yamt wakeup(wchan_t ident)
257 1.26 cgd {
258 1.149.2.3 yamt sleepq_t *sq;
259 1.83 thorpej
260 1.149.2.3 yamt if (cold)
261 1.149.2.3 yamt return;
262 1.83 thorpej
263 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
264 1.149.2.3 yamt sleepq_wake(sq, ident, (u_int)-1);
265 1.63 thorpej }
266 1.63 thorpej
267 1.63 thorpej /*
268 1.149.2.3 yamt * OBSOLETE INTERFACE
269 1.149.2.3 yamt *
270 1.63 thorpej * Make the highest priority process first in line on the specified
271 1.63 thorpej * identifier runnable.
272 1.63 thorpej */
273 1.149.2.3 yamt void
274 1.149.2.3 yamt wakeup_one(wchan_t ident)
275 1.63 thorpej {
276 1.149.2.3 yamt sleepq_t *sq;
277 1.63 thorpej
278 1.149.2.3 yamt if (cold)
279 1.149.2.3 yamt return;
280 1.149.2.4 yamt
281 1.149.2.3 yamt sq = sleeptab_lookup(&sleeptab, ident);
282 1.149.2.3 yamt sleepq_wake(sq, ident, 1);
283 1.117 gmcgarry }
284 1.117 gmcgarry
285 1.149.2.3 yamt
286 1.117 gmcgarry /*
287 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
288 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
289 1.149.2.5 yamt * current process explicitly requests it (eg sched_yield(2)).
290 1.117 gmcgarry */
291 1.117 gmcgarry void
292 1.117 gmcgarry yield(void)
293 1.117 gmcgarry {
294 1.122 thorpej struct lwp *l = curlwp;
295 1.117 gmcgarry
296 1.149.2.3 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
297 1.149.2.3 yamt lwp_lock(l);
298 1.149.2.4 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
299 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
300 1.149.2.6 yamt l->l_kpriority = false;
301 1.149.2.6 yamt if (l->l_class == SCHED_OTHER) {
302 1.149.2.6 yamt /*
303 1.149.2.6 yamt * Only for timeshared threads. It will be reset
304 1.149.2.6 yamt * by the scheduler in due course.
305 1.149.2.6 yamt */
306 1.149.2.6 yamt l->l_priority = 0;
307 1.149.2.6 yamt }
308 1.149.2.4 yamt (void)mi_switch(l);
309 1.149.2.3 yamt KERNEL_LOCK(l->l_biglocks, l);
310 1.69 thorpej }
311 1.69 thorpej
312 1.69 thorpej /*
313 1.69 thorpej * General preemption call. Puts the current process back on its run queue
314 1.149.2.1 yamt * and performs an involuntary context switch.
315 1.69 thorpej */
316 1.69 thorpej void
317 1.149.2.3 yamt preempt(void)
318 1.69 thorpej {
319 1.122 thorpej struct lwp *l = curlwp;
320 1.69 thorpej
321 1.149.2.3 yamt KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
322 1.149.2.3 yamt lwp_lock(l);
323 1.149.2.4 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
324 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
325 1.149.2.6 yamt l->l_kpriority = false;
326 1.149.2.3 yamt l->l_nivcsw++;
327 1.149.2.4 yamt (void)mi_switch(l);
328 1.149.2.3 yamt KERNEL_LOCK(l->l_biglocks, l);
329 1.69 thorpej }
330 1.69 thorpej
331 1.69 thorpej /*
332 1.149.2.4 yamt * Compute the amount of time during which the current lwp was running.
333 1.130 nathanw *
334 1.149.2.4 yamt * - update l_rtime unless it's an idle lwp.
335 1.149.2.4 yamt */
336 1.149.2.4 yamt
337 1.149.2.5 yamt void
338 1.149.2.8 yamt updatertime(lwp_t *l, const struct bintime *now)
339 1.149.2.4 yamt {
340 1.149.2.4 yamt
341 1.149.2.5 yamt if ((l->l_flag & LW_IDLE) != 0)
342 1.149.2.4 yamt return;
343 1.149.2.4 yamt
344 1.149.2.8 yamt /* rtime += now - stime */
345 1.149.2.8 yamt bintime_add(&l->l_rtime, now);
346 1.149.2.8 yamt bintime_sub(&l->l_rtime, &l->l_stime);
347 1.149.2.4 yamt }
348 1.149.2.4 yamt
349 1.149.2.4 yamt /*
350 1.149.2.4 yamt * The machine independent parts of context switch.
351 1.149.2.4 yamt *
352 1.149.2.4 yamt * Returns 1 if another LWP was actually run.
353 1.26 cgd */
354 1.122 thorpej int
355 1.149.2.5 yamt mi_switch(lwp_t *l)
356 1.26 cgd {
357 1.149.2.8 yamt struct cpu_info *ci, *tci = NULL;
358 1.76 thorpej struct schedstate_percpu *spc;
359 1.149.2.4 yamt struct lwp *newl;
360 1.149.2.3 yamt int retval, oldspl;
361 1.149.2.8 yamt struct bintime bt;
362 1.149.2.5 yamt bool returning;
363 1.85 sommerfe
364 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
365 1.149.2.4 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
366 1.76 thorpej
367 1.149.2.3 yamt #ifdef KSTACK_CHECK_MAGIC
368 1.149.2.3 yamt kstack_check_magic(l);
369 1.149.2.3 yamt #endif
370 1.149.2.3 yamt
371 1.149.2.8 yamt binuptime(&bt);
372 1.149.2.5 yamt
373 1.149.2.7 yamt KDASSERT(l->l_cpu == curcpu());
374 1.149.2.5 yamt ci = l->l_cpu;
375 1.149.2.5 yamt spc = &ci->ci_schedstate;
376 1.149.2.5 yamt returning = false;
377 1.149.2.4 yamt newl = NULL;
378 1.149.2.4 yamt
379 1.149.2.5 yamt /*
380 1.149.2.5 yamt * If we have been asked to switch to a specific LWP, then there
381 1.149.2.5 yamt * is no need to inspect the run queues. If a soft interrupt is
382 1.149.2.5 yamt * blocking, then return to the interrupted thread without adjusting
383 1.149.2.5 yamt * VM context or its start time: neither have been changed in order
384 1.149.2.5 yamt * to take the interrupt.
385 1.149.2.5 yamt */
386 1.149.2.4 yamt if (l->l_switchto != NULL) {
387 1.149.2.6 yamt if ((l->l_pflag & LP_INTR) != 0) {
388 1.149.2.5 yamt returning = true;
389 1.149.2.5 yamt softint_block(l);
390 1.149.2.5 yamt if ((l->l_flag & LW_TIMEINTR) != 0)
391 1.149.2.8 yamt updatertime(l, &bt);
392 1.149.2.5 yamt }
393 1.149.2.4 yamt newl = l->l_switchto;
394 1.149.2.4 yamt l->l_switchto = NULL;
395 1.26 cgd }
396 1.149.2.6 yamt #ifndef __HAVE_FAST_SOFTINTS
397 1.149.2.6 yamt else if (ci->ci_data.cpu_softints != 0) {
398 1.149.2.6 yamt /* There are pending soft interrupts, so pick one. */
399 1.149.2.6 yamt newl = softint_picklwp();
400 1.149.2.6 yamt newl->l_stat = LSONPROC;
401 1.149.2.6 yamt newl->l_flag |= LW_RUNNING;
402 1.149.2.6 yamt }
403 1.149.2.6 yamt #endif /* !__HAVE_FAST_SOFTINTS */
404 1.149.2.3 yamt
405 1.149.2.3 yamt /* Count time spent in current system call */
406 1.149.2.5 yamt if (!returning) {
407 1.149.2.5 yamt SYSCALL_TIME_SLEEP(l);
408 1.26 cgd
409 1.149.2.5 yamt /*
410 1.149.2.5 yamt * XXXSMP If we are using h/w performance counters,
411 1.149.2.5 yamt * save context.
412 1.149.2.5 yamt */
413 1.149.2.3 yamt #if PERFCTRS
414 1.149.2.5 yamt if (PMC_ENABLED(l->l_proc)) {
415 1.149.2.5 yamt pmc_save_context(l->l_proc);
416 1.149.2.5 yamt }
417 1.109 yamt #endif
418 1.149.2.8 yamt updatertime(l, &bt);
419 1.149.2.5 yamt }
420 1.113 gmcgarry
421 1.113 gmcgarry /*
422 1.149.2.3 yamt * If on the CPU and we have gotten this far, then we must yield.
423 1.113 gmcgarry */
424 1.149.2.3 yamt KASSERT(l->l_stat != LSRUN);
425 1.149.2.8 yamt if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
426 1.149.2.4 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
427 1.149.2.8 yamt
428 1.149.2.8 yamt tci = l->l_target_cpu;
429 1.149.2.8 yamt if (__predict_false(tci != NULL)) {
430 1.149.2.8 yamt /* Double-lock the runqueues */
431 1.149.2.8 yamt spc_dlock(ci, tci);
432 1.149.2.8 yamt } else {
433 1.149.2.8 yamt /* Lock the runqueue */
434 1.149.2.8 yamt spc_lock(ci);
435 1.149.2.8 yamt }
436 1.149.2.8 yamt
437 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) == 0) {
438 1.149.2.4 yamt l->l_stat = LSRUN;
439 1.149.2.8 yamt if (__predict_false(tci != NULL)) {
440 1.149.2.8 yamt /*
441 1.149.2.8 yamt * Set the new CPU, lock and unset the
442 1.149.2.8 yamt * l_target_cpu - thread will be enqueued
443 1.149.2.8 yamt * to the runqueue of target CPU.
444 1.149.2.8 yamt */
445 1.149.2.8 yamt l->l_cpu = tci;
446 1.149.2.8 yamt lwp_setlock(l, tci->ci_schedstate.spc_mutex);
447 1.149.2.8 yamt l->l_target_cpu = NULL;
448 1.149.2.8 yamt } else {
449 1.149.2.8 yamt lwp_setlock(l, spc->spc_mutex);
450 1.149.2.8 yamt }
451 1.149.2.4 yamt sched_enqueue(l, true);
452 1.149.2.8 yamt } else {
453 1.149.2.8 yamt KASSERT(tci == NULL);
454 1.149.2.4 yamt l->l_stat = LSIDL;
455 1.149.2.8 yamt }
456 1.149.2.8 yamt } else {
457 1.149.2.8 yamt /* Lock the runqueue */
458 1.149.2.8 yamt spc_lock(ci);
459 1.149.2.3 yamt }
460 1.149.2.3 yamt
461 1.149.2.3 yamt /*
462 1.149.2.5 yamt * Let sched_nextlwp() select the LWP to run the CPU next.
463 1.149.2.7 yamt * If no LWP is runnable, select the idle LWP.
464 1.149.2.7 yamt *
465 1.149.2.7 yamt * Note that spc_lwplock might not necessary be held, and
466 1.149.2.7 yamt * new thread would be unlocked after setting the LWP-lock.
467 1.149.2.3 yamt */
468 1.149.2.4 yamt if (newl == NULL) {
469 1.149.2.4 yamt newl = sched_nextlwp();
470 1.149.2.4 yamt if (newl != NULL) {
471 1.149.2.4 yamt sched_dequeue(newl);
472 1.149.2.4 yamt KASSERT(lwp_locked(newl, spc->spc_mutex));
473 1.149.2.4 yamt newl->l_stat = LSONPROC;
474 1.149.2.5 yamt newl->l_cpu = ci;
475 1.149.2.4 yamt newl->l_flag |= LW_RUNNING;
476 1.149.2.4 yamt lwp_setlock(newl, &spc->spc_lwplock);
477 1.149.2.4 yamt } else {
478 1.149.2.5 yamt newl = ci->ci_data.cpu_idlelwp;
479 1.149.2.4 yamt newl->l_stat = LSONPROC;
480 1.149.2.4 yamt newl->l_flag |= LW_RUNNING;
481 1.149.2.4 yamt }
482 1.149.2.6 yamt /*
483 1.149.2.6 yamt * Only clear want_resched if there are no
484 1.149.2.6 yamt * pending (slow) software interrupts.
485 1.149.2.6 yamt */
486 1.149.2.6 yamt ci->ci_want_resched = ci->ci_data.cpu_softints;
487 1.149.2.5 yamt spc->spc_flags &= ~SPCF_SWITCHCLEAR;
488 1.149.2.6 yamt spc->spc_curpriority = lwp_eprio(newl);
489 1.149.2.5 yamt }
490 1.149.2.5 yamt
491 1.149.2.6 yamt /* Items that must be updated with the CPU locked. */
492 1.149.2.5 yamt if (!returning) {
493 1.149.2.6 yamt /* Update the new LWP's start time. */
494 1.149.2.8 yamt newl->l_stime = bt;
495 1.149.2.6 yamt
496 1.149.2.5 yamt /*
497 1.149.2.6 yamt * ci_curlwp changes when a fast soft interrupt occurs.
498 1.149.2.6 yamt * We use cpu_onproc to keep track of which kernel or
499 1.149.2.6 yamt * user thread is running 'underneath' the software
500 1.149.2.6 yamt * interrupt. This is important for time accounting,
501 1.149.2.6 yamt * itimers and forcing user threads to preempt (aston).
502 1.149.2.5 yamt */
503 1.149.2.6 yamt ci->ci_data.cpu_onproc = newl;
504 1.149.2.4 yamt }
505 1.149.2.3 yamt
506 1.149.2.4 yamt if (l != newl) {
507 1.149.2.4 yamt struct lwp *prevlwp;
508 1.149.2.3 yamt
509 1.149.2.7 yamt /* Release all locks, but leave the current LWP locked */
510 1.149.2.8 yamt if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
511 1.149.2.8 yamt /*
512 1.149.2.8 yamt * In case of migration, drop the local runqueue
513 1.149.2.8 yamt * lock, thread is on other runqueue now.
514 1.149.2.8 yamt */
515 1.149.2.8 yamt if (__predict_false(tci != NULL))
516 1.149.2.8 yamt spc_unlock(ci);
517 1.149.2.7 yamt /*
518 1.149.2.7 yamt * Drop spc_lwplock, if the current LWP has been moved
519 1.149.2.7 yamt * to the run queue (it is now locked by spc_mutex).
520 1.149.2.7 yamt */
521 1.149.2.4 yamt mutex_spin_exit(&spc->spc_lwplock);
522 1.149.2.4 yamt } else {
523 1.149.2.7 yamt /*
524 1.149.2.7 yamt * Otherwise, drop the spc_mutex, we are done with the
525 1.149.2.7 yamt * run queues.
526 1.149.2.7 yamt */
527 1.149.2.4 yamt mutex_spin_exit(spc->spc_mutex);
528 1.149.2.8 yamt KASSERT(tci == NULL);
529 1.149.2.4 yamt }
530 1.149.2.4 yamt
531 1.149.2.7 yamt /*
532 1.149.2.7 yamt * Mark that context switch is going to be perfomed
533 1.149.2.7 yamt * for this LWP, to protect it from being switched
534 1.149.2.7 yamt * to on another CPU.
535 1.149.2.7 yamt */
536 1.149.2.7 yamt KASSERT(l->l_ctxswtch == 0);
537 1.149.2.7 yamt l->l_ctxswtch = 1;
538 1.149.2.7 yamt l->l_ncsw++;
539 1.149.2.7 yamt l->l_flag &= ~LW_RUNNING;
540 1.149.2.7 yamt
541 1.149.2.7 yamt /*
542 1.149.2.7 yamt * Increase the count of spin-mutexes before the release
543 1.149.2.7 yamt * of the last lock - we must remain at IPL_SCHED during
544 1.149.2.7 yamt * the context switch.
545 1.149.2.7 yamt */
546 1.149.2.7 yamt oldspl = MUTEX_SPIN_OLDSPL(ci);
547 1.149.2.7 yamt ci->ci_mtx_count--;
548 1.149.2.7 yamt lwp_unlock(l);
549 1.149.2.7 yamt
550 1.149.2.4 yamt /* Unlocked, but for statistics only. */
551 1.149.2.4 yamt uvmexp.swtch++;
552 1.149.2.4 yamt
553 1.149.2.7 yamt /* Update status for lwpctl, if present. */
554 1.149.2.7 yamt if (l->l_lwpctl != NULL)
555 1.149.2.7 yamt l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
556 1.149.2.7 yamt
557 1.149.2.5 yamt /*
558 1.149.2.5 yamt * Save old VM context, unless a soft interrupt
559 1.149.2.5 yamt * handler is blocking.
560 1.149.2.5 yamt */
561 1.149.2.5 yamt if (!returning)
562 1.149.2.5 yamt pmap_deactivate(l);
563 1.149.2.4 yamt
564 1.149.2.7 yamt /*
565 1.149.2.7 yamt * We may need to spin-wait for if 'newl' is still
566 1.149.2.7 yamt * context switching on another CPU.
567 1.149.2.7 yamt */
568 1.149.2.7 yamt if (newl->l_ctxswtch != 0) {
569 1.149.2.7 yamt u_int count;
570 1.149.2.7 yamt count = SPINLOCK_BACKOFF_MIN;
571 1.149.2.7 yamt while (newl->l_ctxswtch)
572 1.149.2.7 yamt SPINLOCK_BACKOFF(count);
573 1.149.2.7 yamt }
574 1.149.2.6 yamt
575 1.149.2.4 yamt /* Switch to the new LWP.. */
576 1.149.2.6 yamt prevlwp = cpu_switchto(l, newl, returning);
577 1.149.2.6 yamt ci = curcpu();
578 1.149.2.4 yamt
579 1.149.2.4 yamt /*
580 1.149.2.7 yamt * Switched away - we have new curlwp.
581 1.149.2.7 yamt * Restore VM context and IPL.
582 1.149.2.4 yamt */
583 1.149.2.7 yamt pmap_activate(l);
584 1.149.2.4 yamt if (prevlwp != NULL) {
585 1.149.2.7 yamt /* Normalize the count of the spin-mutexes */
586 1.149.2.7 yamt ci->ci_mtx_count++;
587 1.149.2.7 yamt /* Unmark the state of context switch */
588 1.149.2.7 yamt membar_exit();
589 1.149.2.7 yamt prevlwp->l_ctxswtch = 0;
590 1.149.2.4 yamt }
591 1.149.2.7 yamt splx(oldspl);
592 1.149.2.6 yamt
593 1.149.2.6 yamt /* Update status for lwpctl, if present. */
594 1.149.2.7 yamt if (l->l_lwpctl != NULL)
595 1.149.2.7 yamt l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
596 1.149.2.7 yamt
597 1.149.2.7 yamt retval = 1;
598 1.149.2.4 yamt } else {
599 1.149.2.4 yamt /* Nothing to do - just unlock and return. */
600 1.149.2.8 yamt KASSERT(tci == NULL);
601 1.149.2.8 yamt spc_unlock(ci);
602 1.149.2.4 yamt lwp_unlock(l);
603 1.122 thorpej retval = 0;
604 1.122 thorpej }
605 1.110 briggs
606 1.149.2.4 yamt KASSERT(l == curlwp);
607 1.149.2.4 yamt KASSERT(l->l_stat == LSONPROC);
608 1.149.2.6 yamt KASSERT(l->l_cpu == ci);
609 1.149.2.4 yamt
610 1.110 briggs /*
611 1.149.2.3 yamt * XXXSMP If we are using h/w performance counters, restore context.
612 1.26 cgd */
613 1.114 gmcgarry #if PERFCTRS
614 1.149.2.3 yamt if (PMC_ENABLED(l->l_proc)) {
615 1.149.2.3 yamt pmc_restore_context(l->l_proc);
616 1.149.2.2 yamt }
617 1.114 gmcgarry #endif
618 1.149.2.3 yamt SYSCALL_TIME_WAKEUP(l);
619 1.149.2.4 yamt LOCKDEBUG_BARRIER(NULL, 1);
620 1.149.2.2 yamt
621 1.122 thorpej return retval;
622 1.26 cgd }
623 1.26 cgd
624 1.26 cgd /*
625 1.149.2.3 yamt * Change process state to be runnable, placing it on the run queue if it is
626 1.149.2.3 yamt * in memory, and awakening the swapper if it isn't in memory.
627 1.149.2.3 yamt *
628 1.149.2.3 yamt * Call with the process and LWP locked. Will return with the LWP unlocked.
629 1.26 cgd */
630 1.26 cgd void
631 1.122 thorpej setrunnable(struct lwp *l)
632 1.26 cgd {
633 1.122 thorpej struct proc *p = l->l_proc;
634 1.149.2.6 yamt struct cpu_info *ci;
635 1.149.2.3 yamt sigset_t *ss;
636 1.26 cgd
637 1.149.2.4 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
638 1.149.2.3 yamt KASSERT(mutex_owned(&p->p_smutex));
639 1.149.2.3 yamt KASSERT(lwp_locked(l, NULL));
640 1.149.2.6 yamt KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
641 1.83 thorpej
642 1.122 thorpej switch (l->l_stat) {
643 1.122 thorpej case LSSTOP:
644 1.33 mycroft /*
645 1.33 mycroft * If we're being traced (possibly because someone attached us
646 1.33 mycroft * while we were stopped), check for a signal from the debugger.
647 1.33 mycroft */
648 1.149.2.3 yamt if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
649 1.149.2.3 yamt if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
650 1.149.2.3 yamt ss = &l->l_sigpend.sp_set;
651 1.149.2.3 yamt else
652 1.149.2.3 yamt ss = &p->p_sigpend.sp_set;
653 1.149.2.3 yamt sigaddset(ss, p->p_xstat);
654 1.149.2.3 yamt signotify(l);
655 1.53 mycroft }
656 1.149.2.3 yamt p->p_nrlwps++;
657 1.122 thorpej break;
658 1.122 thorpej case LSSUSPENDED:
659 1.149.2.3 yamt l->l_flag &= ~LW_WSUSPEND;
660 1.149.2.3 yamt p->p_nrlwps++;
661 1.149.2.4 yamt cv_broadcast(&p->p_lwpcv);
662 1.149.2.3 yamt break;
663 1.149.2.3 yamt case LSSLEEP:
664 1.149.2.3 yamt KASSERT(l->l_wchan != NULL);
665 1.26 cgd break;
666 1.149.2.3 yamt default:
667 1.149.2.3 yamt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
668 1.26 cgd }
669 1.139 cl
670 1.149.2.3 yamt /*
671 1.149.2.3 yamt * If the LWP was sleeping interruptably, then it's OK to start it
672 1.149.2.3 yamt * again. If not, mark it as still sleeping.
673 1.149.2.3 yamt */
674 1.149.2.3 yamt if (l->l_wchan != NULL) {
675 1.149.2.3 yamt l->l_stat = LSSLEEP;
676 1.149.2.3 yamt /* lwp_unsleep() will release the lock. */
677 1.149.2.3 yamt lwp_unsleep(l);
678 1.149.2.3 yamt return;
679 1.149.2.3 yamt }
680 1.139 cl
681 1.149.2.3 yamt /*
682 1.149.2.3 yamt * If the LWP is still on the CPU, mark it as LSONPROC. It may be
683 1.149.2.3 yamt * about to call mi_switch(), in which case it will yield.
684 1.149.2.3 yamt */
685 1.149.2.4 yamt if ((l->l_flag & LW_RUNNING) != 0) {
686 1.149.2.3 yamt l->l_stat = LSONPROC;
687 1.149.2.3 yamt l->l_slptime = 0;
688 1.149.2.3 yamt lwp_unlock(l);
689 1.149.2.3 yamt return;
690 1.149.2.3 yamt }
691 1.122 thorpej
692 1.149.2.3 yamt /*
693 1.149.2.6 yamt * Look for a CPU to run.
694 1.149.2.6 yamt * Set the LWP runnable.
695 1.149.2.3 yamt */
696 1.149.2.6 yamt ci = sched_takecpu(l);
697 1.149.2.6 yamt l->l_cpu = ci;
698 1.149.2.4 yamt if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
699 1.149.2.6 yamt lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
700 1.149.2.6 yamt lwp_lock(l);
701 1.149.2.4 yamt }
702 1.149.2.4 yamt sched_setrunnable(l);
703 1.149.2.3 yamt l->l_stat = LSRUN;
704 1.122 thorpej l->l_slptime = 0;
705 1.149.2.3 yamt
706 1.149.2.6 yamt /*
707 1.149.2.6 yamt * If thread is swapped out - wake the swapper to bring it back in.
708 1.149.2.6 yamt * Otherwise, enter it into a run queue.
709 1.149.2.6 yamt */
710 1.149.2.3 yamt if (l->l_flag & LW_INMEM) {
711 1.149.2.4 yamt sched_enqueue(l, false);
712 1.149.2.4 yamt resched_cpu(l);
713 1.149.2.3 yamt lwp_unlock(l);
714 1.149.2.3 yamt } else {
715 1.149.2.3 yamt lwp_unlock(l);
716 1.149.2.3 yamt uvm_kick_scheduler();
717 1.149.2.3 yamt }
718 1.26 cgd }
719 1.26 cgd
720 1.26 cgd /*
721 1.149.2.3 yamt * suspendsched:
722 1.149.2.3 yamt *
723 1.149.2.3 yamt * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
724 1.149.2.3 yamt */
725 1.94 bouyer void
726 1.149.2.3 yamt suspendsched(void)
727 1.94 bouyer {
728 1.149.2.3 yamt CPU_INFO_ITERATOR cii;
729 1.149.2.3 yamt struct cpu_info *ci;
730 1.122 thorpej struct lwp *l;
731 1.149.2.3 yamt struct proc *p;
732 1.94 bouyer
733 1.94 bouyer /*
734 1.149.2.3 yamt * We do this by process in order not to violate the locking rules.
735 1.94 bouyer */
736 1.149.2.6 yamt mutex_enter(&proclist_lock);
737 1.149.2.3 yamt PROCLIST_FOREACH(p, &allproc) {
738 1.149.2.3 yamt mutex_enter(&p->p_smutex);
739 1.149.2.3 yamt
740 1.149.2.3 yamt if ((p->p_flag & PK_SYSTEM) != 0) {
741 1.149.2.3 yamt mutex_exit(&p->p_smutex);
742 1.94 bouyer continue;
743 1.149.2.3 yamt }
744 1.149.2.3 yamt
745 1.149.2.3 yamt p->p_stat = SSTOP;
746 1.149.2.3 yamt
747 1.149.2.3 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
748 1.149.2.3 yamt if (l == curlwp)
749 1.149.2.3 yamt continue;
750 1.149.2.3 yamt
751 1.149.2.3 yamt lwp_lock(l);
752 1.122 thorpej
753 1.97 enami /*
754 1.149.2.3 yamt * Set L_WREBOOT so that the LWP will suspend itself
755 1.149.2.3 yamt * when it tries to return to user mode. We want to
756 1.149.2.3 yamt * try and get to get as many LWPs as possible to
757 1.149.2.3 yamt * the user / kernel boundary, so that they will
758 1.149.2.3 yamt * release any locks that they hold.
759 1.97 enami */
760 1.149.2.3 yamt l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
761 1.149.2.3 yamt
762 1.149.2.3 yamt if (l->l_stat == LSSLEEP &&
763 1.149.2.3 yamt (l->l_flag & LW_SINTR) != 0) {
764 1.149.2.3 yamt /* setrunnable() will release the lock. */
765 1.149.2.3 yamt setrunnable(l);
766 1.149.2.3 yamt continue;
767 1.149.2.3 yamt }
768 1.149.2.3 yamt
769 1.149.2.3 yamt lwp_unlock(l);
770 1.94 bouyer }
771 1.149.2.3 yamt
772 1.149.2.3 yamt mutex_exit(&p->p_smutex);
773 1.94 bouyer }
774 1.149.2.6 yamt mutex_exit(&proclist_lock);
775 1.149.2.3 yamt
776 1.149.2.3 yamt /*
777 1.149.2.3 yamt * Kick all CPUs to make them preempt any LWPs running in user mode.
778 1.149.2.3 yamt * They'll trap into the kernel and suspend themselves in userret().
779 1.149.2.3 yamt */
780 1.149.2.6 yamt for (CPU_INFO_FOREACH(cii, ci)) {
781 1.149.2.6 yamt spc_lock(ci);
782 1.149.2.6 yamt cpu_need_resched(ci, RESCHED_IMMED);
783 1.149.2.6 yamt spc_unlock(ci);
784 1.149.2.6 yamt }
785 1.149.2.3 yamt }
786 1.149.2.3 yamt
787 1.149.2.3 yamt /*
788 1.149.2.3 yamt * sched_unsleep:
789 1.149.2.3 yamt *
790 1.149.2.3 yamt * The is called when the LWP has not been awoken normally but instead
791 1.149.2.3 yamt * interrupted: for example, if the sleep timed out. Because of this,
792 1.149.2.3 yamt * it's not a valid action for running or idle LWPs.
793 1.149.2.3 yamt */
794 1.149.2.4 yamt static void
795 1.149.2.3 yamt sched_unsleep(struct lwp *l)
796 1.149.2.3 yamt {
797 1.149.2.3 yamt
798 1.149.2.3 yamt lwp_unlock(l);
799 1.149.2.3 yamt panic("sched_unsleep");
800 1.149.2.3 yamt }
801 1.149.2.3 yamt
802 1.149.2.6 yamt void
803 1.149.2.4 yamt resched_cpu(struct lwp *l)
804 1.149.2.3 yamt {
805 1.149.2.4 yamt struct cpu_info *ci;
806 1.149.2.3 yamt
807 1.149.2.4 yamt /*
808 1.149.2.4 yamt * XXXSMP
809 1.149.2.4 yamt * Since l->l_cpu persists across a context switch,
810 1.149.2.4 yamt * this gives us *very weak* processor affinity, in
811 1.149.2.4 yamt * that we notify the CPU on which the process last
812 1.149.2.4 yamt * ran that it should try to switch.
813 1.149.2.4 yamt *
814 1.149.2.4 yamt * This does not guarantee that the process will run on
815 1.149.2.4 yamt * that processor next, because another processor might
816 1.149.2.4 yamt * grab it the next time it performs a context switch.
817 1.149.2.4 yamt *
818 1.149.2.4 yamt * This also does not handle the case where its last
819 1.149.2.4 yamt * CPU is running a higher-priority process, but every
820 1.149.2.4 yamt * other CPU is running a lower-priority process. There
821 1.149.2.4 yamt * are ways to handle this situation, but they're not
822 1.149.2.4 yamt * currently very pretty, and we also need to weigh the
823 1.149.2.4 yamt * cost of moving a process from one CPU to another.
824 1.149.2.4 yamt */
825 1.149.2.6 yamt ci = l->l_cpu;
826 1.149.2.6 yamt if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
827 1.149.2.4 yamt cpu_need_resched(ci, 0);
828 1.149.2.4 yamt }
829 1.149.2.3 yamt
830 1.149.2.4 yamt static void
831 1.149.2.4 yamt sched_changepri(struct lwp *l, pri_t pri)
832 1.149.2.4 yamt {
833 1.149.2.4 yamt
834 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
835 1.149.2.3 yamt
836 1.149.2.6 yamt if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
837 1.149.2.6 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
838 1.149.2.6 yamt sched_dequeue(l);
839 1.149.2.6 yamt l->l_priority = pri;
840 1.149.2.6 yamt sched_enqueue(l, false);
841 1.149.2.6 yamt } else {
842 1.149.2.3 yamt l->l_priority = pri;
843 1.149.2.1 yamt }
844 1.149.2.4 yamt resched_cpu(l);
845 1.149.2.1 yamt }
846 1.149.2.1 yamt
847 1.146 matt static void
848 1.149.2.4 yamt sched_lendpri(struct lwp *l, pri_t pri)
849 1.146 matt {
850 1.149.2.4 yamt
851 1.149.2.4 yamt KASSERT(lwp_locked(l, NULL));
852 1.149.2.4 yamt
853 1.149.2.6 yamt if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
854 1.149.2.6 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
855 1.149.2.6 yamt sched_dequeue(l);
856 1.149.2.6 yamt l->l_inheritedprio = pri;
857 1.149.2.6 yamt sched_enqueue(l, false);
858 1.149.2.6 yamt } else {
859 1.149.2.4 yamt l->l_inheritedprio = pri;
860 1.146 matt }
861 1.149.2.4 yamt resched_cpu(l);
862 1.146 matt }
863 1.146 matt
864 1.149.2.4 yamt struct lwp *
865 1.149.2.4 yamt syncobj_noowner(wchan_t wchan)
866 1.113 gmcgarry {
867 1.149.2.3 yamt
868 1.149.2.4 yamt return NULL;
869 1.113 gmcgarry }
870 1.113 gmcgarry
871 1.149.2.4 yamt
872 1.149.2.4 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
873 1.149.2.4 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
874 1.149.2.4 yamt
875 1.149.2.3 yamt /*
876 1.149.2.4 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
877 1.149.2.4 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
878 1.149.2.4 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
879 1.149.2.4 yamt *
880 1.149.2.4 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
881 1.149.2.4 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
882 1.149.2.4 yamt *
883 1.149.2.4 yamt * If you dont want to bother with the faster/more-accurate formula, you
884 1.149.2.4 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
885 1.149.2.4 yamt * (more general) method of calculating the %age of CPU used by a process.
886 1.149.2.3 yamt */
887 1.149.2.4 yamt #define CCPU_SHIFT (FSHIFT + 1)
888 1.149.2.4 yamt
889 1.149.2.4 yamt /*
890 1.149.2.4 yamt * sched_pstats:
891 1.149.2.4 yamt *
892 1.149.2.4 yamt * Update process statistics and check CPU resource allocation.
893 1.149.2.4 yamt * Call scheduler-specific hook to eventually adjust process/LWP
894 1.149.2.4 yamt * priorities.
895 1.149.2.4 yamt */
896 1.149.2.4 yamt /* ARGSUSED */
897 1.113 gmcgarry void
898 1.149.2.4 yamt sched_pstats(void *arg)
899 1.113 gmcgarry {
900 1.149.2.4 yamt struct rlimit *rlim;
901 1.149.2.4 yamt struct lwp *l;
902 1.149.2.4 yamt struct proc *p;
903 1.149.2.6 yamt int sig, clkhz;
904 1.149.2.4 yamt long runtm;
905 1.149.2.3 yamt
906 1.149.2.4 yamt sched_pstats_ticks++;
907 1.149.2.3 yamt
908 1.149.2.7 yamt mutex_enter(&proclist_lock);
909 1.149.2.4 yamt PROCLIST_FOREACH(p, &allproc) {
910 1.149.2.4 yamt /*
911 1.149.2.4 yamt * Increment time in/out of memory and sleep time (if
912 1.149.2.4 yamt * sleeping). We ignore overflow; with 16-bit int's
913 1.149.2.4 yamt * (remember them?) overflow takes 45 days.
914 1.149.2.4 yamt */
915 1.149.2.4 yamt mutex_enter(&p->p_smutex);
916 1.149.2.4 yamt mutex_spin_enter(&p->p_stmutex);
917 1.149.2.8 yamt runtm = p->p_rtime.sec;
918 1.149.2.4 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
919 1.149.2.4 yamt if ((l->l_flag & LW_IDLE) != 0)
920 1.149.2.4 yamt continue;
921 1.149.2.4 yamt lwp_lock(l);
922 1.149.2.8 yamt runtm += l->l_rtime.sec;
923 1.149.2.4 yamt l->l_swtime++;
924 1.149.2.5 yamt sched_pstats_hook(l);
925 1.149.2.4 yamt lwp_unlock(l);
926 1.149.2.4 yamt
927 1.149.2.4 yamt /*
928 1.149.2.4 yamt * p_pctcpu is only for ps.
929 1.149.2.4 yamt */
930 1.149.2.4 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
931 1.149.2.4 yamt if (l->l_slptime < 1) {
932 1.149.2.4 yamt clkhz = stathz != 0 ? stathz : hz;
933 1.149.2.4 yamt #if (FSHIFT >= CCPU_SHIFT)
934 1.149.2.4 yamt l->l_pctcpu += (clkhz == 100) ?
935 1.149.2.4 yamt ((fixpt_t)l->l_cpticks) <<
936 1.149.2.4 yamt (FSHIFT - CCPU_SHIFT) :
937 1.149.2.4 yamt 100 * (((fixpt_t) p->p_cpticks)
938 1.149.2.4 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
939 1.149.2.4 yamt #else
940 1.149.2.4 yamt l->l_pctcpu += ((FSCALE - ccpu) *
941 1.149.2.4 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
942 1.146 matt #endif
943 1.149.2.4 yamt l->l_cpticks = 0;
944 1.149.2.4 yamt }
945 1.149.2.4 yamt }
946 1.149.2.4 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
947 1.149.2.4 yamt mutex_spin_exit(&p->p_stmutex);
948 1.149.2.3 yamt
949 1.149.2.4 yamt /*
950 1.149.2.4 yamt * Check if the process exceeds its CPU resource allocation.
951 1.149.2.4 yamt * If over max, kill it.
952 1.149.2.4 yamt */
953 1.149.2.4 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
954 1.149.2.4 yamt sig = 0;
955 1.149.2.4 yamt if (runtm >= rlim->rlim_cur) {
956 1.149.2.4 yamt if (runtm >= rlim->rlim_max)
957 1.149.2.4 yamt sig = SIGKILL;
958 1.149.2.4 yamt else {
959 1.149.2.4 yamt sig = SIGXCPU;
960 1.149.2.4 yamt if (rlim->rlim_cur < rlim->rlim_max)
961 1.149.2.4 yamt rlim->rlim_cur += 5;
962 1.149.2.4 yamt }
963 1.149.2.4 yamt }
964 1.149.2.4 yamt mutex_exit(&p->p_smutex);
965 1.149.2.4 yamt if (sig) {
966 1.149.2.8 yamt mutex_enter(&proclist_mutex);
967 1.149.2.4 yamt psignal(p, sig);
968 1.149.2.8 yamt mutex_exit(&proclist_mutex);
969 1.149.2.4 yamt }
970 1.149.2.3 yamt }
971 1.149.2.7 yamt mutex_exit(&proclist_lock);
972 1.149.2.4 yamt uvm_meter();
973 1.149.2.4 yamt cv_wakeup(&lbolt);
974 1.149.2.4 yamt callout_schedule(&sched_pstats_ch, hz);
975 1.113 gmcgarry }
976 1.113 gmcgarry
977 1.149.2.4 yamt void
978 1.149.2.4 yamt sched_init(void)
979 1.149.2.4 yamt {
980 1.149.2.4 yamt
981 1.149.2.7 yamt cv_init(&lbolt, "lbolt");
982 1.149.2.8 yamt callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
983 1.149.2.4 yamt callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
984 1.149.2.4 yamt sched_setup();
985 1.149.2.4 yamt sched_pstats(NULL);
986 1.149.2.4 yamt }
987