kern_synch.c revision 1.153 1 1.153 yamt /* $NetBSD: kern_synch.c,v 1.153 2005/11/01 09:07:53 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.148 mycroft * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.148 mycroft * This code is derived from software contributed to The NetBSD Foundation
11 1.148 mycroft * by Charles M. Hannum.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
22 1.63 thorpej * must display the following acknowledgement:
23 1.63 thorpej * This product includes software developed by the NetBSD
24 1.63 thorpej * Foundation, Inc. and its contributors.
25 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
26 1.63 thorpej * contributors may be used to endorse or promote products derived
27 1.63 thorpej * from this software without specific prior written permission.
28 1.63 thorpej *
29 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
40 1.63 thorpej */
41 1.26 cgd
42 1.26 cgd /*-
43 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 1.26 cgd * The Regents of the University of California. All rights reserved.
45 1.26 cgd * (c) UNIX System Laboratories, Inc.
46 1.26 cgd * All or some portions of this file are derived from material licensed
47 1.26 cgd * to the University of California by American Telephone and Telegraph
48 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 1.26 cgd * the permission of UNIX System Laboratories, Inc.
50 1.26 cgd *
51 1.26 cgd * Redistribution and use in source and binary forms, with or without
52 1.26 cgd * modification, are permitted provided that the following conditions
53 1.26 cgd * are met:
54 1.26 cgd * 1. Redistributions of source code must retain the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer.
56 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
57 1.26 cgd * notice, this list of conditions and the following disclaimer in the
58 1.26 cgd * documentation and/or other materials provided with the distribution.
59 1.136 agc * 3. Neither the name of the University nor the names of its contributors
60 1.26 cgd * may be used to endorse or promote products derived from this software
61 1.26 cgd * without specific prior written permission.
62 1.26 cgd *
63 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.26 cgd * SUCH DAMAGE.
74 1.26 cgd *
75 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 1.26 cgd */
77 1.106 lukem
78 1.106 lukem #include <sys/cdefs.h>
79 1.153 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.153 2005/11/01 09:07:53 yamt Exp $");
80 1.48 mrg
81 1.52 jonathan #include "opt_ddb.h"
82 1.51 thorpej #include "opt_ktrace.h"
83 1.109 yamt #include "opt_kstack.h"
84 1.82 thorpej #include "opt_lockdebug.h"
85 1.83 thorpej #include "opt_multiprocessor.h"
86 1.110 briggs #include "opt_perfctrs.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.26 cgd #include <sys/kernel.h>
93 1.26 cgd #include <sys/buf.h>
94 1.111 briggs #if defined(PERFCTRS)
95 1.110 briggs #include <sys/pmc.h>
96 1.111 briggs #endif
97 1.26 cgd #include <sys/signalvar.h>
98 1.26 cgd #include <sys/resourcevar.h>
99 1.55 ross #include <sys/sched.h>
100 1.122 thorpej #include <sys/sa.h>
101 1.122 thorpej #include <sys/savar.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.26 cgd #ifdef KTRACE
106 1.26 cgd #include <sys/ktrace.h>
107 1.26 cgd #endif
108 1.26 cgd
109 1.26 cgd #include <machine/cpu.h>
110 1.34 christos
111 1.26 cgd int lbolt; /* once a second sleep address */
112 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
113 1.26 cgd
114 1.73 thorpej /*
115 1.152 yamt * Sleep queues.
116 1.152 yamt *
117 1.152 yamt * We're only looking at 7 bits of the address; everything is
118 1.152 yamt * aligned to 4, lots of things are aligned to greater powers
119 1.152 yamt * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
120 1.152 yamt */
121 1.152 yamt #define SLPQUE_TABLESIZE 128
122 1.152 yamt #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
123 1.152 yamt
124 1.152 yamt #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
125 1.152 yamt
126 1.152 yamt /*
127 1.73 thorpej * The global scheduler state.
128 1.73 thorpej */
129 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
130 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
131 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
132 1.73 thorpej
133 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
134 1.83 thorpej
135 1.77 thorpej void schedcpu(void *);
136 1.122 thorpej void updatepri(struct lwp *);
137 1.77 thorpej void endtsleep(void *);
138 1.34 christos
139 1.139 cl __inline void sa_awaken(struct lwp *);
140 1.122 thorpej __inline void awaken(struct lwp *);
141 1.63 thorpej
142 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
143 1.68 thorpej
144 1.122 thorpej
145 1.122 thorpej
146 1.26 cgd /*
147 1.26 cgd * Force switch among equal priority processes every 100ms.
148 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
149 1.26 cgd */
150 1.26 cgd /* ARGSUSED */
151 1.26 cgd void
152 1.89 sommerfe roundrobin(struct cpu_info *ci)
153 1.26 cgd {
154 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
155 1.26 cgd
156 1.88 sommerfe spc->spc_rrticks = rrticks;
157 1.130 nathanw
158 1.122 thorpej if (curlwp != NULL) {
159 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
160 1.69 thorpej /*
161 1.69 thorpej * The process has already been through a roundrobin
162 1.69 thorpej * without switching and may be hogging the CPU.
163 1.69 thorpej * Indicate that the process should yield.
164 1.69 thorpej */
165 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
166 1.69 thorpej } else
167 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
168 1.69 thorpej }
169 1.87 thorpej need_resched(curcpu());
170 1.26 cgd }
171 1.26 cgd
172 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
173 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
174 1.153 yamt
175 1.153 yamt #define ESTCPU_SHIFT 11
176 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
177 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
178 1.153 yamt
179 1.26 cgd /*
180 1.26 cgd * Constants for digital decay and forget:
181 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
182 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
183 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
184 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
185 1.26 cgd *
186 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
187 1.26 cgd *
188 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
189 1.26 cgd * That is, the system wants to compute a value of decay such
190 1.26 cgd * that the following for loop:
191 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
192 1.26 cgd * p_estcpu *= decay;
193 1.26 cgd * will compute
194 1.26 cgd * p_estcpu *= 0.1;
195 1.26 cgd * for all values of loadavg:
196 1.26 cgd *
197 1.26 cgd * Mathematically this loop can be expressed by saying:
198 1.26 cgd * decay ** (5 * loadavg) ~= .1
199 1.26 cgd *
200 1.26 cgd * The system computes decay as:
201 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
202 1.26 cgd *
203 1.26 cgd * We wish to prove that the system's computation of decay
204 1.26 cgd * will always fulfill the equation:
205 1.26 cgd * decay ** (5 * loadavg) ~= .1
206 1.26 cgd *
207 1.26 cgd * If we compute b as:
208 1.26 cgd * b = 2 * loadavg
209 1.26 cgd * then
210 1.26 cgd * decay = b / (b + 1)
211 1.26 cgd *
212 1.26 cgd * We now need to prove two things:
213 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
214 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
215 1.130 nathanw *
216 1.26 cgd * Facts:
217 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
218 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
219 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
220 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
221 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
222 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
223 1.26 cgd * ln(.1) =~ -2.30
224 1.26 cgd *
225 1.26 cgd * Proof of (1):
226 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
227 1.26 cgd * solving for factor,
228 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
229 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
230 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
231 1.26 cgd *
232 1.26 cgd * Proof of (2):
233 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
234 1.26 cgd * solving for power,
235 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
236 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
237 1.26 cgd *
238 1.26 cgd * Actual power values for the implemented algorithm are as follows:
239 1.26 cgd * loadav: 1 2 3 4
240 1.26 cgd * power: 5.68 10.32 14.94 19.55
241 1.26 cgd */
242 1.26 cgd
243 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
244 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
245 1.153 yamt
246 1.153 yamt static fixpt_t
247 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
248 1.153 yamt {
249 1.153 yamt
250 1.153 yamt if (estcpu == 0) {
251 1.153 yamt return 0;
252 1.153 yamt }
253 1.153 yamt
254 1.153 yamt #if !defined(_LP64)
255 1.153 yamt /* avoid 64bit arithmetics. */
256 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
257 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
258 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
259 1.153 yamt }
260 1.153 yamt #endif /* !defined(_LP64) */
261 1.153 yamt
262 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
263 1.153 yamt }
264 1.26 cgd
265 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
266 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
267 1.26 cgd
268 1.26 cgd /*
269 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
270 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
271 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
272 1.26 cgd *
273 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
274 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
275 1.26 cgd *
276 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
277 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
278 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
279 1.26 cgd */
280 1.26 cgd #define CCPU_SHIFT 11
281 1.26 cgd
282 1.26 cgd /*
283 1.26 cgd * Recompute process priorities, every hz ticks.
284 1.26 cgd */
285 1.26 cgd /* ARGSUSED */
286 1.26 cgd void
287 1.77 thorpej schedcpu(void *arg)
288 1.26 cgd {
289 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
290 1.122 thorpej struct lwp *l;
291 1.71 augustss struct proc *p;
292 1.122 thorpej int s, minslp;
293 1.66 ross int clkhz;
294 1.26 cgd
295 1.62 thorpej proclist_lock_read();
296 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
297 1.26 cgd /*
298 1.26 cgd * Increment time in/out of memory and sleep time
299 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
300 1.26 cgd * (remember them?) overflow takes 45 days.
301 1.26 cgd */
302 1.122 thorpej minslp = 2;
303 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
304 1.122 thorpej l->l_swtime++;
305 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
306 1.122 thorpej l->l_stat == LSSUSPENDED) {
307 1.122 thorpej l->l_slptime++;
308 1.122 thorpej minslp = min(minslp, l->l_slptime);
309 1.122 thorpej } else
310 1.122 thorpej minslp = 0;
311 1.122 thorpej }
312 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
313 1.26 cgd /*
314 1.26 cgd * If the process has slept the entire second,
315 1.26 cgd * stop recalculating its priority until it wakes up.
316 1.26 cgd */
317 1.122 thorpej if (minslp > 1)
318 1.26 cgd continue;
319 1.26 cgd s = splstatclock(); /* prevent state changes */
320 1.26 cgd /*
321 1.26 cgd * p_pctcpu is only for ps.
322 1.26 cgd */
323 1.66 ross clkhz = stathz != 0 ? stathz : hz;
324 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
325 1.66 ross p->p_pctcpu += (clkhz == 100)?
326 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
327 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
328 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
329 1.26 cgd #else
330 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
331 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
332 1.26 cgd #endif
333 1.26 cgd p->p_cpticks = 0;
334 1.153 yamt p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
335 1.120 pk splx(s); /* Done with the process CPU ticks update */
336 1.120 pk SCHED_LOCK(s);
337 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
338 1.122 thorpej if (l->l_slptime > 1)
339 1.122 thorpej continue;
340 1.122 thorpej resetpriority(l);
341 1.122 thorpej if (l->l_priority >= PUSER) {
342 1.122 thorpej if (l->l_stat == LSRUN &&
343 1.122 thorpej (l->l_flag & L_INMEM) &&
344 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
345 1.122 thorpej remrunqueue(l);
346 1.122 thorpej l->l_priority = l->l_usrpri;
347 1.122 thorpej setrunqueue(l);
348 1.122 thorpej } else
349 1.122 thorpej l->l_priority = l->l_usrpri;
350 1.122 thorpej }
351 1.26 cgd }
352 1.120 pk SCHED_UNLOCK(s);
353 1.26 cgd }
354 1.61 thorpej proclist_unlock_read();
355 1.47 mrg uvm_meter();
356 1.67 fvdl wakeup((caddr_t)&lbolt);
357 1.143 yamt callout_schedule(&schedcpu_ch, hz);
358 1.26 cgd }
359 1.26 cgd
360 1.26 cgd /*
361 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
362 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
363 1.153 yamt * least six times the loadfactor will decay p_estcpu to less than
364 1.153 yamt * (1 << ESTCPU_SHIFT).
365 1.26 cgd */
366 1.26 cgd void
367 1.122 thorpej updatepri(struct lwp *l)
368 1.26 cgd {
369 1.122 thorpej struct proc *p = l->l_proc;
370 1.153 yamt fixpt_t newcpu;
371 1.83 thorpej fixpt_t loadfac;
372 1.83 thorpej
373 1.83 thorpej SCHED_ASSERT_LOCKED();
374 1.83 thorpej
375 1.83 thorpej newcpu = p->p_estcpu;
376 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
377 1.26 cgd
378 1.122 thorpej if (l->l_slptime > 5 * loadfac)
379 1.122 thorpej p->p_estcpu = 0; /* XXX NJWLWP */
380 1.26 cgd else {
381 1.122 thorpej l->l_slptime--; /* the first time was done in schedcpu */
382 1.122 thorpej while (newcpu && --l->l_slptime)
383 1.153 yamt newcpu = decay_cpu(loadfac, newcpu);
384 1.55 ross p->p_estcpu = newcpu;
385 1.26 cgd }
386 1.122 thorpej resetpriority(l);
387 1.26 cgd }
388 1.26 cgd
389 1.26 cgd /*
390 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
391 1.26 cgd * lower the priority briefly to allow interrupts, then return.
392 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
393 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
394 1.26 cgd * This priority will typically be 0, or the lowest priority
395 1.26 cgd * that is safe for use on the interrupt stack; it can be made
396 1.26 cgd * higher to block network software interrupts after panics.
397 1.26 cgd */
398 1.26 cgd int safepri;
399 1.26 cgd
400 1.26 cgd /*
401 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
402 1.26 cgd * performed on the specified identifier. The process will then be made
403 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
404 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
405 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
406 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
407 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
408 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
409 1.26 cgd * call should be interrupted by the signal (return EINTR).
410 1.77 thorpej *
411 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
412 1.77 thorpej * interlock will be locked before returning back to the caller
413 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
414 1.77 thorpej * interlock will always be unlocked upon return.
415 1.26 cgd */
416 1.26 cgd int
417 1.149 christos ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
418 1.77 thorpej __volatile struct simplelock *interlock)
419 1.26 cgd {
420 1.122 thorpej struct lwp *l = curlwp;
421 1.123 christos struct proc *p = l ? l->l_proc : NULL;
422 1.71 augustss struct slpque *qp;
423 1.150 chs struct sadata_upcall *sau;
424 1.77 thorpej int sig, s;
425 1.77 thorpej int catch = priority & PCATCH;
426 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
427 1.122 thorpej int exiterr = (priority & PNOEXITERR) == 0;
428 1.26 cgd
429 1.77 thorpej /*
430 1.77 thorpej * XXXSMP
431 1.77 thorpej * This is probably bogus. Figure out what the right
432 1.77 thorpej * thing to do here really is.
433 1.130 nathanw * Note that not sleeping if ltsleep is called with curlwp == NULL
434 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
435 1.78 sommerfe * how shutdown (barely) works.
436 1.77 thorpej */
437 1.122 thorpej if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
438 1.26 cgd /*
439 1.26 cgd * After a panic, or during autoconfiguration,
440 1.26 cgd * just give interrupts a chance, then just return;
441 1.26 cgd * don't run any other procs or panic below,
442 1.26 cgd * in case this is the idle process and already asleep.
443 1.26 cgd */
444 1.42 cgd s = splhigh();
445 1.26 cgd splx(safepri);
446 1.26 cgd splx(s);
447 1.77 thorpej if (interlock != NULL && relock == 0)
448 1.77 thorpej simple_unlock(interlock);
449 1.26 cgd return (0);
450 1.26 cgd }
451 1.78 sommerfe
452 1.102 thorpej KASSERT(p != NULL);
453 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
454 1.42 cgd
455 1.42 cgd #ifdef KTRACE
456 1.42 cgd if (KTRPOINT(p, KTR_CSW))
457 1.132 fvdl ktrcsw(p, 1, 0);
458 1.42 cgd #endif
459 1.77 thorpej
460 1.150 chs /*
461 1.150 chs * XXX We need to allocate the sadata_upcall structure here,
462 1.150 chs * XXX since we can't sleep while waiting for memory inside
463 1.150 chs * XXX sa_upcall(). It would be nice if we could safely
464 1.150 chs * XXX allocate the sadata_upcall structure on the stack, here.
465 1.150 chs */
466 1.150 chs if (l->l_flag & L_SA) {
467 1.150 chs sau = sadata_upcall_alloc(0);
468 1.150 chs } else {
469 1.150 chs sau = NULL;
470 1.150 chs }
471 1.150 chs
472 1.83 thorpej SCHED_LOCK(s);
473 1.42 cgd
474 1.26 cgd #ifdef DIAGNOSTIC
475 1.64 thorpej if (ident == NULL)
476 1.77 thorpej panic("ltsleep: ident == NULL");
477 1.122 thorpej if (l->l_stat != LSONPROC)
478 1.122 thorpej panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
479 1.122 thorpej if (l->l_back != NULL)
480 1.77 thorpej panic("ltsleep: p_back != NULL");
481 1.26 cgd #endif
482 1.77 thorpej
483 1.122 thorpej l->l_wchan = ident;
484 1.122 thorpej l->l_wmesg = wmesg;
485 1.122 thorpej l->l_slptime = 0;
486 1.122 thorpej l->l_priority = priority & PRIMASK;
487 1.77 thorpej
488 1.73 thorpej qp = SLPQUE(ident);
489 1.26 cgd if (qp->sq_head == 0)
490 1.122 thorpej qp->sq_head = l;
491 1.122 thorpej else {
492 1.122 thorpej *qp->sq_tailp = l;
493 1.122 thorpej }
494 1.122 thorpej *(qp->sq_tailp = &l->l_forw) = 0;
495 1.77 thorpej
496 1.26 cgd if (timo)
497 1.122 thorpej callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
498 1.77 thorpej
499 1.77 thorpej /*
500 1.77 thorpej * We can now release the interlock; the scheduler_slock
501 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
502 1.77 thorpej * we do the switch.
503 1.77 thorpej *
504 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
505 1.77 thorpej * on the sleep queue, because we might want a more clever
506 1.77 thorpej * data structure for the sleep queues at some point.
507 1.77 thorpej */
508 1.77 thorpej if (interlock != NULL)
509 1.77 thorpej simple_unlock(interlock);
510 1.77 thorpej
511 1.26 cgd /*
512 1.26 cgd * We put ourselves on the sleep queue and start our timeout
513 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
514 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
515 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
516 1.26 cgd * without resuming us, thus we must be ready for sleep
517 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
518 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
519 1.26 cgd */
520 1.26 cgd if (catch) {
521 1.122 thorpej l->l_flag |= L_SINTR;
522 1.137 itojun if (((sig = CURSIG(l)) != 0) ||
523 1.137 itojun ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
524 1.122 thorpej if (l->l_wchan != NULL)
525 1.122 thorpej unsleep(l);
526 1.122 thorpej l->l_stat = LSONPROC;
527 1.83 thorpej SCHED_UNLOCK(s);
528 1.26 cgd goto resume;
529 1.26 cgd }
530 1.122 thorpej if (l->l_wchan == NULL) {
531 1.26 cgd catch = 0;
532 1.83 thorpej SCHED_UNLOCK(s);
533 1.26 cgd goto resume;
534 1.26 cgd }
535 1.26 cgd } else
536 1.26 cgd sig = 0;
537 1.122 thorpej l->l_stat = LSSLEEP;
538 1.122 thorpej p->p_nrlwps--;
539 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
540 1.83 thorpej SCHED_ASSERT_LOCKED();
541 1.122 thorpej if (l->l_flag & L_SA)
542 1.150 chs sa_switch(l, sau, SA_UPCALL_BLOCKED);
543 1.122 thorpej else
544 1.122 thorpej mi_switch(l, NULL);
545 1.83 thorpej
546 1.104 chs #if defined(DDB) && !defined(GPROF)
547 1.26 cgd /* handy breakpoint location after process "wakes" */
548 1.140 kleink __asm(".globl bpendtsleep\nbpendtsleep:");
549 1.26 cgd #endif
550 1.122 thorpej /*
551 1.122 thorpej * p->p_nrlwps is incremented by whoever made us runnable again,
552 1.122 thorpej * either setrunnable() or awaken().
553 1.122 thorpej */
554 1.77 thorpej
555 1.83 thorpej SCHED_ASSERT_UNLOCKED();
556 1.83 thorpej splx(s);
557 1.83 thorpej
558 1.77 thorpej resume:
559 1.122 thorpej KDASSERT(l->l_cpu != NULL);
560 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
561 1.122 thorpej l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
562 1.122 thorpej
563 1.122 thorpej l->l_flag &= ~L_SINTR;
564 1.122 thorpej if (l->l_flag & L_TIMEOUT) {
565 1.135 matt l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
566 1.26 cgd if (sig == 0) {
567 1.26 cgd #ifdef KTRACE
568 1.26 cgd if (KTRPOINT(p, KTR_CSW))
569 1.132 fvdl ktrcsw(p, 0, 0);
570 1.26 cgd #endif
571 1.77 thorpej if (relock && interlock != NULL)
572 1.77 thorpej simple_lock(interlock);
573 1.26 cgd return (EWOULDBLOCK);
574 1.26 cgd }
575 1.26 cgd } else if (timo)
576 1.122 thorpej callout_stop(&l->l_tsleep_ch);
577 1.135 matt
578 1.135 matt if (catch) {
579 1.135 matt const int cancelled = l->l_flag & L_CANCELLED;
580 1.135 matt l->l_flag &= ~L_CANCELLED;
581 1.135 matt if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
582 1.26 cgd #ifdef KTRACE
583 1.135 matt if (KTRPOINT(p, KTR_CSW))
584 1.135 matt ktrcsw(p, 0, 0);
585 1.26 cgd #endif
586 1.135 matt if (relock && interlock != NULL)
587 1.135 matt simple_lock(interlock);
588 1.135 matt /*
589 1.135 matt * If this sleep was canceled, don't let the syscall
590 1.135 matt * restart.
591 1.135 matt */
592 1.135 matt if (cancelled ||
593 1.135 matt (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
594 1.135 matt return (EINTR);
595 1.135 matt return (ERESTART);
596 1.135 matt }
597 1.26 cgd }
598 1.126 pk
599 1.126 pk #ifdef KTRACE
600 1.126 pk if (KTRPOINT(p, KTR_CSW))
601 1.132 fvdl ktrcsw(p, 0, 0);
602 1.126 pk #endif
603 1.126 pk if (relock && interlock != NULL)
604 1.126 pk simple_lock(interlock);
605 1.126 pk
606 1.122 thorpej /* XXXNJW this is very much a kluge.
607 1.130 nathanw * revisit. a better way of preventing looping/hanging syscalls like
608 1.122 thorpej * wait4() and _lwp_wait() from wedging an exiting process
609 1.122 thorpej * would be preferred.
610 1.122 thorpej */
611 1.137 itojun if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
612 1.122 thorpej return (EINTR);
613 1.26 cgd return (0);
614 1.26 cgd }
615 1.26 cgd
616 1.26 cgd /*
617 1.26 cgd * Implement timeout for tsleep.
618 1.26 cgd * If process hasn't been awakened (wchan non-zero),
619 1.26 cgd * set timeout flag and undo the sleep. If proc
620 1.26 cgd * is stopped, just unsleep so it will remain stopped.
621 1.26 cgd */
622 1.26 cgd void
623 1.77 thorpej endtsleep(void *arg)
624 1.26 cgd {
625 1.122 thorpej struct lwp *l;
626 1.26 cgd int s;
627 1.26 cgd
628 1.122 thorpej l = (struct lwp *)arg;
629 1.83 thorpej SCHED_LOCK(s);
630 1.122 thorpej if (l->l_wchan) {
631 1.122 thorpej if (l->l_stat == LSSLEEP)
632 1.122 thorpej setrunnable(l);
633 1.26 cgd else
634 1.122 thorpej unsleep(l);
635 1.122 thorpej l->l_flag |= L_TIMEOUT;
636 1.26 cgd }
637 1.83 thorpej SCHED_UNLOCK(s);
638 1.26 cgd }
639 1.26 cgd
640 1.26 cgd /*
641 1.26 cgd * Remove a process from its wait queue
642 1.26 cgd */
643 1.26 cgd void
644 1.122 thorpej unsleep(struct lwp *l)
645 1.26 cgd {
646 1.71 augustss struct slpque *qp;
647 1.122 thorpej struct lwp **hp;
648 1.26 cgd
649 1.83 thorpej SCHED_ASSERT_LOCKED();
650 1.83 thorpej
651 1.122 thorpej if (l->l_wchan) {
652 1.122 thorpej hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
653 1.122 thorpej while (*hp != l)
654 1.122 thorpej hp = &(*hp)->l_forw;
655 1.122 thorpej *hp = l->l_forw;
656 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
657 1.26 cgd qp->sq_tailp = hp;
658 1.122 thorpej l->l_wchan = 0;
659 1.26 cgd }
660 1.26 cgd }
661 1.26 cgd
662 1.139 cl __inline void
663 1.139 cl sa_awaken(struct lwp *l)
664 1.139 cl {
665 1.147 perry
666 1.139 cl SCHED_ASSERT_LOCKED();
667 1.139 cl
668 1.142 cl if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
669 1.139 cl l->l_flag &= ~L_SA_IDLE;
670 1.139 cl }
671 1.139 cl
672 1.26 cgd /*
673 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
674 1.63 thorpej */
675 1.63 thorpej __inline void
676 1.122 thorpej awaken(struct lwp *l)
677 1.63 thorpej {
678 1.63 thorpej
679 1.83 thorpej SCHED_ASSERT_LOCKED();
680 1.130 nathanw
681 1.139 cl if (l->l_proc->p_sa)
682 1.139 cl sa_awaken(l);
683 1.139 cl
684 1.122 thorpej if (l->l_slptime > 1)
685 1.122 thorpej updatepri(l);
686 1.122 thorpej l->l_slptime = 0;
687 1.122 thorpej l->l_stat = LSRUN;
688 1.122 thorpej l->l_proc->p_nrlwps++;
689 1.93 bouyer /*
690 1.93 bouyer * Since curpriority is a user priority, p->p_priority
691 1.119 thorpej * is always better than curpriority on the last CPU on
692 1.119 thorpej * which it ran.
693 1.118 thorpej *
694 1.119 thorpej * XXXSMP See affinity comment in resched_proc().
695 1.93 bouyer */
696 1.122 thorpej if (l->l_flag & L_INMEM) {
697 1.122 thorpej setrunqueue(l);
698 1.122 thorpej KASSERT(l->l_cpu != NULL);
699 1.122 thorpej need_resched(l->l_cpu);
700 1.93 bouyer } else
701 1.93 bouyer sched_wakeup(&proc0);
702 1.83 thorpej }
703 1.83 thorpej
704 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
705 1.83 thorpej void
706 1.83 thorpej sched_unlock_idle(void)
707 1.83 thorpej {
708 1.83 thorpej
709 1.83 thorpej simple_unlock(&sched_lock);
710 1.63 thorpej }
711 1.63 thorpej
712 1.83 thorpej void
713 1.83 thorpej sched_lock_idle(void)
714 1.83 thorpej {
715 1.83 thorpej
716 1.83 thorpej simple_lock(&sched_lock);
717 1.83 thorpej }
718 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
719 1.83 thorpej
720 1.63 thorpej /*
721 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
722 1.26 cgd */
723 1.83 thorpej
724 1.26 cgd void
725 1.149 christos wakeup(__volatile const void *ident)
726 1.26 cgd {
727 1.83 thorpej int s;
728 1.83 thorpej
729 1.83 thorpej SCHED_ASSERT_UNLOCKED();
730 1.83 thorpej
731 1.83 thorpej SCHED_LOCK(s);
732 1.83 thorpej sched_wakeup(ident);
733 1.83 thorpej SCHED_UNLOCK(s);
734 1.83 thorpej }
735 1.83 thorpej
736 1.83 thorpej void
737 1.149 christos sched_wakeup(__volatile const void *ident)
738 1.83 thorpej {
739 1.71 augustss struct slpque *qp;
740 1.122 thorpej struct lwp *l, **q;
741 1.26 cgd
742 1.83 thorpej SCHED_ASSERT_LOCKED();
743 1.77 thorpej
744 1.73 thorpej qp = SLPQUE(ident);
745 1.77 thorpej restart:
746 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; ) {
747 1.26 cgd #ifdef DIAGNOSTIC
748 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
749 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
750 1.26 cgd panic("wakeup");
751 1.26 cgd #endif
752 1.122 thorpej if (l->l_wchan == ident) {
753 1.122 thorpej l->l_wchan = 0;
754 1.122 thorpej *q = l->l_forw;
755 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
756 1.26 cgd qp->sq_tailp = q;
757 1.122 thorpej if (l->l_stat == LSSLEEP) {
758 1.122 thorpej awaken(l);
759 1.26 cgd goto restart;
760 1.26 cgd }
761 1.26 cgd } else
762 1.122 thorpej q = &l->l_forw;
763 1.63 thorpej }
764 1.63 thorpej }
765 1.63 thorpej
766 1.63 thorpej /*
767 1.63 thorpej * Make the highest priority process first in line on the specified
768 1.63 thorpej * identifier runnable.
769 1.63 thorpej */
770 1.63 thorpej void
771 1.149 christos wakeup_one(__volatile const void *ident)
772 1.63 thorpej {
773 1.63 thorpej struct slpque *qp;
774 1.122 thorpej struct lwp *l, **q;
775 1.122 thorpej struct lwp *best_sleepp, **best_sleepq;
776 1.122 thorpej struct lwp *best_stopp, **best_stopq;
777 1.63 thorpej int s;
778 1.63 thorpej
779 1.63 thorpej best_sleepp = best_stopp = NULL;
780 1.63 thorpej best_sleepq = best_stopq = NULL;
781 1.63 thorpej
782 1.83 thorpej SCHED_LOCK(s);
783 1.77 thorpej
784 1.73 thorpej qp = SLPQUE(ident);
785 1.77 thorpej
786 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
787 1.63 thorpej #ifdef DIAGNOSTIC
788 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
789 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
790 1.63 thorpej panic("wakeup_one");
791 1.63 thorpej #endif
792 1.122 thorpej if (l->l_wchan == ident) {
793 1.122 thorpej if (l->l_stat == LSSLEEP) {
794 1.63 thorpej if (best_sleepp == NULL ||
795 1.122 thorpej l->l_priority < best_sleepp->l_priority) {
796 1.122 thorpej best_sleepp = l;
797 1.63 thorpej best_sleepq = q;
798 1.63 thorpej }
799 1.63 thorpej } else {
800 1.63 thorpej if (best_stopp == NULL ||
801 1.122 thorpej l->l_priority < best_stopp->l_priority) {
802 1.122 thorpej best_stopp = l;
803 1.63 thorpej best_stopq = q;
804 1.63 thorpej }
805 1.63 thorpej }
806 1.63 thorpej }
807 1.63 thorpej }
808 1.63 thorpej
809 1.63 thorpej /*
810 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
811 1.63 thorpej * process.
812 1.63 thorpej */
813 1.63 thorpej if (best_sleepp != NULL) {
814 1.122 thorpej l = best_sleepp;
815 1.63 thorpej q = best_sleepq;
816 1.63 thorpej } else {
817 1.122 thorpej l = best_stopp;
818 1.63 thorpej q = best_stopq;
819 1.63 thorpej }
820 1.63 thorpej
821 1.122 thorpej if (l != NULL) {
822 1.122 thorpej l->l_wchan = NULL;
823 1.122 thorpej *q = l->l_forw;
824 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
825 1.63 thorpej qp->sq_tailp = q;
826 1.122 thorpej if (l->l_stat == LSSLEEP)
827 1.122 thorpej awaken(l);
828 1.26 cgd }
829 1.83 thorpej SCHED_UNLOCK(s);
830 1.117 gmcgarry }
831 1.117 gmcgarry
832 1.117 gmcgarry /*
833 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
834 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
835 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
836 1.117 gmcgarry */
837 1.117 gmcgarry void
838 1.117 gmcgarry yield(void)
839 1.117 gmcgarry {
840 1.122 thorpej struct lwp *l = curlwp;
841 1.117 gmcgarry int s;
842 1.117 gmcgarry
843 1.117 gmcgarry SCHED_LOCK(s);
844 1.122 thorpej l->l_priority = l->l_usrpri;
845 1.122 thorpej l->l_stat = LSRUN;
846 1.122 thorpej setrunqueue(l);
847 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nvcsw++;
848 1.122 thorpej mi_switch(l, NULL);
849 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
850 1.117 gmcgarry splx(s);
851 1.69 thorpej }
852 1.69 thorpej
853 1.69 thorpej /*
854 1.69 thorpej * General preemption call. Puts the current process back on its run queue
855 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
856 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
857 1.69 thorpej * criteria.
858 1.69 thorpej */
859 1.122 thorpej
860 1.69 thorpej void
861 1.122 thorpej preempt(int more)
862 1.69 thorpej {
863 1.122 thorpej struct lwp *l = curlwp;
864 1.122 thorpej int r, s;
865 1.69 thorpej
866 1.83 thorpej SCHED_LOCK(s);
867 1.122 thorpej l->l_priority = l->l_usrpri;
868 1.122 thorpej l->l_stat = LSRUN;
869 1.122 thorpej setrunqueue(l);
870 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nivcsw++;
871 1.122 thorpej r = mi_switch(l, NULL);
872 1.83 thorpej SCHED_ASSERT_UNLOCKED();
873 1.69 thorpej splx(s);
874 1.122 thorpej if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
875 1.122 thorpej sa_preempt(l);
876 1.69 thorpej }
877 1.69 thorpej
878 1.69 thorpej /*
879 1.72 thorpej * The machine independent parts of context switch.
880 1.86 thorpej * Must be called at splsched() (no higher!) and with
881 1.86 thorpej * the sched_lock held.
882 1.122 thorpej * Switch to "new" if non-NULL, otherwise let cpu_switch choose
883 1.122 thorpej * the next lwp.
884 1.130 nathanw *
885 1.122 thorpej * Returns 1 if another process was actually run.
886 1.26 cgd */
887 1.122 thorpej int
888 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
889 1.26 cgd {
890 1.76 thorpej struct schedstate_percpu *spc;
891 1.71 augustss struct rlimit *rlim;
892 1.71 augustss long s, u;
893 1.26 cgd struct timeval tv;
894 1.144 yamt int hold_count;
895 1.122 thorpej struct proc *p = l->l_proc;
896 1.122 thorpej int retval;
897 1.26 cgd
898 1.83 thorpej SCHED_ASSERT_LOCKED();
899 1.83 thorpej
900 1.90 sommerfe /*
901 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
902 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
903 1.90 sommerfe * selects a new process and removes it from the run queue.
904 1.90 sommerfe */
905 1.144 yamt hold_count = KERNEL_LOCK_RELEASE_ALL();
906 1.85 sommerfe
907 1.122 thorpej KDASSERT(l->l_cpu != NULL);
908 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
909 1.113 gmcgarry
910 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
911 1.76 thorpej
912 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
913 1.82 thorpej spinlock_switchcheck();
914 1.82 thorpej #endif
915 1.54 chs #ifdef LOCKDEBUG
916 1.81 thorpej simple_lock_switchcheck();
917 1.50 fvdl #endif
918 1.81 thorpej
919 1.26 cgd /*
920 1.26 cgd * Compute the amount of time during which the current
921 1.113 gmcgarry * process was running.
922 1.26 cgd */
923 1.26 cgd microtime(&tv);
924 1.130 nathanw u = p->p_rtime.tv_usec +
925 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
926 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
927 1.26 cgd if (u < 0) {
928 1.26 cgd u += 1000000;
929 1.26 cgd s--;
930 1.26 cgd } else if (u >= 1000000) {
931 1.26 cgd u -= 1000000;
932 1.26 cgd s++;
933 1.26 cgd }
934 1.114 gmcgarry p->p_rtime.tv_usec = u;
935 1.114 gmcgarry p->p_rtime.tv_sec = s;
936 1.26 cgd
937 1.26 cgd /*
938 1.141 wiz * Check if the process exceeds its CPU resource allocation.
939 1.26 cgd * If over max, kill it. In any case, if it has run for more
940 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
941 1.26 cgd */
942 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
943 1.26 cgd if (s >= rlim->rlim_cur) {
944 1.100 sommerfe /*
945 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
946 1.100 sommerfe * use sched_psignal.
947 1.100 sommerfe */
948 1.26 cgd if (s >= rlim->rlim_max)
949 1.100 sommerfe sched_psignal(p, SIGKILL);
950 1.26 cgd else {
951 1.100 sommerfe sched_psignal(p, SIGXCPU);
952 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
953 1.26 cgd rlim->rlim_cur += 5;
954 1.26 cgd }
955 1.26 cgd }
956 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
957 1.77 thorpej p->p_nice == NZERO) {
958 1.39 ws p->p_nice = autoniceval + NZERO;
959 1.122 thorpej resetpriority(l);
960 1.26 cgd }
961 1.69 thorpej
962 1.69 thorpej /*
963 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
964 1.69 thorpej * scheduling flags.
965 1.69 thorpej */
966 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
967 1.109 yamt
968 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
969 1.124 yamt kstack_check_magic(l);
970 1.109 yamt #endif
971 1.26 cgd
972 1.113 gmcgarry /*
973 1.114 gmcgarry * If we are using h/w performance counters, save context.
974 1.113 gmcgarry */
975 1.114 gmcgarry #if PERFCTRS
976 1.114 gmcgarry if (PMC_ENABLED(p))
977 1.114 gmcgarry pmc_save_context(p);
978 1.110 briggs #endif
979 1.113 gmcgarry
980 1.113 gmcgarry /*
981 1.114 gmcgarry * Switch to the new current process. When we
982 1.114 gmcgarry * run again, we'll return back here.
983 1.113 gmcgarry */
984 1.114 gmcgarry uvmexp.swtch++;
985 1.122 thorpej if (newl == NULL) {
986 1.122 thorpej retval = cpu_switch(l, NULL);
987 1.122 thorpej } else {
988 1.122 thorpej remrunqueue(newl);
989 1.122 thorpej cpu_switchto(l, newl);
990 1.122 thorpej retval = 0;
991 1.122 thorpej }
992 1.110 briggs
993 1.110 briggs /*
994 1.114 gmcgarry * If we are using h/w performance counters, restore context.
995 1.26 cgd */
996 1.114 gmcgarry #if PERFCTRS
997 1.114 gmcgarry if (PMC_ENABLED(p))
998 1.114 gmcgarry pmc_restore_context(p);
999 1.114 gmcgarry #endif
1000 1.110 briggs
1001 1.110 briggs /*
1002 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
1003 1.114 gmcgarry * resuming us.
1004 1.110 briggs */
1005 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
1006 1.83 thorpej
1007 1.83 thorpej /*
1008 1.76 thorpej * We're running again; record our new start time. We might
1009 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
1010 1.76 thorpej * schedstate_percpu pointer.
1011 1.76 thorpej */
1012 1.122 thorpej KDASSERT(l->l_cpu != NULL);
1013 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
1014 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1015 1.85 sommerfe
1016 1.90 sommerfe /*
1017 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
1018 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
1019 1.90 sommerfe * we reacquire the interlock.
1020 1.90 sommerfe */
1021 1.144 yamt KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1022 1.122 thorpej
1023 1.122 thorpej return retval;
1024 1.26 cgd }
1025 1.26 cgd
1026 1.26 cgd /*
1027 1.26 cgd * Initialize the (doubly-linked) run queues
1028 1.26 cgd * to be empty.
1029 1.26 cgd */
1030 1.26 cgd void
1031 1.26 cgd rqinit()
1032 1.26 cgd {
1033 1.71 augustss int i;
1034 1.26 cgd
1035 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
1036 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1037 1.122 thorpej (struct lwp *)&sched_qs[i];
1038 1.26 cgd }
1039 1.26 cgd
1040 1.119 thorpej static __inline void
1041 1.122 thorpej resched_proc(struct lwp *l, u_char pri)
1042 1.119 thorpej {
1043 1.119 thorpej struct cpu_info *ci;
1044 1.119 thorpej
1045 1.119 thorpej /*
1046 1.119 thorpej * XXXSMP
1047 1.122 thorpej * Since l->l_cpu persists across a context switch,
1048 1.119 thorpej * this gives us *very weak* processor affinity, in
1049 1.119 thorpej * that we notify the CPU on which the process last
1050 1.119 thorpej * ran that it should try to switch.
1051 1.119 thorpej *
1052 1.119 thorpej * This does not guarantee that the process will run on
1053 1.119 thorpej * that processor next, because another processor might
1054 1.119 thorpej * grab it the next time it performs a context switch.
1055 1.119 thorpej *
1056 1.119 thorpej * This also does not handle the case where its last
1057 1.119 thorpej * CPU is running a higher-priority process, but every
1058 1.119 thorpej * other CPU is running a lower-priority process. There
1059 1.119 thorpej * are ways to handle this situation, but they're not
1060 1.119 thorpej * currently very pretty, and we also need to weigh the
1061 1.119 thorpej * cost of moving a process from one CPU to another.
1062 1.119 thorpej *
1063 1.119 thorpej * XXXSMP
1064 1.119 thorpej * There is also the issue of locking the other CPU's
1065 1.119 thorpej * sched state, which we currently do not do.
1066 1.119 thorpej */
1067 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1068 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
1069 1.119 thorpej need_resched(ci);
1070 1.119 thorpej }
1071 1.119 thorpej
1072 1.26 cgd /*
1073 1.26 cgd * Change process state to be runnable,
1074 1.26 cgd * placing it on the run queue if it is in memory,
1075 1.26 cgd * and awakening the swapper if it isn't in memory.
1076 1.26 cgd */
1077 1.26 cgd void
1078 1.122 thorpej setrunnable(struct lwp *l)
1079 1.26 cgd {
1080 1.122 thorpej struct proc *p = l->l_proc;
1081 1.26 cgd
1082 1.83 thorpej SCHED_ASSERT_LOCKED();
1083 1.83 thorpej
1084 1.122 thorpej switch (l->l_stat) {
1085 1.26 cgd case 0:
1086 1.122 thorpej case LSRUN:
1087 1.122 thorpej case LSONPROC:
1088 1.122 thorpej case LSZOMB:
1089 1.122 thorpej case LSDEAD:
1090 1.26 cgd default:
1091 1.127 matt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1092 1.122 thorpej case LSSTOP:
1093 1.33 mycroft /*
1094 1.33 mycroft * If we're being traced (possibly because someone attached us
1095 1.33 mycroft * while we were stopped), check for a signal from the debugger.
1096 1.33 mycroft */
1097 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1098 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1099 1.101 thorpej CHECKSIGS(p);
1100 1.53 mycroft }
1101 1.122 thorpej case LSSLEEP:
1102 1.122 thorpej unsleep(l); /* e.g. when sending signals */
1103 1.26 cgd break;
1104 1.26 cgd
1105 1.122 thorpej case LSIDL:
1106 1.122 thorpej break;
1107 1.122 thorpej case LSSUSPENDED:
1108 1.26 cgd break;
1109 1.26 cgd }
1110 1.139 cl
1111 1.139 cl if (l->l_proc->p_sa)
1112 1.139 cl sa_awaken(l);
1113 1.139 cl
1114 1.122 thorpej l->l_stat = LSRUN;
1115 1.122 thorpej p->p_nrlwps++;
1116 1.122 thorpej
1117 1.122 thorpej if (l->l_flag & L_INMEM)
1118 1.122 thorpej setrunqueue(l);
1119 1.122 thorpej
1120 1.122 thorpej if (l->l_slptime > 1)
1121 1.122 thorpej updatepri(l);
1122 1.122 thorpej l->l_slptime = 0;
1123 1.122 thorpej if ((l->l_flag & L_INMEM) == 0)
1124 1.83 thorpej sched_wakeup((caddr_t)&proc0);
1125 1.119 thorpej else
1126 1.122 thorpej resched_proc(l, l->l_priority);
1127 1.26 cgd }
1128 1.26 cgd
1129 1.26 cgd /*
1130 1.26 cgd * Compute the priority of a process when running in user mode.
1131 1.26 cgd * Arrange to reschedule if the resulting priority is better
1132 1.26 cgd * than that of the current process.
1133 1.26 cgd */
1134 1.26 cgd void
1135 1.122 thorpej resetpriority(struct lwp *l)
1136 1.26 cgd {
1137 1.71 augustss unsigned int newpriority;
1138 1.122 thorpej struct proc *p = l->l_proc;
1139 1.26 cgd
1140 1.83 thorpej SCHED_ASSERT_LOCKED();
1141 1.83 thorpej
1142 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1143 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
1144 1.26 cgd newpriority = min(newpriority, MAXPRI);
1145 1.122 thorpej l->l_usrpri = newpriority;
1146 1.122 thorpej resched_proc(l, l->l_usrpri);
1147 1.122 thorpej }
1148 1.122 thorpej
1149 1.130 nathanw /*
1150 1.122 thorpej * Recompute priority for all LWPs in a process.
1151 1.122 thorpej */
1152 1.122 thorpej void
1153 1.122 thorpej resetprocpriority(struct proc *p)
1154 1.122 thorpej {
1155 1.122 thorpej struct lwp *l;
1156 1.122 thorpej
1157 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling)
1158 1.122 thorpej resetpriority(l);
1159 1.55 ross }
1160 1.55 ross
1161 1.55 ross /*
1162 1.56 ross * We adjust the priority of the current process. The priority of a process
1163 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1164 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1165 1.56 ross * will compute a different value each time p_estcpu increases. This can
1166 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1167 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
1168 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1169 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1170 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1171 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1172 1.56 ross * processes which haven't run much recently, and to round-robin among other
1173 1.56 ross * processes.
1174 1.55 ross */
1175 1.55 ross
1176 1.55 ross void
1177 1.122 thorpej schedclock(struct lwp *l)
1178 1.55 ross {
1179 1.122 thorpej struct proc *p = l->l_proc;
1180 1.83 thorpej int s;
1181 1.77 thorpej
1182 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1183 1.83 thorpej SCHED_LOCK(s);
1184 1.122 thorpej resetpriority(l);
1185 1.83 thorpej SCHED_UNLOCK(s);
1186 1.130 nathanw
1187 1.122 thorpej if (l->l_priority >= PUSER)
1188 1.122 thorpej l->l_priority = l->l_usrpri;
1189 1.26 cgd }
1190 1.94 bouyer
1191 1.94 bouyer void
1192 1.94 bouyer suspendsched()
1193 1.94 bouyer {
1194 1.122 thorpej struct lwp *l;
1195 1.97 enami int s;
1196 1.94 bouyer
1197 1.94 bouyer /*
1198 1.130 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1199 1.122 thorpej * LSSUSPENDED.
1200 1.94 bouyer */
1201 1.95 thorpej proclist_lock_read();
1202 1.95 thorpej SCHED_LOCK(s);
1203 1.122 thorpej LIST_FOREACH(l, &alllwp, l_list) {
1204 1.122 thorpej if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1205 1.94 bouyer continue;
1206 1.122 thorpej
1207 1.122 thorpej switch (l->l_stat) {
1208 1.122 thorpej case LSRUN:
1209 1.122 thorpej l->l_proc->p_nrlwps--;
1210 1.122 thorpej if ((l->l_flag & L_INMEM) != 0)
1211 1.122 thorpej remrunqueue(l);
1212 1.97 enami /* FALLTHROUGH */
1213 1.122 thorpej case LSSLEEP:
1214 1.122 thorpej l->l_stat = LSSUSPENDED;
1215 1.97 enami break;
1216 1.122 thorpej case LSONPROC:
1217 1.97 enami /*
1218 1.97 enami * XXX SMP: we need to deal with processes on
1219 1.97 enami * others CPU !
1220 1.97 enami */
1221 1.97 enami break;
1222 1.97 enami default:
1223 1.97 enami break;
1224 1.94 bouyer }
1225 1.94 bouyer }
1226 1.94 bouyer SCHED_UNLOCK(s);
1227 1.97 enami proclist_unlock_read();
1228 1.94 bouyer }
1229 1.113 gmcgarry
1230 1.113 gmcgarry /*
1231 1.151 yamt * scheduler_fork_hook:
1232 1.151 yamt *
1233 1.151 yamt * Inherit the parent's scheduler history.
1234 1.151 yamt */
1235 1.151 yamt void
1236 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1237 1.151 yamt {
1238 1.151 yamt
1239 1.151 yamt child->p_estcpu = parent->p_estcpu;
1240 1.151 yamt }
1241 1.151 yamt
1242 1.151 yamt /*
1243 1.151 yamt * scheduler_wait_hook:
1244 1.151 yamt *
1245 1.151 yamt * Chargeback parents for the sins of their children.
1246 1.151 yamt */
1247 1.151 yamt void
1248 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1249 1.151 yamt {
1250 1.151 yamt
1251 1.151 yamt /* XXX Only if parent != init?? */
1252 1.151 yamt parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
1253 1.151 yamt }
1254 1.151 yamt
1255 1.151 yamt /*
1256 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1257 1.113 gmcgarry * routines can override these.
1258 1.113 gmcgarry */
1259 1.113 gmcgarry
1260 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1261 1.115 nisimura
1262 1.130 nathanw /*
1263 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1264 1.134 matt * than the traditional LSB ordering.
1265 1.134 matt */
1266 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1267 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1268 1.134 matt #else
1269 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1270 1.134 matt #endif
1271 1.134 matt
1272 1.134 matt /*
1273 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1274 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1275 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1276 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1277 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1278 1.115 nisimura * available queues.
1279 1.130 nathanw */
1280 1.113 gmcgarry
1281 1.146 matt #ifdef RQDEBUG
1282 1.146 matt static void
1283 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1284 1.146 matt {
1285 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1286 1.146 matt struct lwp *l2;
1287 1.146 matt int found = 0;
1288 1.146 matt int die = 0;
1289 1.146 matt int empty = 1;
1290 1.146 matt for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
1291 1.146 matt if (l2->l_stat != LSRUN) {
1292 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1293 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1294 1.146 matt }
1295 1.146 matt if (l2->l_back->l_forw != l2) {
1296 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1297 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1298 1.146 matt l2->l_back->l_forw);
1299 1.146 matt die = 1;
1300 1.146 matt }
1301 1.146 matt if (l2->l_forw->l_back != l2) {
1302 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1303 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1304 1.146 matt l2->l_forw->l_back);
1305 1.146 matt die = 1;
1306 1.146 matt }
1307 1.146 matt if (l2 == l)
1308 1.146 matt found = 1;
1309 1.146 matt empty = 0;
1310 1.146 matt }
1311 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1312 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1313 1.146 matt whichq, rq);
1314 1.146 matt die = 1;
1315 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1316 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1317 1.146 matt "run-queue %p\n", whichq, rq);
1318 1.146 matt die = 1;
1319 1.146 matt }
1320 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1321 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1322 1.146 matt whichq, l);
1323 1.146 matt die = 1;
1324 1.146 matt }
1325 1.146 matt if (l != NULL && empty) {
1326 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1327 1.146 matt "active lwp %p\n", whichq, rq, l);
1328 1.146 matt die = 1;
1329 1.146 matt }
1330 1.146 matt if (l != NULL && !found) {
1331 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1332 1.146 matt whichq, l, rq);
1333 1.146 matt die = 1;
1334 1.146 matt }
1335 1.146 matt if (die)
1336 1.146 matt panic("checkrunqueue: inconsistency found");
1337 1.146 matt }
1338 1.146 matt #endif /* RQDEBUG */
1339 1.146 matt
1340 1.113 gmcgarry void
1341 1.122 thorpej setrunqueue(struct lwp *l)
1342 1.113 gmcgarry {
1343 1.113 gmcgarry struct prochd *rq;
1344 1.122 thorpej struct lwp *prev;
1345 1.152 yamt const int whichq = l->l_priority / PPQ;
1346 1.113 gmcgarry
1347 1.146 matt #ifdef RQDEBUG
1348 1.146 matt checkrunqueue(whichq, NULL);
1349 1.146 matt #endif
1350 1.113 gmcgarry #ifdef DIAGNOSTIC
1351 1.122 thorpej if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1352 1.113 gmcgarry panic("setrunqueue");
1353 1.113 gmcgarry #endif
1354 1.134 matt sched_whichqs |= RQMASK(whichq);
1355 1.113 gmcgarry rq = &sched_qs[whichq];
1356 1.113 gmcgarry prev = rq->ph_rlink;
1357 1.122 thorpej l->l_forw = (struct lwp *)rq;
1358 1.122 thorpej rq->ph_rlink = l;
1359 1.122 thorpej prev->l_forw = l;
1360 1.122 thorpej l->l_back = prev;
1361 1.146 matt #ifdef RQDEBUG
1362 1.146 matt checkrunqueue(whichq, l);
1363 1.146 matt #endif
1364 1.113 gmcgarry }
1365 1.113 gmcgarry
1366 1.113 gmcgarry void
1367 1.122 thorpej remrunqueue(struct lwp *l)
1368 1.113 gmcgarry {
1369 1.122 thorpej struct lwp *prev, *next;
1370 1.152 yamt const int whichq = l->l_priority / PPQ;
1371 1.146 matt #ifdef RQDEBUG
1372 1.146 matt checkrunqueue(whichq, l);
1373 1.146 matt #endif
1374 1.113 gmcgarry #ifdef DIAGNOSTIC
1375 1.134 matt if (((sched_whichqs & RQMASK(whichq)) == 0))
1376 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1377 1.113 gmcgarry #endif
1378 1.122 thorpej prev = l->l_back;
1379 1.122 thorpej l->l_back = NULL;
1380 1.122 thorpej next = l->l_forw;
1381 1.122 thorpej prev->l_forw = next;
1382 1.122 thorpej next->l_back = prev;
1383 1.113 gmcgarry if (prev == next)
1384 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1385 1.146 matt #ifdef RQDEBUG
1386 1.146 matt checkrunqueue(whichq, NULL);
1387 1.146 matt #endif
1388 1.113 gmcgarry }
1389 1.113 gmcgarry
1390 1.134 matt #undef RQMASK
1391 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1392