Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.152
      1  1.152      yamt /*	$NetBSD: kern_synch.c,v 1.152 2005/10/30 20:28:56 yamt Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.148   mycroft  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.63   thorpej  * NASA Ames Research Center.
     10  1.148   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11  1.148   mycroft  * by Charles M. Hannum.
     12   1.63   thorpej  *
     13   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14   1.63   thorpej  * modification, are permitted provided that the following conditions
     15   1.63   thorpej  * are met:
     16   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     22   1.63   thorpej  *    must display the following acknowledgement:
     23   1.63   thorpej  *	This product includes software developed by the NetBSD
     24   1.63   thorpej  *	Foundation, Inc. and its contributors.
     25   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     27   1.63   thorpej  *    from this software without specific prior written permission.
     28   1.63   thorpej  *
     29   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40   1.63   thorpej  */
     41   1.26       cgd 
     42   1.26       cgd /*-
     43   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     45   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     46   1.26       cgd  * All or some portions of this file are derived from material licensed
     47   1.26       cgd  * to the University of California by American Telephone and Telegraph
     48   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     50   1.26       cgd  *
     51   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     52   1.26       cgd  * modification, are permitted provided that the following conditions
     53   1.26       cgd  * are met:
     54   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     55   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     56   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     58   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     59  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     60   1.26       cgd  *    may be used to endorse or promote products derived from this software
     61   1.26       cgd  *    without specific prior written permission.
     62   1.26       cgd  *
     63   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.26       cgd  * SUCH DAMAGE.
     74   1.26       cgd  *
     75   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76   1.26       cgd  */
     77  1.106     lukem 
     78  1.106     lukem #include <sys/cdefs.h>
     79  1.152      yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.152 2005/10/30 20:28:56 yamt Exp $");
     80   1.48       mrg 
     81   1.52  jonathan #include "opt_ddb.h"
     82   1.51   thorpej #include "opt_ktrace.h"
     83  1.109      yamt #include "opt_kstack.h"
     84   1.82   thorpej #include "opt_lockdebug.h"
     85   1.83   thorpej #include "opt_multiprocessor.h"
     86  1.110    briggs #include "opt_perfctrs.h"
     87   1.26       cgd 
     88   1.26       cgd #include <sys/param.h>
     89   1.26       cgd #include <sys/systm.h>
     90   1.68   thorpej #include <sys/callout.h>
     91   1.26       cgd #include <sys/proc.h>
     92   1.26       cgd #include <sys/kernel.h>
     93   1.26       cgd #include <sys/buf.h>
     94  1.111    briggs #if defined(PERFCTRS)
     95  1.110    briggs #include <sys/pmc.h>
     96  1.111    briggs #endif
     97   1.26       cgd #include <sys/signalvar.h>
     98   1.26       cgd #include <sys/resourcevar.h>
     99   1.55      ross #include <sys/sched.h>
    100  1.122   thorpej #include <sys/sa.h>
    101  1.122   thorpej #include <sys/savar.h>
    102   1.47       mrg 
    103   1.47       mrg #include <uvm/uvm_extern.h>
    104   1.47       mrg 
    105   1.26       cgd #ifdef KTRACE
    106   1.26       cgd #include <sys/ktrace.h>
    107   1.26       cgd #endif
    108   1.26       cgd 
    109   1.26       cgd #include <machine/cpu.h>
    110   1.34  christos 
    111   1.26       cgd int	lbolt;			/* once a second sleep address */
    112   1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113   1.26       cgd 
    114   1.73   thorpej /*
    115  1.152      yamt  * Sleep queues.
    116  1.152      yamt  *
    117  1.152      yamt  * We're only looking at 7 bits of the address; everything is
    118  1.152      yamt  * aligned to 4, lots of things are aligned to greater powers
    119  1.152      yamt  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    120  1.152      yamt  */
    121  1.152      yamt #define	SLPQUE_TABLESIZE	128
    122  1.152      yamt #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    123  1.152      yamt 
    124  1.152      yamt #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    125  1.152      yamt 
    126  1.152      yamt /*
    127   1.73   thorpej  * The global scheduler state.
    128   1.73   thorpej  */
    129   1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    130   1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    131   1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    132   1.73   thorpej 
    133   1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    134   1.83   thorpej 
    135   1.77   thorpej void schedcpu(void *);
    136  1.122   thorpej void updatepri(struct lwp *);
    137   1.77   thorpej void endtsleep(void *);
    138   1.34  christos 
    139  1.139        cl __inline void sa_awaken(struct lwp *);
    140  1.122   thorpej __inline void awaken(struct lwp *);
    141   1.63   thorpej 
    142  1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    143   1.68   thorpej 
    144  1.122   thorpej 
    145  1.122   thorpej 
    146   1.26       cgd /*
    147   1.26       cgd  * Force switch among equal priority processes every 100ms.
    148   1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    149   1.26       cgd  */
    150   1.26       cgd /* ARGSUSED */
    151   1.26       cgd void
    152   1.89  sommerfe roundrobin(struct cpu_info *ci)
    153   1.26       cgd {
    154   1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155   1.26       cgd 
    156   1.88  sommerfe 	spc->spc_rrticks = rrticks;
    157  1.130   nathanw 
    158  1.122   thorpej 	if (curlwp != NULL) {
    159   1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    160   1.69   thorpej 			/*
    161   1.69   thorpej 			 * The process has already been through a roundrobin
    162   1.69   thorpej 			 * without switching and may be hogging the CPU.
    163   1.69   thorpej 			 * Indicate that the process should yield.
    164   1.69   thorpej 			 */
    165   1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    166   1.69   thorpej 		} else
    167   1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    168   1.69   thorpej 	}
    169   1.87   thorpej 	need_resched(curcpu());
    170   1.26       cgd }
    171   1.26       cgd 
    172   1.26       cgd /*
    173   1.26       cgd  * Constants for digital decay and forget:
    174   1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    175   1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    176   1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    177   1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    178   1.26       cgd  *
    179   1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    180   1.26       cgd  *
    181   1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    182   1.26       cgd  * That is, the system wants to compute a value of decay such
    183   1.26       cgd  * that the following for loop:
    184   1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    185   1.26       cgd  * 		p_estcpu *= decay;
    186   1.26       cgd  * will compute
    187   1.26       cgd  * 	p_estcpu *= 0.1;
    188   1.26       cgd  * for all values of loadavg:
    189   1.26       cgd  *
    190   1.26       cgd  * Mathematically this loop can be expressed by saying:
    191   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    192   1.26       cgd  *
    193   1.26       cgd  * The system computes decay as:
    194   1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195   1.26       cgd  *
    196   1.26       cgd  * We wish to prove that the system's computation of decay
    197   1.26       cgd  * will always fulfill the equation:
    198   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    199   1.26       cgd  *
    200   1.26       cgd  * If we compute b as:
    201   1.26       cgd  * 	b = 2 * loadavg
    202   1.26       cgd  * then
    203   1.26       cgd  * 	decay = b / (b + 1)
    204   1.26       cgd  *
    205   1.26       cgd  * We now need to prove two things:
    206   1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207   1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208  1.130   nathanw  *
    209   1.26       cgd  * Facts:
    210   1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    211   1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212   1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213   1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    214   1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215   1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216   1.26       cgd  *         ln(.1) =~ -2.30
    217   1.26       cgd  *
    218   1.26       cgd  * Proof of (1):
    219   1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220   1.26       cgd  *	solving for factor,
    221   1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    222   1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223   1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224   1.26       cgd  *
    225   1.26       cgd  * Proof of (2):
    226   1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227   1.26       cgd  *	solving for power,
    228   1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    229   1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230   1.26       cgd  *
    231   1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    232   1.26       cgd  *      loadav: 1       2       3       4
    233   1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    234   1.26       cgd  */
    235   1.26       cgd 
    236   1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237   1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    238   1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    239   1.26       cgd 
    240   1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    241   1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    242   1.26       cgd 
    243   1.26       cgd /*
    244   1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    245   1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    246   1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    247   1.26       cgd  *
    248   1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    249   1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    250   1.26       cgd  *
    251   1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    252   1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    253   1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    254   1.26       cgd  */
    255   1.26       cgd #define	CCPU_SHIFT	11
    256   1.26       cgd 
    257  1.152      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    258  1.152      yamt #define NICE_WEIGHT 2			/* priorities per nice level */
    259  1.152      yamt #define	ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
    260  1.152      yamt 
    261   1.26       cgd /*
    262   1.26       cgd  * Recompute process priorities, every hz ticks.
    263   1.26       cgd  */
    264   1.26       cgd /* ARGSUSED */
    265   1.26       cgd void
    266   1.77   thorpej schedcpu(void *arg)
    267   1.26       cgd {
    268   1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    269  1.122   thorpej 	struct lwp *l;
    270   1.71  augustss 	struct proc *p;
    271  1.122   thorpej 	int s, minslp;
    272   1.71  augustss 	unsigned int newcpu;
    273   1.66      ross 	int clkhz;
    274   1.26       cgd 
    275   1.62   thorpej 	proclist_lock_read();
    276  1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    277   1.26       cgd 		/*
    278   1.26       cgd 		 * Increment time in/out of memory and sleep time
    279   1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    280   1.26       cgd 		 * (remember them?) overflow takes 45 days.
    281   1.26       cgd 		 */
    282  1.122   thorpej 		minslp = 2;
    283  1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    284  1.122   thorpej 			l->l_swtime++;
    285  1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    286  1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    287  1.122   thorpej 				l->l_slptime++;
    288  1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    289  1.122   thorpej 			} else
    290  1.122   thorpej 				minslp = 0;
    291  1.122   thorpej 		}
    292   1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    293   1.26       cgd 		/*
    294   1.26       cgd 		 * If the process has slept the entire second,
    295   1.26       cgd 		 * stop recalculating its priority until it wakes up.
    296   1.26       cgd 		 */
    297  1.122   thorpej 		if (minslp > 1)
    298   1.26       cgd 			continue;
    299   1.26       cgd 		s = splstatclock();	/* prevent state changes */
    300   1.26       cgd 		/*
    301   1.26       cgd 		 * p_pctcpu is only for ps.
    302   1.26       cgd 		 */
    303   1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    304   1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    305   1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    306   1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    307   1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    308   1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    309   1.26       cgd #else
    310   1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    311   1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    312   1.26       cgd #endif
    313   1.26       cgd 		p->p_cpticks = 0;
    314   1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    315   1.55      ross 		p->p_estcpu = newcpu;
    316  1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    317  1.120        pk 		SCHED_LOCK(s);
    318  1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    319  1.122   thorpej 			if (l->l_slptime > 1)
    320  1.122   thorpej 				continue;
    321  1.122   thorpej 			resetpriority(l);
    322  1.122   thorpej 			if (l->l_priority >= PUSER) {
    323  1.122   thorpej 				if (l->l_stat == LSRUN &&
    324  1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    325  1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    326  1.122   thorpej 					remrunqueue(l);
    327  1.122   thorpej 					l->l_priority = l->l_usrpri;
    328  1.122   thorpej 					setrunqueue(l);
    329  1.122   thorpej 				} else
    330  1.122   thorpej 					l->l_priority = l->l_usrpri;
    331  1.122   thorpej 			}
    332   1.26       cgd 		}
    333  1.120        pk 		SCHED_UNLOCK(s);
    334   1.26       cgd 	}
    335   1.61   thorpej 	proclist_unlock_read();
    336   1.47       mrg 	uvm_meter();
    337   1.67      fvdl 	wakeup((caddr_t)&lbolt);
    338  1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    339   1.26       cgd }
    340   1.26       cgd 
    341   1.26       cgd /*
    342   1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    343   1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    344   1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    345   1.26       cgd  */
    346   1.26       cgd void
    347  1.122   thorpej updatepri(struct lwp *l)
    348   1.26       cgd {
    349  1.122   thorpej 	struct proc *p = l->l_proc;
    350   1.83   thorpej 	unsigned int newcpu;
    351   1.83   thorpej 	fixpt_t loadfac;
    352   1.83   thorpej 
    353   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    354   1.83   thorpej 
    355   1.83   thorpej 	newcpu = p->p_estcpu;
    356   1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    357   1.26       cgd 
    358  1.122   thorpej 	if (l->l_slptime > 5 * loadfac)
    359  1.122   thorpej 		p->p_estcpu = 0; /* XXX NJWLWP */
    360   1.26       cgd 	else {
    361  1.122   thorpej 		l->l_slptime--;	/* the first time was done in schedcpu */
    362  1.122   thorpej 		while (newcpu && --l->l_slptime)
    363   1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    364   1.55      ross 		p->p_estcpu = newcpu;
    365   1.26       cgd 	}
    366  1.122   thorpej 	resetpriority(l);
    367   1.26       cgd }
    368   1.26       cgd 
    369   1.26       cgd /*
    370   1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    371   1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    372   1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    373   1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    374   1.26       cgd  * This priority will typically be 0, or the lowest priority
    375   1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    376   1.26       cgd  * higher to block network software interrupts after panics.
    377   1.26       cgd  */
    378   1.26       cgd int safepri;
    379   1.26       cgd 
    380   1.26       cgd /*
    381   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    382   1.26       cgd  * performed on the specified identifier.  The process will then be made
    383   1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    384   1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    385   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    386   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    387   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    388   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    389   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    390   1.77   thorpej  *
    391  1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    392   1.77   thorpej  * interlock will be locked before returning back to the caller
    393   1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    394   1.77   thorpej  * interlock will always be unlocked upon return.
    395   1.26       cgd  */
    396   1.26       cgd int
    397  1.149  christos ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
    398   1.77   thorpej     __volatile struct simplelock *interlock)
    399   1.26       cgd {
    400  1.122   thorpej 	struct lwp *l = curlwp;
    401  1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    402   1.71  augustss 	struct slpque *qp;
    403  1.150       chs 	struct sadata_upcall *sau;
    404   1.77   thorpej 	int sig, s;
    405   1.77   thorpej 	int catch = priority & PCATCH;
    406   1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    407  1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    408   1.26       cgd 
    409   1.77   thorpej 	/*
    410   1.77   thorpej 	 * XXXSMP
    411   1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    412   1.77   thorpej 	 * thing to do here really is.
    413  1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    414   1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    415   1.78  sommerfe 	 * how shutdown (barely) works.
    416   1.77   thorpej 	 */
    417  1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    418   1.26       cgd 		/*
    419   1.26       cgd 		 * After a panic, or during autoconfiguration,
    420   1.26       cgd 		 * just give interrupts a chance, then just return;
    421   1.26       cgd 		 * don't run any other procs or panic below,
    422   1.26       cgd 		 * in case this is the idle process and already asleep.
    423   1.26       cgd 		 */
    424   1.42       cgd 		s = splhigh();
    425   1.26       cgd 		splx(safepri);
    426   1.26       cgd 		splx(s);
    427   1.77   thorpej 		if (interlock != NULL && relock == 0)
    428   1.77   thorpej 			simple_unlock(interlock);
    429   1.26       cgd 		return (0);
    430   1.26       cgd 	}
    431   1.78  sommerfe 
    432  1.102   thorpej 	KASSERT(p != NULL);
    433  1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    434   1.42       cgd 
    435   1.42       cgd #ifdef KTRACE
    436   1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    437  1.132      fvdl 		ktrcsw(p, 1, 0);
    438   1.42       cgd #endif
    439   1.77   thorpej 
    440  1.150       chs 	/*
    441  1.150       chs 	 * XXX We need to allocate the sadata_upcall structure here,
    442  1.150       chs 	 * XXX since we can't sleep while waiting for memory inside
    443  1.150       chs 	 * XXX sa_upcall().  It would be nice if we could safely
    444  1.150       chs 	 * XXX allocate the sadata_upcall structure on the stack, here.
    445  1.150       chs 	 */
    446  1.150       chs 	if (l->l_flag & L_SA) {
    447  1.150       chs 		sau = sadata_upcall_alloc(0);
    448  1.150       chs 	} else {
    449  1.150       chs 		sau = NULL;
    450  1.150       chs 	}
    451  1.150       chs 
    452   1.83   thorpej 	SCHED_LOCK(s);
    453   1.42       cgd 
    454   1.26       cgd #ifdef DIAGNOSTIC
    455   1.64   thorpej 	if (ident == NULL)
    456   1.77   thorpej 		panic("ltsleep: ident == NULL");
    457  1.122   thorpej 	if (l->l_stat != LSONPROC)
    458  1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    459  1.122   thorpej 	if (l->l_back != NULL)
    460   1.77   thorpej 		panic("ltsleep: p_back != NULL");
    461   1.26       cgd #endif
    462   1.77   thorpej 
    463  1.122   thorpej 	l->l_wchan = ident;
    464  1.122   thorpej 	l->l_wmesg = wmesg;
    465  1.122   thorpej 	l->l_slptime = 0;
    466  1.122   thorpej 	l->l_priority = priority & PRIMASK;
    467   1.77   thorpej 
    468   1.73   thorpej 	qp = SLPQUE(ident);
    469   1.26       cgd 	if (qp->sq_head == 0)
    470  1.122   thorpej 		qp->sq_head = l;
    471  1.122   thorpej 	else {
    472  1.122   thorpej 		*qp->sq_tailp = l;
    473  1.122   thorpej 	}
    474  1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    475   1.77   thorpej 
    476   1.26       cgd 	if (timo)
    477  1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    478   1.77   thorpej 
    479   1.77   thorpej 	/*
    480   1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    481   1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    482   1.77   thorpej 	 * we do the switch.
    483   1.77   thorpej 	 *
    484   1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    485   1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    486   1.77   thorpej 	 * data structure for the sleep queues at some point.
    487   1.77   thorpej 	 */
    488   1.77   thorpej 	if (interlock != NULL)
    489   1.77   thorpej 		simple_unlock(interlock);
    490   1.77   thorpej 
    491   1.26       cgd 	/*
    492   1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    493   1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    494   1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    495   1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    496   1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    497   1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    498   1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    499   1.26       cgd 	 */
    500   1.26       cgd 	if (catch) {
    501  1.122   thorpej 		l->l_flag |= L_SINTR;
    502  1.137    itojun 		if (((sig = CURSIG(l)) != 0) ||
    503  1.137    itojun 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    504  1.122   thorpej 			if (l->l_wchan != NULL)
    505  1.122   thorpej 				unsleep(l);
    506  1.122   thorpej 			l->l_stat = LSONPROC;
    507   1.83   thorpej 			SCHED_UNLOCK(s);
    508   1.26       cgd 			goto resume;
    509   1.26       cgd 		}
    510  1.122   thorpej 		if (l->l_wchan == NULL) {
    511   1.26       cgd 			catch = 0;
    512   1.83   thorpej 			SCHED_UNLOCK(s);
    513   1.26       cgd 			goto resume;
    514   1.26       cgd 		}
    515   1.26       cgd 	} else
    516   1.26       cgd 		sig = 0;
    517  1.122   thorpej 	l->l_stat = LSSLEEP;
    518  1.122   thorpej 	p->p_nrlwps--;
    519   1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    520   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    521  1.122   thorpej 	if (l->l_flag & L_SA)
    522  1.150       chs 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    523  1.122   thorpej 	else
    524  1.122   thorpej 		mi_switch(l, NULL);
    525   1.83   thorpej 
    526  1.104       chs #if	defined(DDB) && !defined(GPROF)
    527   1.26       cgd 	/* handy breakpoint location after process "wakes" */
    528  1.140    kleink 	__asm(".globl bpendtsleep\nbpendtsleep:");
    529   1.26       cgd #endif
    530  1.122   thorpej 	/*
    531  1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    532  1.122   thorpej 	 * either setrunnable() or awaken().
    533  1.122   thorpej 	 */
    534   1.77   thorpej 
    535   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    536   1.83   thorpej 	splx(s);
    537   1.83   thorpej 
    538   1.77   thorpej  resume:
    539  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    540  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    541  1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    542  1.122   thorpej 
    543  1.122   thorpej 	l->l_flag &= ~L_SINTR;
    544  1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    545  1.135      matt 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    546   1.26       cgd 		if (sig == 0) {
    547   1.26       cgd #ifdef KTRACE
    548   1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    549  1.132      fvdl 				ktrcsw(p, 0, 0);
    550   1.26       cgd #endif
    551   1.77   thorpej 			if (relock && interlock != NULL)
    552   1.77   thorpej 				simple_lock(interlock);
    553   1.26       cgd 			return (EWOULDBLOCK);
    554   1.26       cgd 		}
    555   1.26       cgd 	} else if (timo)
    556  1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    557  1.135      matt 
    558  1.135      matt 	if (catch) {
    559  1.135      matt 		const int cancelled = l->l_flag & L_CANCELLED;
    560  1.135      matt 		l->l_flag &= ~L_CANCELLED;
    561  1.135      matt 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    562   1.26       cgd #ifdef KTRACE
    563  1.135      matt 			if (KTRPOINT(p, KTR_CSW))
    564  1.135      matt 				ktrcsw(p, 0, 0);
    565   1.26       cgd #endif
    566  1.135      matt 			if (relock && interlock != NULL)
    567  1.135      matt 				simple_lock(interlock);
    568  1.135      matt 			/*
    569  1.135      matt 			 * If this sleep was canceled, don't let the syscall
    570  1.135      matt 			 * restart.
    571  1.135      matt 			 */
    572  1.135      matt 			if (cancelled ||
    573  1.135      matt 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    574  1.135      matt 				return (EINTR);
    575  1.135      matt 			return (ERESTART);
    576  1.135      matt 		}
    577   1.26       cgd 	}
    578  1.126        pk 
    579  1.126        pk #ifdef KTRACE
    580  1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    581  1.132      fvdl 		ktrcsw(p, 0, 0);
    582  1.126        pk #endif
    583  1.126        pk 	if (relock && interlock != NULL)
    584  1.126        pk 		simple_lock(interlock);
    585  1.126        pk 
    586  1.122   thorpej 	/* XXXNJW this is very much a kluge.
    587  1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    588  1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    589  1.122   thorpej 	 * would be preferred.
    590  1.122   thorpej 	 */
    591  1.137    itojun 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    592  1.122   thorpej 		return (EINTR);
    593   1.26       cgd 	return (0);
    594   1.26       cgd }
    595   1.26       cgd 
    596   1.26       cgd /*
    597   1.26       cgd  * Implement timeout for tsleep.
    598   1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    599   1.26       cgd  * set timeout flag and undo the sleep.  If proc
    600   1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    601   1.26       cgd  */
    602   1.26       cgd void
    603   1.77   thorpej endtsleep(void *arg)
    604   1.26       cgd {
    605  1.122   thorpej 	struct lwp *l;
    606   1.26       cgd 	int s;
    607   1.26       cgd 
    608  1.122   thorpej 	l = (struct lwp *)arg;
    609   1.83   thorpej 	SCHED_LOCK(s);
    610  1.122   thorpej 	if (l->l_wchan) {
    611  1.122   thorpej 		if (l->l_stat == LSSLEEP)
    612  1.122   thorpej 			setrunnable(l);
    613   1.26       cgd 		else
    614  1.122   thorpej 			unsleep(l);
    615  1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    616   1.26       cgd 	}
    617   1.83   thorpej 	SCHED_UNLOCK(s);
    618   1.26       cgd }
    619   1.26       cgd 
    620   1.26       cgd /*
    621   1.26       cgd  * Remove a process from its wait queue
    622   1.26       cgd  */
    623   1.26       cgd void
    624  1.122   thorpej unsleep(struct lwp *l)
    625   1.26       cgd {
    626   1.71  augustss 	struct slpque *qp;
    627  1.122   thorpej 	struct lwp **hp;
    628   1.26       cgd 
    629   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    630   1.83   thorpej 
    631  1.122   thorpej 	if (l->l_wchan) {
    632  1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    633  1.122   thorpej 		while (*hp != l)
    634  1.122   thorpej 			hp = &(*hp)->l_forw;
    635  1.122   thorpej 		*hp = l->l_forw;
    636  1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    637   1.26       cgd 			qp->sq_tailp = hp;
    638  1.122   thorpej 		l->l_wchan = 0;
    639   1.26       cgd 	}
    640   1.26       cgd }
    641   1.26       cgd 
    642  1.139        cl __inline void
    643  1.139        cl sa_awaken(struct lwp *l)
    644  1.139        cl {
    645  1.147     perry 
    646  1.139        cl 	SCHED_ASSERT_LOCKED();
    647  1.139        cl 
    648  1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    649  1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    650  1.139        cl }
    651  1.139        cl 
    652   1.26       cgd /*
    653   1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    654   1.63   thorpej  */
    655   1.63   thorpej __inline void
    656  1.122   thorpej awaken(struct lwp *l)
    657   1.63   thorpej {
    658   1.63   thorpej 
    659   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    660  1.130   nathanw 
    661  1.139        cl 	if (l->l_proc->p_sa)
    662  1.139        cl 		sa_awaken(l);
    663  1.139        cl 
    664  1.122   thorpej 	if (l->l_slptime > 1)
    665  1.122   thorpej 		updatepri(l);
    666  1.122   thorpej 	l->l_slptime = 0;
    667  1.122   thorpej 	l->l_stat = LSRUN;
    668  1.122   thorpej 	l->l_proc->p_nrlwps++;
    669   1.93    bouyer 	/*
    670   1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    671  1.119   thorpej 	 * is always better than curpriority on the last CPU on
    672  1.119   thorpej 	 * which it ran.
    673  1.118   thorpej 	 *
    674  1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    675   1.93    bouyer 	 */
    676  1.122   thorpej 	if (l->l_flag & L_INMEM) {
    677  1.122   thorpej 		setrunqueue(l);
    678  1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    679  1.122   thorpej 		need_resched(l->l_cpu);
    680   1.93    bouyer 	} else
    681   1.93    bouyer 		sched_wakeup(&proc0);
    682   1.83   thorpej }
    683   1.83   thorpej 
    684   1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    685   1.83   thorpej void
    686   1.83   thorpej sched_unlock_idle(void)
    687   1.83   thorpej {
    688   1.83   thorpej 
    689   1.83   thorpej 	simple_unlock(&sched_lock);
    690   1.63   thorpej }
    691   1.63   thorpej 
    692   1.83   thorpej void
    693   1.83   thorpej sched_lock_idle(void)
    694   1.83   thorpej {
    695   1.83   thorpej 
    696   1.83   thorpej 	simple_lock(&sched_lock);
    697   1.83   thorpej }
    698   1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    699   1.83   thorpej 
    700   1.63   thorpej /*
    701   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    702   1.26       cgd  */
    703   1.83   thorpej 
    704   1.26       cgd void
    705  1.149  christos wakeup(__volatile const void *ident)
    706   1.26       cgd {
    707   1.83   thorpej 	int s;
    708   1.83   thorpej 
    709   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    710   1.83   thorpej 
    711   1.83   thorpej 	SCHED_LOCK(s);
    712   1.83   thorpej 	sched_wakeup(ident);
    713   1.83   thorpej 	SCHED_UNLOCK(s);
    714   1.83   thorpej }
    715   1.83   thorpej 
    716   1.83   thorpej void
    717  1.149  christos sched_wakeup(__volatile const void *ident)
    718   1.83   thorpej {
    719   1.71  augustss 	struct slpque *qp;
    720  1.122   thorpej 	struct lwp *l, **q;
    721   1.26       cgd 
    722   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    723   1.77   thorpej 
    724   1.73   thorpej 	qp = SLPQUE(ident);
    725   1.77   thorpej  restart:
    726  1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    727   1.26       cgd #ifdef DIAGNOSTIC
    728  1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    729  1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    730   1.26       cgd 			panic("wakeup");
    731   1.26       cgd #endif
    732  1.122   thorpej 		if (l->l_wchan == ident) {
    733  1.122   thorpej 			l->l_wchan = 0;
    734  1.122   thorpej 			*q = l->l_forw;
    735  1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    736   1.26       cgd 				qp->sq_tailp = q;
    737  1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    738  1.122   thorpej 				awaken(l);
    739   1.26       cgd 				goto restart;
    740   1.26       cgd 			}
    741   1.26       cgd 		} else
    742  1.122   thorpej 			q = &l->l_forw;
    743   1.63   thorpej 	}
    744   1.63   thorpej }
    745   1.63   thorpej 
    746   1.63   thorpej /*
    747   1.63   thorpej  * Make the highest priority process first in line on the specified
    748   1.63   thorpej  * identifier runnable.
    749   1.63   thorpej  */
    750   1.63   thorpej void
    751  1.149  christos wakeup_one(__volatile const void *ident)
    752   1.63   thorpej {
    753   1.63   thorpej 	struct slpque *qp;
    754  1.122   thorpej 	struct lwp *l, **q;
    755  1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    756  1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    757   1.63   thorpej 	int s;
    758   1.63   thorpej 
    759   1.63   thorpej 	best_sleepp = best_stopp = NULL;
    760   1.63   thorpej 	best_sleepq = best_stopq = NULL;
    761   1.63   thorpej 
    762   1.83   thorpej 	SCHED_LOCK(s);
    763   1.77   thorpej 
    764   1.73   thorpej 	qp = SLPQUE(ident);
    765   1.77   thorpej 
    766  1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    767   1.63   thorpej #ifdef DIAGNOSTIC
    768  1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    769  1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    770   1.63   thorpej 			panic("wakeup_one");
    771   1.63   thorpej #endif
    772  1.122   thorpej 		if (l->l_wchan == ident) {
    773  1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    774   1.63   thorpej 				if (best_sleepp == NULL ||
    775  1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    776  1.122   thorpej 					best_sleepp = l;
    777   1.63   thorpej 					best_sleepq = q;
    778   1.63   thorpej 				}
    779   1.63   thorpej 			} else {
    780   1.63   thorpej 				if (best_stopp == NULL ||
    781  1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    782  1.122   thorpej 				    	best_stopp = l;
    783   1.63   thorpej 					best_stopq = q;
    784   1.63   thorpej 				}
    785   1.63   thorpej 			}
    786   1.63   thorpej 		}
    787   1.63   thorpej 	}
    788   1.63   thorpej 
    789   1.63   thorpej 	/*
    790   1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    791   1.63   thorpej 	 * process.
    792   1.63   thorpej 	 */
    793   1.63   thorpej 	if (best_sleepp != NULL) {
    794  1.122   thorpej 		l = best_sleepp;
    795   1.63   thorpej 		q = best_sleepq;
    796   1.63   thorpej 	} else {
    797  1.122   thorpej 		l = best_stopp;
    798   1.63   thorpej 		q = best_stopq;
    799   1.63   thorpej 	}
    800   1.63   thorpej 
    801  1.122   thorpej 	if (l != NULL) {
    802  1.122   thorpej 		l->l_wchan = NULL;
    803  1.122   thorpej 		*q = l->l_forw;
    804  1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    805   1.63   thorpej 			qp->sq_tailp = q;
    806  1.122   thorpej 		if (l->l_stat == LSSLEEP)
    807  1.122   thorpej 			awaken(l);
    808   1.26       cgd 	}
    809   1.83   thorpej 	SCHED_UNLOCK(s);
    810  1.117  gmcgarry }
    811  1.117  gmcgarry 
    812  1.117  gmcgarry /*
    813  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    814  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    815  1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    816  1.117  gmcgarry  */
    817  1.117  gmcgarry void
    818  1.117  gmcgarry yield(void)
    819  1.117  gmcgarry {
    820  1.122   thorpej 	struct lwp *l = curlwp;
    821  1.117  gmcgarry 	int s;
    822  1.117  gmcgarry 
    823  1.117  gmcgarry 	SCHED_LOCK(s);
    824  1.122   thorpej 	l->l_priority = l->l_usrpri;
    825  1.122   thorpej 	l->l_stat = LSRUN;
    826  1.122   thorpej 	setrunqueue(l);
    827  1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    828  1.122   thorpej 	mi_switch(l, NULL);
    829  1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    830  1.117  gmcgarry 	splx(s);
    831   1.69   thorpej }
    832   1.69   thorpej 
    833   1.69   thorpej /*
    834   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    835   1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    836   1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    837   1.69   thorpej  * criteria.
    838   1.69   thorpej  */
    839  1.122   thorpej 
    840   1.69   thorpej void
    841  1.122   thorpej preempt(int more)
    842   1.69   thorpej {
    843  1.122   thorpej 	struct lwp *l = curlwp;
    844  1.122   thorpej 	int r, s;
    845   1.69   thorpej 
    846   1.83   thorpej 	SCHED_LOCK(s);
    847  1.122   thorpej 	l->l_priority = l->l_usrpri;
    848  1.122   thorpej 	l->l_stat = LSRUN;
    849  1.122   thorpej 	setrunqueue(l);
    850  1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    851  1.122   thorpej 	r = mi_switch(l, NULL);
    852   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    853   1.69   thorpej 	splx(s);
    854  1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    855  1.122   thorpej 		sa_preempt(l);
    856   1.69   thorpej }
    857   1.69   thorpej 
    858   1.69   thorpej /*
    859   1.72   thorpej  * The machine independent parts of context switch.
    860   1.86   thorpej  * Must be called at splsched() (no higher!) and with
    861   1.86   thorpej  * the sched_lock held.
    862  1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    863  1.122   thorpej  * the next lwp.
    864  1.130   nathanw  *
    865  1.122   thorpej  * Returns 1 if another process was actually run.
    866   1.26       cgd  */
    867  1.122   thorpej int
    868  1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    869   1.26       cgd {
    870   1.76   thorpej 	struct schedstate_percpu *spc;
    871   1.71  augustss 	struct rlimit *rlim;
    872   1.71  augustss 	long s, u;
    873   1.26       cgd 	struct timeval tv;
    874  1.144      yamt 	int hold_count;
    875  1.122   thorpej 	struct proc *p = l->l_proc;
    876  1.122   thorpej 	int retval;
    877   1.26       cgd 
    878   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    879   1.83   thorpej 
    880   1.90  sommerfe 	/*
    881   1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    882   1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    883   1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    884   1.90  sommerfe 	 */
    885  1.144      yamt 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    886   1.85  sommerfe 
    887  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    888  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    889  1.113  gmcgarry 
    890  1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    891   1.76   thorpej 
    892   1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    893   1.82   thorpej 	spinlock_switchcheck();
    894   1.82   thorpej #endif
    895   1.54       chs #ifdef LOCKDEBUG
    896   1.81   thorpej 	simple_lock_switchcheck();
    897   1.50      fvdl #endif
    898   1.81   thorpej 
    899   1.26       cgd 	/*
    900   1.26       cgd 	 * Compute the amount of time during which the current
    901  1.113  gmcgarry 	 * process was running.
    902   1.26       cgd 	 */
    903   1.26       cgd 	microtime(&tv);
    904  1.130   nathanw 	u = p->p_rtime.tv_usec +
    905  1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    906   1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    907   1.26       cgd 	if (u < 0) {
    908   1.26       cgd 		u += 1000000;
    909   1.26       cgd 		s--;
    910   1.26       cgd 	} else if (u >= 1000000) {
    911   1.26       cgd 		u -= 1000000;
    912   1.26       cgd 		s++;
    913   1.26       cgd 	}
    914  1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    915  1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    916   1.26       cgd 
    917   1.26       cgd 	/*
    918  1.141       wiz 	 * Check if the process exceeds its CPU resource allocation.
    919   1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    920   1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    921   1.26       cgd 	 */
    922   1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    923   1.26       cgd 	if (s >= rlim->rlim_cur) {
    924  1.100  sommerfe 		/*
    925  1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    926  1.100  sommerfe 		 * use sched_psignal.
    927  1.100  sommerfe 		 */
    928   1.26       cgd 		if (s >= rlim->rlim_max)
    929  1.100  sommerfe 			sched_psignal(p, SIGKILL);
    930   1.26       cgd 		else {
    931  1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    932   1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    933   1.26       cgd 				rlim->rlim_cur += 5;
    934   1.26       cgd 		}
    935   1.26       cgd 	}
    936   1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    937   1.77   thorpej 	    p->p_nice == NZERO) {
    938   1.39        ws 		p->p_nice = autoniceval + NZERO;
    939  1.122   thorpej 		resetpriority(l);
    940   1.26       cgd 	}
    941   1.69   thorpej 
    942   1.69   thorpej 	/*
    943   1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    944   1.69   thorpej 	 * scheduling flags.
    945   1.69   thorpej 	 */
    946   1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    947  1.109      yamt 
    948  1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    949  1.124      yamt 	kstack_check_magic(l);
    950  1.109      yamt #endif
    951   1.26       cgd 
    952  1.113  gmcgarry 	/*
    953  1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    954  1.113  gmcgarry 	 */
    955  1.114  gmcgarry #if PERFCTRS
    956  1.114  gmcgarry 	if (PMC_ENABLED(p))
    957  1.114  gmcgarry 		pmc_save_context(p);
    958  1.110    briggs #endif
    959  1.113  gmcgarry 
    960  1.113  gmcgarry 	/*
    961  1.114  gmcgarry 	 * Switch to the new current process.  When we
    962  1.114  gmcgarry 	 * run again, we'll return back here.
    963  1.113  gmcgarry 	 */
    964  1.114  gmcgarry 	uvmexp.swtch++;
    965  1.122   thorpej 	if (newl == NULL) {
    966  1.122   thorpej 		retval = cpu_switch(l, NULL);
    967  1.122   thorpej 	} else {
    968  1.122   thorpej 		remrunqueue(newl);
    969  1.122   thorpej 		cpu_switchto(l, newl);
    970  1.122   thorpej 		retval = 0;
    971  1.122   thorpej 	}
    972  1.110    briggs 
    973  1.110    briggs 	/*
    974  1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
    975   1.26       cgd 	 */
    976  1.114  gmcgarry #if PERFCTRS
    977  1.114  gmcgarry 	if (PMC_ENABLED(p))
    978  1.114  gmcgarry 		pmc_restore_context(p);
    979  1.114  gmcgarry #endif
    980  1.110    briggs 
    981  1.110    briggs 	/*
    982  1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
    983  1.114  gmcgarry 	 * resuming us.
    984  1.110    briggs 	 */
    985  1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    986   1.83   thorpej 
    987   1.83   thorpej 	/*
    988   1.76   thorpej 	 * We're running again; record our new start time.  We might
    989   1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    990   1.76   thorpej 	 * schedstate_percpu pointer.
    991   1.76   thorpej 	 */
    992  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    993  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    994  1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    995   1.85  sommerfe 
    996   1.90  sommerfe 	/*
    997   1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    998   1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    999   1.90  sommerfe 	 * we reacquire the interlock.
   1000   1.90  sommerfe 	 */
   1001  1.144      yamt 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1002  1.122   thorpej 
   1003  1.122   thorpej 	return retval;
   1004   1.26       cgd }
   1005   1.26       cgd 
   1006   1.26       cgd /*
   1007   1.26       cgd  * Initialize the (doubly-linked) run queues
   1008   1.26       cgd  * to be empty.
   1009   1.26       cgd  */
   1010   1.26       cgd void
   1011   1.26       cgd rqinit()
   1012   1.26       cgd {
   1013   1.71  augustss 	int i;
   1014   1.26       cgd 
   1015   1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
   1016   1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1017  1.122   thorpej 		    (struct lwp *)&sched_qs[i];
   1018   1.26       cgd }
   1019   1.26       cgd 
   1020  1.119   thorpej static __inline void
   1021  1.122   thorpej resched_proc(struct lwp *l, u_char pri)
   1022  1.119   thorpej {
   1023  1.119   thorpej 	struct cpu_info *ci;
   1024  1.119   thorpej 
   1025  1.119   thorpej 	/*
   1026  1.119   thorpej 	 * XXXSMP
   1027  1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
   1028  1.119   thorpej 	 * this gives us *very weak* processor affinity, in
   1029  1.119   thorpej 	 * that we notify the CPU on which the process last
   1030  1.119   thorpej 	 * ran that it should try to switch.
   1031  1.119   thorpej 	 *
   1032  1.119   thorpej 	 * This does not guarantee that the process will run on
   1033  1.119   thorpej 	 * that processor next, because another processor might
   1034  1.119   thorpej 	 * grab it the next time it performs a context switch.
   1035  1.119   thorpej 	 *
   1036  1.119   thorpej 	 * This also does not handle the case where its last
   1037  1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1038  1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1039  1.119   thorpej 	 * are ways to handle this situation, but they're not
   1040  1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1041  1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1042  1.119   thorpej 	 *
   1043  1.119   thorpej 	 * XXXSMP
   1044  1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1045  1.119   thorpej 	 * sched state, which we currently do not do.
   1046  1.119   thorpej 	 */
   1047  1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1048  1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1049  1.119   thorpej 		need_resched(ci);
   1050  1.119   thorpej }
   1051  1.119   thorpej 
   1052   1.26       cgd /*
   1053   1.26       cgd  * Change process state to be runnable,
   1054   1.26       cgd  * placing it on the run queue if it is in memory,
   1055   1.26       cgd  * and awakening the swapper if it isn't in memory.
   1056   1.26       cgd  */
   1057   1.26       cgd void
   1058  1.122   thorpej setrunnable(struct lwp *l)
   1059   1.26       cgd {
   1060  1.122   thorpej 	struct proc *p = l->l_proc;
   1061   1.26       cgd 
   1062   1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1063   1.83   thorpej 
   1064  1.122   thorpej 	switch (l->l_stat) {
   1065   1.26       cgd 	case 0:
   1066  1.122   thorpej 	case LSRUN:
   1067  1.122   thorpej 	case LSONPROC:
   1068  1.122   thorpej 	case LSZOMB:
   1069  1.122   thorpej 	case LSDEAD:
   1070   1.26       cgd 	default:
   1071  1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1072  1.122   thorpej 	case LSSTOP:
   1073   1.33   mycroft 		/*
   1074   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1075   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1076   1.33   mycroft 		 */
   1077   1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1078   1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1079  1.101   thorpej 			CHECKSIGS(p);
   1080   1.53   mycroft 		}
   1081  1.122   thorpej 	case LSSLEEP:
   1082  1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1083   1.26       cgd 		break;
   1084   1.26       cgd 
   1085  1.122   thorpej 	case LSIDL:
   1086  1.122   thorpej 		break;
   1087  1.122   thorpej 	case LSSUSPENDED:
   1088   1.26       cgd 		break;
   1089   1.26       cgd 	}
   1090  1.139        cl 
   1091  1.139        cl 	if (l->l_proc->p_sa)
   1092  1.139        cl 		sa_awaken(l);
   1093  1.139        cl 
   1094  1.122   thorpej 	l->l_stat = LSRUN;
   1095  1.122   thorpej 	p->p_nrlwps++;
   1096  1.122   thorpej 
   1097  1.122   thorpej 	if (l->l_flag & L_INMEM)
   1098  1.122   thorpej 		setrunqueue(l);
   1099  1.122   thorpej 
   1100  1.122   thorpej 	if (l->l_slptime > 1)
   1101  1.122   thorpej 		updatepri(l);
   1102  1.122   thorpej 	l->l_slptime = 0;
   1103  1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1104   1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1105  1.119   thorpej 	else
   1106  1.122   thorpej 		resched_proc(l, l->l_priority);
   1107   1.26       cgd }
   1108   1.26       cgd 
   1109   1.26       cgd /*
   1110   1.26       cgd  * Compute the priority of a process when running in user mode.
   1111   1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1112   1.26       cgd  * than that of the current process.
   1113   1.26       cgd  */
   1114   1.26       cgd void
   1115  1.122   thorpej resetpriority(struct lwp *l)
   1116   1.26       cgd {
   1117   1.71  augustss 	unsigned int newpriority;
   1118  1.122   thorpej 	struct proc *p = l->l_proc;
   1119   1.26       cgd 
   1120   1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1121   1.83   thorpej 
   1122  1.130   nathanw 	newpriority = PUSER + p->p_estcpu +
   1123  1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1124   1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1125  1.122   thorpej 	l->l_usrpri = newpriority;
   1126  1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1127  1.122   thorpej }
   1128  1.122   thorpej 
   1129  1.130   nathanw /*
   1130  1.122   thorpej  * Recompute priority for all LWPs in a process.
   1131  1.122   thorpej  */
   1132  1.122   thorpej void
   1133  1.122   thorpej resetprocpriority(struct proc *p)
   1134  1.122   thorpej {
   1135  1.122   thorpej 	struct lwp *l;
   1136  1.122   thorpej 
   1137  1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1138  1.122   thorpej 	    resetpriority(l);
   1139   1.55      ross }
   1140   1.55      ross 
   1141   1.55      ross /*
   1142   1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1143  1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1144   1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1145   1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1146   1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1147  1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1148   1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1149   1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1150   1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1151   1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1152   1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1153   1.56      ross  * processes.
   1154   1.55      ross  */
   1155   1.55      ross 
   1156   1.55      ross void
   1157  1.122   thorpej schedclock(struct lwp *l)
   1158   1.55      ross {
   1159  1.122   thorpej 	struct proc *p = l->l_proc;
   1160   1.83   thorpej 	int s;
   1161   1.77   thorpej 
   1162   1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1163   1.83   thorpej 	SCHED_LOCK(s);
   1164  1.122   thorpej 	resetpriority(l);
   1165   1.83   thorpej 	SCHED_UNLOCK(s);
   1166  1.130   nathanw 
   1167  1.122   thorpej 	if (l->l_priority >= PUSER)
   1168  1.122   thorpej 		l->l_priority = l->l_usrpri;
   1169   1.26       cgd }
   1170   1.94    bouyer 
   1171   1.94    bouyer void
   1172   1.94    bouyer suspendsched()
   1173   1.94    bouyer {
   1174  1.122   thorpej 	struct lwp *l;
   1175   1.97     enami 	int s;
   1176   1.94    bouyer 
   1177   1.94    bouyer 	/*
   1178  1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1179  1.122   thorpej 	 * LSSUSPENDED.
   1180   1.94    bouyer 	 */
   1181   1.95   thorpej 	proclist_lock_read();
   1182   1.95   thorpej 	SCHED_LOCK(s);
   1183  1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1184  1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1185   1.94    bouyer 			continue;
   1186  1.122   thorpej 
   1187  1.122   thorpej 		switch (l->l_stat) {
   1188  1.122   thorpej 		case LSRUN:
   1189  1.122   thorpej 			l->l_proc->p_nrlwps--;
   1190  1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1191  1.122   thorpej 				remrunqueue(l);
   1192   1.97     enami 			/* FALLTHROUGH */
   1193  1.122   thorpej 		case LSSLEEP:
   1194  1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1195   1.97     enami 			break;
   1196  1.122   thorpej 		case LSONPROC:
   1197   1.97     enami 			/*
   1198   1.97     enami 			 * XXX SMP: we need to deal with processes on
   1199   1.97     enami 			 * others CPU !
   1200   1.97     enami 			 */
   1201   1.97     enami 			break;
   1202   1.97     enami 		default:
   1203   1.97     enami 			break;
   1204   1.94    bouyer 		}
   1205   1.94    bouyer 	}
   1206   1.94    bouyer 	SCHED_UNLOCK(s);
   1207   1.97     enami 	proclist_unlock_read();
   1208   1.94    bouyer }
   1209  1.113  gmcgarry 
   1210  1.113  gmcgarry /*
   1211  1.151      yamt  * scheduler_fork_hook:
   1212  1.151      yamt  *
   1213  1.151      yamt  *	Inherit the parent's scheduler history.
   1214  1.151      yamt  */
   1215  1.151      yamt void
   1216  1.151      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1217  1.151      yamt {
   1218  1.151      yamt 
   1219  1.151      yamt 	child->p_estcpu = parent->p_estcpu;
   1220  1.151      yamt }
   1221  1.151      yamt 
   1222  1.151      yamt /*
   1223  1.151      yamt  * scheduler_wait_hook:
   1224  1.151      yamt  *
   1225  1.151      yamt  *	Chargeback parents for the sins of their children.
   1226  1.151      yamt  */
   1227  1.151      yamt void
   1228  1.151      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1229  1.151      yamt {
   1230  1.151      yamt 
   1231  1.151      yamt 	/* XXX Only if parent != init?? */
   1232  1.151      yamt 	parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
   1233  1.151      yamt }
   1234  1.151      yamt 
   1235  1.151      yamt /*
   1236  1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1237  1.113  gmcgarry  * routines can override these.
   1238  1.113  gmcgarry  */
   1239  1.113  gmcgarry 
   1240  1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1241  1.115  nisimura 
   1242  1.130   nathanw /*
   1243  1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1244  1.134      matt  * than the traditional LSB ordering.
   1245  1.134      matt  */
   1246  1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1247  1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1248  1.134      matt #else
   1249  1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1250  1.134      matt #endif
   1251  1.134      matt 
   1252  1.134      matt /*
   1253  1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1254  1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1255  1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1256  1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1257  1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1258  1.115  nisimura  * available queues.
   1259  1.130   nathanw  */
   1260  1.113  gmcgarry 
   1261  1.146      matt #ifdef RQDEBUG
   1262  1.146      matt static void
   1263  1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1264  1.146      matt {
   1265  1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1266  1.146      matt 	struct lwp *l2;
   1267  1.146      matt 	int found = 0;
   1268  1.146      matt 	int die = 0;
   1269  1.146      matt 	int empty = 1;
   1270  1.146      matt 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1271  1.146      matt 		if (l2->l_stat != LSRUN) {
   1272  1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1273  1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1274  1.146      matt 		}
   1275  1.146      matt 		if (l2->l_back->l_forw != l2) {
   1276  1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1277  1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1278  1.146      matt 			    l2->l_back->l_forw);
   1279  1.146      matt 			die = 1;
   1280  1.146      matt 		}
   1281  1.146      matt 		if (l2->l_forw->l_back != l2) {
   1282  1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1283  1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1284  1.146      matt 			    l2->l_forw->l_back);
   1285  1.146      matt 			die = 1;
   1286  1.146      matt 		}
   1287  1.146      matt 		if (l2 == l)
   1288  1.146      matt 			found = 1;
   1289  1.146      matt 		empty = 0;
   1290  1.146      matt 	}
   1291  1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1292  1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1293  1.146      matt 		    whichq, rq);
   1294  1.146      matt 		die = 1;
   1295  1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1296  1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1297  1.146      matt 		    "run-queue %p\n", whichq, rq);
   1298  1.146      matt 		die = 1;
   1299  1.146      matt 	}
   1300  1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1301  1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1302  1.146      matt 		    whichq, l);
   1303  1.146      matt 		die = 1;
   1304  1.146      matt 	}
   1305  1.146      matt 	if (l != NULL && empty) {
   1306  1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1307  1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1308  1.146      matt 		die = 1;
   1309  1.146      matt 	}
   1310  1.146      matt 	if (l != NULL && !found) {
   1311  1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1312  1.146      matt 		    whichq, l, rq);
   1313  1.146      matt 		die = 1;
   1314  1.146      matt 	}
   1315  1.146      matt 	if (die)
   1316  1.146      matt 		panic("checkrunqueue: inconsistency found");
   1317  1.146      matt }
   1318  1.146      matt #endif /* RQDEBUG */
   1319  1.146      matt 
   1320  1.113  gmcgarry void
   1321  1.122   thorpej setrunqueue(struct lwp *l)
   1322  1.113  gmcgarry {
   1323  1.113  gmcgarry 	struct prochd *rq;
   1324  1.122   thorpej 	struct lwp *prev;
   1325  1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1326  1.113  gmcgarry 
   1327  1.146      matt #ifdef RQDEBUG
   1328  1.146      matt 	checkrunqueue(whichq, NULL);
   1329  1.146      matt #endif
   1330  1.113  gmcgarry #ifdef DIAGNOSTIC
   1331  1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1332  1.113  gmcgarry 		panic("setrunqueue");
   1333  1.113  gmcgarry #endif
   1334  1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1335  1.113  gmcgarry 	rq = &sched_qs[whichq];
   1336  1.113  gmcgarry 	prev = rq->ph_rlink;
   1337  1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1338  1.122   thorpej 	rq->ph_rlink = l;
   1339  1.122   thorpej 	prev->l_forw = l;
   1340  1.122   thorpej 	l->l_back = prev;
   1341  1.146      matt #ifdef RQDEBUG
   1342  1.146      matt 	checkrunqueue(whichq, l);
   1343  1.146      matt #endif
   1344  1.113  gmcgarry }
   1345  1.113  gmcgarry 
   1346  1.113  gmcgarry void
   1347  1.122   thorpej remrunqueue(struct lwp *l)
   1348  1.113  gmcgarry {
   1349  1.122   thorpej 	struct lwp *prev, *next;
   1350  1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1351  1.146      matt #ifdef RQDEBUG
   1352  1.146      matt 	checkrunqueue(whichq, l);
   1353  1.146      matt #endif
   1354  1.113  gmcgarry #ifdef DIAGNOSTIC
   1355  1.134      matt 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1356  1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1357  1.113  gmcgarry #endif
   1358  1.122   thorpej 	prev = l->l_back;
   1359  1.122   thorpej 	l->l_back = NULL;
   1360  1.122   thorpej 	next = l->l_forw;
   1361  1.122   thorpej 	prev->l_forw = next;
   1362  1.122   thorpej 	next->l_back = prev;
   1363  1.113  gmcgarry 	if (prev == next)
   1364  1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1365  1.146      matt #ifdef RQDEBUG
   1366  1.146      matt 	checkrunqueue(whichq, NULL);
   1367  1.146      matt #endif
   1368  1.113  gmcgarry }
   1369  1.113  gmcgarry 
   1370  1.134      matt #undef RQMASK
   1371  1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1372