Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.153
      1  1.153      yamt /*	$NetBSD: kern_synch.c,v 1.153 2005/11/01 09:07:53 yamt Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.148   mycroft  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.63   thorpej  * NASA Ames Research Center.
     10  1.148   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11  1.148   mycroft  * by Charles M. Hannum.
     12   1.63   thorpej  *
     13   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14   1.63   thorpej  * modification, are permitted provided that the following conditions
     15   1.63   thorpej  * are met:
     16   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     22   1.63   thorpej  *    must display the following acknowledgement:
     23   1.63   thorpej  *	This product includes software developed by the NetBSD
     24   1.63   thorpej  *	Foundation, Inc. and its contributors.
     25   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     27   1.63   thorpej  *    from this software without specific prior written permission.
     28   1.63   thorpej  *
     29   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40   1.63   thorpej  */
     41   1.26       cgd 
     42   1.26       cgd /*-
     43   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     45   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     46   1.26       cgd  * All or some portions of this file are derived from material licensed
     47   1.26       cgd  * to the University of California by American Telephone and Telegraph
     48   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     50   1.26       cgd  *
     51   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     52   1.26       cgd  * modification, are permitted provided that the following conditions
     53   1.26       cgd  * are met:
     54   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     55   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     56   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     58   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     59  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     60   1.26       cgd  *    may be used to endorse or promote products derived from this software
     61   1.26       cgd  *    without specific prior written permission.
     62   1.26       cgd  *
     63   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.26       cgd  * SUCH DAMAGE.
     74   1.26       cgd  *
     75   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76   1.26       cgd  */
     77  1.106     lukem 
     78  1.106     lukem #include <sys/cdefs.h>
     79  1.153      yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.153 2005/11/01 09:07:53 yamt Exp $");
     80   1.48       mrg 
     81   1.52  jonathan #include "opt_ddb.h"
     82   1.51   thorpej #include "opt_ktrace.h"
     83  1.109      yamt #include "opt_kstack.h"
     84   1.82   thorpej #include "opt_lockdebug.h"
     85   1.83   thorpej #include "opt_multiprocessor.h"
     86  1.110    briggs #include "opt_perfctrs.h"
     87   1.26       cgd 
     88   1.26       cgd #include <sys/param.h>
     89   1.26       cgd #include <sys/systm.h>
     90   1.68   thorpej #include <sys/callout.h>
     91   1.26       cgd #include <sys/proc.h>
     92   1.26       cgd #include <sys/kernel.h>
     93   1.26       cgd #include <sys/buf.h>
     94  1.111    briggs #if defined(PERFCTRS)
     95  1.110    briggs #include <sys/pmc.h>
     96  1.111    briggs #endif
     97   1.26       cgd #include <sys/signalvar.h>
     98   1.26       cgd #include <sys/resourcevar.h>
     99   1.55      ross #include <sys/sched.h>
    100  1.122   thorpej #include <sys/sa.h>
    101  1.122   thorpej #include <sys/savar.h>
    102   1.47       mrg 
    103   1.47       mrg #include <uvm/uvm_extern.h>
    104   1.47       mrg 
    105   1.26       cgd #ifdef KTRACE
    106   1.26       cgd #include <sys/ktrace.h>
    107   1.26       cgd #endif
    108   1.26       cgd 
    109   1.26       cgd #include <machine/cpu.h>
    110   1.34  christos 
    111   1.26       cgd int	lbolt;			/* once a second sleep address */
    112   1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113   1.26       cgd 
    114   1.73   thorpej /*
    115  1.152      yamt  * Sleep queues.
    116  1.152      yamt  *
    117  1.152      yamt  * We're only looking at 7 bits of the address; everything is
    118  1.152      yamt  * aligned to 4, lots of things are aligned to greater powers
    119  1.152      yamt  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    120  1.152      yamt  */
    121  1.152      yamt #define	SLPQUE_TABLESIZE	128
    122  1.152      yamt #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    123  1.152      yamt 
    124  1.152      yamt #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    125  1.152      yamt 
    126  1.152      yamt /*
    127   1.73   thorpej  * The global scheduler state.
    128   1.73   thorpej  */
    129   1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    130   1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    131   1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    132   1.73   thorpej 
    133   1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    134   1.83   thorpej 
    135   1.77   thorpej void schedcpu(void *);
    136  1.122   thorpej void updatepri(struct lwp *);
    137   1.77   thorpej void endtsleep(void *);
    138   1.34  christos 
    139  1.139        cl __inline void sa_awaken(struct lwp *);
    140  1.122   thorpej __inline void awaken(struct lwp *);
    141   1.63   thorpej 
    142  1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    143   1.68   thorpej 
    144  1.122   thorpej 
    145  1.122   thorpej 
    146   1.26       cgd /*
    147   1.26       cgd  * Force switch among equal priority processes every 100ms.
    148   1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    149   1.26       cgd  */
    150   1.26       cgd /* ARGSUSED */
    151   1.26       cgd void
    152   1.89  sommerfe roundrobin(struct cpu_info *ci)
    153   1.26       cgd {
    154   1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155   1.26       cgd 
    156   1.88  sommerfe 	spc->spc_rrticks = rrticks;
    157  1.130   nathanw 
    158  1.122   thorpej 	if (curlwp != NULL) {
    159   1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    160   1.69   thorpej 			/*
    161   1.69   thorpej 			 * The process has already been through a roundrobin
    162   1.69   thorpej 			 * without switching and may be hogging the CPU.
    163   1.69   thorpej 			 * Indicate that the process should yield.
    164   1.69   thorpej 			 */
    165   1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    166   1.69   thorpej 		} else
    167   1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    168   1.69   thorpej 	}
    169   1.87   thorpej 	need_resched(curcpu());
    170   1.26       cgd }
    171   1.26       cgd 
    172  1.153      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    173  1.153      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    174  1.153      yamt 
    175  1.153      yamt #define	ESTCPU_SHIFT	11
    176  1.153      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    177  1.153      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    178  1.153      yamt 
    179   1.26       cgd /*
    180   1.26       cgd  * Constants for digital decay and forget:
    181   1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    182   1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    183   1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    184   1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    185   1.26       cgd  *
    186   1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    187   1.26       cgd  *
    188   1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    189   1.26       cgd  * That is, the system wants to compute a value of decay such
    190   1.26       cgd  * that the following for loop:
    191   1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    192   1.26       cgd  * 		p_estcpu *= decay;
    193   1.26       cgd  * will compute
    194   1.26       cgd  * 	p_estcpu *= 0.1;
    195   1.26       cgd  * for all values of loadavg:
    196   1.26       cgd  *
    197   1.26       cgd  * Mathematically this loop can be expressed by saying:
    198   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    199   1.26       cgd  *
    200   1.26       cgd  * The system computes decay as:
    201   1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    202   1.26       cgd  *
    203   1.26       cgd  * We wish to prove that the system's computation of decay
    204   1.26       cgd  * will always fulfill the equation:
    205   1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    206   1.26       cgd  *
    207   1.26       cgd  * If we compute b as:
    208   1.26       cgd  * 	b = 2 * loadavg
    209   1.26       cgd  * then
    210   1.26       cgd  * 	decay = b / (b + 1)
    211   1.26       cgd  *
    212   1.26       cgd  * We now need to prove two things:
    213   1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    214   1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    215  1.130   nathanw  *
    216   1.26       cgd  * Facts:
    217   1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    218   1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    219   1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    220   1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    221   1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    222   1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    223   1.26       cgd  *         ln(.1) =~ -2.30
    224   1.26       cgd  *
    225   1.26       cgd  * Proof of (1):
    226   1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    227   1.26       cgd  *	solving for factor,
    228   1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    229   1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    230   1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    231   1.26       cgd  *
    232   1.26       cgd  * Proof of (2):
    233   1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    234   1.26       cgd  *	solving for power,
    235   1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    236   1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    237   1.26       cgd  *
    238   1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    239   1.26       cgd  *      loadav: 1       2       3       4
    240   1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    241   1.26       cgd  */
    242   1.26       cgd 
    243   1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    244   1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    245  1.153      yamt 
    246  1.153      yamt static fixpt_t
    247  1.153      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    248  1.153      yamt {
    249  1.153      yamt 
    250  1.153      yamt 	if (estcpu == 0) {
    251  1.153      yamt 		return 0;
    252  1.153      yamt 	}
    253  1.153      yamt 
    254  1.153      yamt #if !defined(_LP64)
    255  1.153      yamt 	/* avoid 64bit arithmetics. */
    256  1.153      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    257  1.153      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    258  1.153      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    259  1.153      yamt 	}
    260  1.153      yamt #endif /* !defined(_LP64) */
    261  1.153      yamt 
    262  1.153      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    263  1.153      yamt }
    264   1.26       cgd 
    265   1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    266   1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    267   1.26       cgd 
    268   1.26       cgd /*
    269   1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    270   1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    271   1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    272   1.26       cgd  *
    273   1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    274   1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    275   1.26       cgd  *
    276   1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    277   1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    278   1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    279   1.26       cgd  */
    280   1.26       cgd #define	CCPU_SHIFT	11
    281   1.26       cgd 
    282   1.26       cgd /*
    283   1.26       cgd  * Recompute process priorities, every hz ticks.
    284   1.26       cgd  */
    285   1.26       cgd /* ARGSUSED */
    286   1.26       cgd void
    287   1.77   thorpej schedcpu(void *arg)
    288   1.26       cgd {
    289   1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    290  1.122   thorpej 	struct lwp *l;
    291   1.71  augustss 	struct proc *p;
    292  1.122   thorpej 	int s, minslp;
    293   1.66      ross 	int clkhz;
    294   1.26       cgd 
    295   1.62   thorpej 	proclist_lock_read();
    296  1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    297   1.26       cgd 		/*
    298   1.26       cgd 		 * Increment time in/out of memory and sleep time
    299   1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    300   1.26       cgd 		 * (remember them?) overflow takes 45 days.
    301   1.26       cgd 		 */
    302  1.122   thorpej 		minslp = 2;
    303  1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    304  1.122   thorpej 			l->l_swtime++;
    305  1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    306  1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    307  1.122   thorpej 				l->l_slptime++;
    308  1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    309  1.122   thorpej 			} else
    310  1.122   thorpej 				minslp = 0;
    311  1.122   thorpej 		}
    312   1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    313   1.26       cgd 		/*
    314   1.26       cgd 		 * If the process has slept the entire second,
    315   1.26       cgd 		 * stop recalculating its priority until it wakes up.
    316   1.26       cgd 		 */
    317  1.122   thorpej 		if (minslp > 1)
    318   1.26       cgd 			continue;
    319   1.26       cgd 		s = splstatclock();	/* prevent state changes */
    320   1.26       cgd 		/*
    321   1.26       cgd 		 * p_pctcpu is only for ps.
    322   1.26       cgd 		 */
    323   1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    324   1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    325   1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    326   1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    327   1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    328   1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    329   1.26       cgd #else
    330   1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    331   1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    332   1.26       cgd #endif
    333   1.26       cgd 		p->p_cpticks = 0;
    334  1.153      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    335  1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    336  1.120        pk 		SCHED_LOCK(s);
    337  1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338  1.122   thorpej 			if (l->l_slptime > 1)
    339  1.122   thorpej 				continue;
    340  1.122   thorpej 			resetpriority(l);
    341  1.122   thorpej 			if (l->l_priority >= PUSER) {
    342  1.122   thorpej 				if (l->l_stat == LSRUN &&
    343  1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    344  1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    345  1.122   thorpej 					remrunqueue(l);
    346  1.122   thorpej 					l->l_priority = l->l_usrpri;
    347  1.122   thorpej 					setrunqueue(l);
    348  1.122   thorpej 				} else
    349  1.122   thorpej 					l->l_priority = l->l_usrpri;
    350  1.122   thorpej 			}
    351   1.26       cgd 		}
    352  1.120        pk 		SCHED_UNLOCK(s);
    353   1.26       cgd 	}
    354   1.61   thorpej 	proclist_unlock_read();
    355   1.47       mrg 	uvm_meter();
    356   1.67      fvdl 	wakeup((caddr_t)&lbolt);
    357  1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    358   1.26       cgd }
    359   1.26       cgd 
    360   1.26       cgd /*
    361   1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    362   1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    363  1.153      yamt  * least six times the loadfactor will decay p_estcpu to less than
    364  1.153      yamt  * (1 << ESTCPU_SHIFT).
    365   1.26       cgd  */
    366   1.26       cgd void
    367  1.122   thorpej updatepri(struct lwp *l)
    368   1.26       cgd {
    369  1.122   thorpej 	struct proc *p = l->l_proc;
    370  1.153      yamt 	fixpt_t newcpu;
    371   1.83   thorpej 	fixpt_t loadfac;
    372   1.83   thorpej 
    373   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    374   1.83   thorpej 
    375   1.83   thorpej 	newcpu = p->p_estcpu;
    376   1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    377   1.26       cgd 
    378  1.122   thorpej 	if (l->l_slptime > 5 * loadfac)
    379  1.122   thorpej 		p->p_estcpu = 0; /* XXX NJWLWP */
    380   1.26       cgd 	else {
    381  1.122   thorpej 		l->l_slptime--;	/* the first time was done in schedcpu */
    382  1.122   thorpej 		while (newcpu && --l->l_slptime)
    383  1.153      yamt 			newcpu = decay_cpu(loadfac, newcpu);
    384   1.55      ross 		p->p_estcpu = newcpu;
    385   1.26       cgd 	}
    386  1.122   thorpej 	resetpriority(l);
    387   1.26       cgd }
    388   1.26       cgd 
    389   1.26       cgd /*
    390   1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    391   1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    392   1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    393   1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    394   1.26       cgd  * This priority will typically be 0, or the lowest priority
    395   1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    396   1.26       cgd  * higher to block network software interrupts after panics.
    397   1.26       cgd  */
    398   1.26       cgd int safepri;
    399   1.26       cgd 
    400   1.26       cgd /*
    401   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    402   1.26       cgd  * performed on the specified identifier.  The process will then be made
    403   1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    404   1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    405   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    406   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    407   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    408   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    409   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    410   1.77   thorpej  *
    411  1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    412   1.77   thorpej  * interlock will be locked before returning back to the caller
    413   1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    414   1.77   thorpej  * interlock will always be unlocked upon return.
    415   1.26       cgd  */
    416   1.26       cgd int
    417  1.149  christos ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
    418   1.77   thorpej     __volatile struct simplelock *interlock)
    419   1.26       cgd {
    420  1.122   thorpej 	struct lwp *l = curlwp;
    421  1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    422   1.71  augustss 	struct slpque *qp;
    423  1.150       chs 	struct sadata_upcall *sau;
    424   1.77   thorpej 	int sig, s;
    425   1.77   thorpej 	int catch = priority & PCATCH;
    426   1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    427  1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    428   1.26       cgd 
    429   1.77   thorpej 	/*
    430   1.77   thorpej 	 * XXXSMP
    431   1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    432   1.77   thorpej 	 * thing to do here really is.
    433  1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    434   1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    435   1.78  sommerfe 	 * how shutdown (barely) works.
    436   1.77   thorpej 	 */
    437  1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    438   1.26       cgd 		/*
    439   1.26       cgd 		 * After a panic, or during autoconfiguration,
    440   1.26       cgd 		 * just give interrupts a chance, then just return;
    441   1.26       cgd 		 * don't run any other procs or panic below,
    442   1.26       cgd 		 * in case this is the idle process and already asleep.
    443   1.26       cgd 		 */
    444   1.42       cgd 		s = splhigh();
    445   1.26       cgd 		splx(safepri);
    446   1.26       cgd 		splx(s);
    447   1.77   thorpej 		if (interlock != NULL && relock == 0)
    448   1.77   thorpej 			simple_unlock(interlock);
    449   1.26       cgd 		return (0);
    450   1.26       cgd 	}
    451   1.78  sommerfe 
    452  1.102   thorpej 	KASSERT(p != NULL);
    453  1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    454   1.42       cgd 
    455   1.42       cgd #ifdef KTRACE
    456   1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    457  1.132      fvdl 		ktrcsw(p, 1, 0);
    458   1.42       cgd #endif
    459   1.77   thorpej 
    460  1.150       chs 	/*
    461  1.150       chs 	 * XXX We need to allocate the sadata_upcall structure here,
    462  1.150       chs 	 * XXX since we can't sleep while waiting for memory inside
    463  1.150       chs 	 * XXX sa_upcall().  It would be nice if we could safely
    464  1.150       chs 	 * XXX allocate the sadata_upcall structure on the stack, here.
    465  1.150       chs 	 */
    466  1.150       chs 	if (l->l_flag & L_SA) {
    467  1.150       chs 		sau = sadata_upcall_alloc(0);
    468  1.150       chs 	} else {
    469  1.150       chs 		sau = NULL;
    470  1.150       chs 	}
    471  1.150       chs 
    472   1.83   thorpej 	SCHED_LOCK(s);
    473   1.42       cgd 
    474   1.26       cgd #ifdef DIAGNOSTIC
    475   1.64   thorpej 	if (ident == NULL)
    476   1.77   thorpej 		panic("ltsleep: ident == NULL");
    477  1.122   thorpej 	if (l->l_stat != LSONPROC)
    478  1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    479  1.122   thorpej 	if (l->l_back != NULL)
    480   1.77   thorpej 		panic("ltsleep: p_back != NULL");
    481   1.26       cgd #endif
    482   1.77   thorpej 
    483  1.122   thorpej 	l->l_wchan = ident;
    484  1.122   thorpej 	l->l_wmesg = wmesg;
    485  1.122   thorpej 	l->l_slptime = 0;
    486  1.122   thorpej 	l->l_priority = priority & PRIMASK;
    487   1.77   thorpej 
    488   1.73   thorpej 	qp = SLPQUE(ident);
    489   1.26       cgd 	if (qp->sq_head == 0)
    490  1.122   thorpej 		qp->sq_head = l;
    491  1.122   thorpej 	else {
    492  1.122   thorpej 		*qp->sq_tailp = l;
    493  1.122   thorpej 	}
    494  1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    495   1.77   thorpej 
    496   1.26       cgd 	if (timo)
    497  1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    498   1.77   thorpej 
    499   1.77   thorpej 	/*
    500   1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    501   1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    502   1.77   thorpej 	 * we do the switch.
    503   1.77   thorpej 	 *
    504   1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    505   1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    506   1.77   thorpej 	 * data structure for the sleep queues at some point.
    507   1.77   thorpej 	 */
    508   1.77   thorpej 	if (interlock != NULL)
    509   1.77   thorpej 		simple_unlock(interlock);
    510   1.77   thorpej 
    511   1.26       cgd 	/*
    512   1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    513   1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    514   1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    515   1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    516   1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    517   1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    518   1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    519   1.26       cgd 	 */
    520   1.26       cgd 	if (catch) {
    521  1.122   thorpej 		l->l_flag |= L_SINTR;
    522  1.137    itojun 		if (((sig = CURSIG(l)) != 0) ||
    523  1.137    itojun 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    524  1.122   thorpej 			if (l->l_wchan != NULL)
    525  1.122   thorpej 				unsleep(l);
    526  1.122   thorpej 			l->l_stat = LSONPROC;
    527   1.83   thorpej 			SCHED_UNLOCK(s);
    528   1.26       cgd 			goto resume;
    529   1.26       cgd 		}
    530  1.122   thorpej 		if (l->l_wchan == NULL) {
    531   1.26       cgd 			catch = 0;
    532   1.83   thorpej 			SCHED_UNLOCK(s);
    533   1.26       cgd 			goto resume;
    534   1.26       cgd 		}
    535   1.26       cgd 	} else
    536   1.26       cgd 		sig = 0;
    537  1.122   thorpej 	l->l_stat = LSSLEEP;
    538  1.122   thorpej 	p->p_nrlwps--;
    539   1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    540   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    541  1.122   thorpej 	if (l->l_flag & L_SA)
    542  1.150       chs 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    543  1.122   thorpej 	else
    544  1.122   thorpej 		mi_switch(l, NULL);
    545   1.83   thorpej 
    546  1.104       chs #if	defined(DDB) && !defined(GPROF)
    547   1.26       cgd 	/* handy breakpoint location after process "wakes" */
    548  1.140    kleink 	__asm(".globl bpendtsleep\nbpendtsleep:");
    549   1.26       cgd #endif
    550  1.122   thorpej 	/*
    551  1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    552  1.122   thorpej 	 * either setrunnable() or awaken().
    553  1.122   thorpej 	 */
    554   1.77   thorpej 
    555   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    556   1.83   thorpej 	splx(s);
    557   1.83   thorpej 
    558   1.77   thorpej  resume:
    559  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    560  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    561  1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    562  1.122   thorpej 
    563  1.122   thorpej 	l->l_flag &= ~L_SINTR;
    564  1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    565  1.135      matt 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    566   1.26       cgd 		if (sig == 0) {
    567   1.26       cgd #ifdef KTRACE
    568   1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    569  1.132      fvdl 				ktrcsw(p, 0, 0);
    570   1.26       cgd #endif
    571   1.77   thorpej 			if (relock && interlock != NULL)
    572   1.77   thorpej 				simple_lock(interlock);
    573   1.26       cgd 			return (EWOULDBLOCK);
    574   1.26       cgd 		}
    575   1.26       cgd 	} else if (timo)
    576  1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    577  1.135      matt 
    578  1.135      matt 	if (catch) {
    579  1.135      matt 		const int cancelled = l->l_flag & L_CANCELLED;
    580  1.135      matt 		l->l_flag &= ~L_CANCELLED;
    581  1.135      matt 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    582   1.26       cgd #ifdef KTRACE
    583  1.135      matt 			if (KTRPOINT(p, KTR_CSW))
    584  1.135      matt 				ktrcsw(p, 0, 0);
    585   1.26       cgd #endif
    586  1.135      matt 			if (relock && interlock != NULL)
    587  1.135      matt 				simple_lock(interlock);
    588  1.135      matt 			/*
    589  1.135      matt 			 * If this sleep was canceled, don't let the syscall
    590  1.135      matt 			 * restart.
    591  1.135      matt 			 */
    592  1.135      matt 			if (cancelled ||
    593  1.135      matt 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    594  1.135      matt 				return (EINTR);
    595  1.135      matt 			return (ERESTART);
    596  1.135      matt 		}
    597   1.26       cgd 	}
    598  1.126        pk 
    599  1.126        pk #ifdef KTRACE
    600  1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    601  1.132      fvdl 		ktrcsw(p, 0, 0);
    602  1.126        pk #endif
    603  1.126        pk 	if (relock && interlock != NULL)
    604  1.126        pk 		simple_lock(interlock);
    605  1.126        pk 
    606  1.122   thorpej 	/* XXXNJW this is very much a kluge.
    607  1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    608  1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    609  1.122   thorpej 	 * would be preferred.
    610  1.122   thorpej 	 */
    611  1.137    itojun 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    612  1.122   thorpej 		return (EINTR);
    613   1.26       cgd 	return (0);
    614   1.26       cgd }
    615   1.26       cgd 
    616   1.26       cgd /*
    617   1.26       cgd  * Implement timeout for tsleep.
    618   1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    619   1.26       cgd  * set timeout flag and undo the sleep.  If proc
    620   1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    621   1.26       cgd  */
    622   1.26       cgd void
    623   1.77   thorpej endtsleep(void *arg)
    624   1.26       cgd {
    625  1.122   thorpej 	struct lwp *l;
    626   1.26       cgd 	int s;
    627   1.26       cgd 
    628  1.122   thorpej 	l = (struct lwp *)arg;
    629   1.83   thorpej 	SCHED_LOCK(s);
    630  1.122   thorpej 	if (l->l_wchan) {
    631  1.122   thorpej 		if (l->l_stat == LSSLEEP)
    632  1.122   thorpej 			setrunnable(l);
    633   1.26       cgd 		else
    634  1.122   thorpej 			unsleep(l);
    635  1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    636   1.26       cgd 	}
    637   1.83   thorpej 	SCHED_UNLOCK(s);
    638   1.26       cgd }
    639   1.26       cgd 
    640   1.26       cgd /*
    641   1.26       cgd  * Remove a process from its wait queue
    642   1.26       cgd  */
    643   1.26       cgd void
    644  1.122   thorpej unsleep(struct lwp *l)
    645   1.26       cgd {
    646   1.71  augustss 	struct slpque *qp;
    647  1.122   thorpej 	struct lwp **hp;
    648   1.26       cgd 
    649   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    650   1.83   thorpej 
    651  1.122   thorpej 	if (l->l_wchan) {
    652  1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    653  1.122   thorpej 		while (*hp != l)
    654  1.122   thorpej 			hp = &(*hp)->l_forw;
    655  1.122   thorpej 		*hp = l->l_forw;
    656  1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    657   1.26       cgd 			qp->sq_tailp = hp;
    658  1.122   thorpej 		l->l_wchan = 0;
    659   1.26       cgd 	}
    660   1.26       cgd }
    661   1.26       cgd 
    662  1.139        cl __inline void
    663  1.139        cl sa_awaken(struct lwp *l)
    664  1.139        cl {
    665  1.147     perry 
    666  1.139        cl 	SCHED_ASSERT_LOCKED();
    667  1.139        cl 
    668  1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    669  1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    670  1.139        cl }
    671  1.139        cl 
    672   1.26       cgd /*
    673   1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    674   1.63   thorpej  */
    675   1.63   thorpej __inline void
    676  1.122   thorpej awaken(struct lwp *l)
    677   1.63   thorpej {
    678   1.63   thorpej 
    679   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    680  1.130   nathanw 
    681  1.139        cl 	if (l->l_proc->p_sa)
    682  1.139        cl 		sa_awaken(l);
    683  1.139        cl 
    684  1.122   thorpej 	if (l->l_slptime > 1)
    685  1.122   thorpej 		updatepri(l);
    686  1.122   thorpej 	l->l_slptime = 0;
    687  1.122   thorpej 	l->l_stat = LSRUN;
    688  1.122   thorpej 	l->l_proc->p_nrlwps++;
    689   1.93    bouyer 	/*
    690   1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    691  1.119   thorpej 	 * is always better than curpriority on the last CPU on
    692  1.119   thorpej 	 * which it ran.
    693  1.118   thorpej 	 *
    694  1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    695   1.93    bouyer 	 */
    696  1.122   thorpej 	if (l->l_flag & L_INMEM) {
    697  1.122   thorpej 		setrunqueue(l);
    698  1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    699  1.122   thorpej 		need_resched(l->l_cpu);
    700   1.93    bouyer 	} else
    701   1.93    bouyer 		sched_wakeup(&proc0);
    702   1.83   thorpej }
    703   1.83   thorpej 
    704   1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    705   1.83   thorpej void
    706   1.83   thorpej sched_unlock_idle(void)
    707   1.83   thorpej {
    708   1.83   thorpej 
    709   1.83   thorpej 	simple_unlock(&sched_lock);
    710   1.63   thorpej }
    711   1.63   thorpej 
    712   1.83   thorpej void
    713   1.83   thorpej sched_lock_idle(void)
    714   1.83   thorpej {
    715   1.83   thorpej 
    716   1.83   thorpej 	simple_lock(&sched_lock);
    717   1.83   thorpej }
    718   1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    719   1.83   thorpej 
    720   1.63   thorpej /*
    721   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    722   1.26       cgd  */
    723   1.83   thorpej 
    724   1.26       cgd void
    725  1.149  christos wakeup(__volatile const void *ident)
    726   1.26       cgd {
    727   1.83   thorpej 	int s;
    728   1.83   thorpej 
    729   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    730   1.83   thorpej 
    731   1.83   thorpej 	SCHED_LOCK(s);
    732   1.83   thorpej 	sched_wakeup(ident);
    733   1.83   thorpej 	SCHED_UNLOCK(s);
    734   1.83   thorpej }
    735   1.83   thorpej 
    736   1.83   thorpej void
    737  1.149  christos sched_wakeup(__volatile const void *ident)
    738   1.83   thorpej {
    739   1.71  augustss 	struct slpque *qp;
    740  1.122   thorpej 	struct lwp *l, **q;
    741   1.26       cgd 
    742   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    743   1.77   thorpej 
    744   1.73   thorpej 	qp = SLPQUE(ident);
    745   1.77   thorpej  restart:
    746  1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    747   1.26       cgd #ifdef DIAGNOSTIC
    748  1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    749  1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    750   1.26       cgd 			panic("wakeup");
    751   1.26       cgd #endif
    752  1.122   thorpej 		if (l->l_wchan == ident) {
    753  1.122   thorpej 			l->l_wchan = 0;
    754  1.122   thorpej 			*q = l->l_forw;
    755  1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    756   1.26       cgd 				qp->sq_tailp = q;
    757  1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    758  1.122   thorpej 				awaken(l);
    759   1.26       cgd 				goto restart;
    760   1.26       cgd 			}
    761   1.26       cgd 		} else
    762  1.122   thorpej 			q = &l->l_forw;
    763   1.63   thorpej 	}
    764   1.63   thorpej }
    765   1.63   thorpej 
    766   1.63   thorpej /*
    767   1.63   thorpej  * Make the highest priority process first in line on the specified
    768   1.63   thorpej  * identifier runnable.
    769   1.63   thorpej  */
    770   1.63   thorpej void
    771  1.149  christos wakeup_one(__volatile const void *ident)
    772   1.63   thorpej {
    773   1.63   thorpej 	struct slpque *qp;
    774  1.122   thorpej 	struct lwp *l, **q;
    775  1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    776  1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    777   1.63   thorpej 	int s;
    778   1.63   thorpej 
    779   1.63   thorpej 	best_sleepp = best_stopp = NULL;
    780   1.63   thorpej 	best_sleepq = best_stopq = NULL;
    781   1.63   thorpej 
    782   1.83   thorpej 	SCHED_LOCK(s);
    783   1.77   thorpej 
    784   1.73   thorpej 	qp = SLPQUE(ident);
    785   1.77   thorpej 
    786  1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    787   1.63   thorpej #ifdef DIAGNOSTIC
    788  1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    789  1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    790   1.63   thorpej 			panic("wakeup_one");
    791   1.63   thorpej #endif
    792  1.122   thorpej 		if (l->l_wchan == ident) {
    793  1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    794   1.63   thorpej 				if (best_sleepp == NULL ||
    795  1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    796  1.122   thorpej 					best_sleepp = l;
    797   1.63   thorpej 					best_sleepq = q;
    798   1.63   thorpej 				}
    799   1.63   thorpej 			} else {
    800   1.63   thorpej 				if (best_stopp == NULL ||
    801  1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    802  1.122   thorpej 				    	best_stopp = l;
    803   1.63   thorpej 					best_stopq = q;
    804   1.63   thorpej 				}
    805   1.63   thorpej 			}
    806   1.63   thorpej 		}
    807   1.63   thorpej 	}
    808   1.63   thorpej 
    809   1.63   thorpej 	/*
    810   1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    811   1.63   thorpej 	 * process.
    812   1.63   thorpej 	 */
    813   1.63   thorpej 	if (best_sleepp != NULL) {
    814  1.122   thorpej 		l = best_sleepp;
    815   1.63   thorpej 		q = best_sleepq;
    816   1.63   thorpej 	} else {
    817  1.122   thorpej 		l = best_stopp;
    818   1.63   thorpej 		q = best_stopq;
    819   1.63   thorpej 	}
    820   1.63   thorpej 
    821  1.122   thorpej 	if (l != NULL) {
    822  1.122   thorpej 		l->l_wchan = NULL;
    823  1.122   thorpej 		*q = l->l_forw;
    824  1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    825   1.63   thorpej 			qp->sq_tailp = q;
    826  1.122   thorpej 		if (l->l_stat == LSSLEEP)
    827  1.122   thorpej 			awaken(l);
    828   1.26       cgd 	}
    829   1.83   thorpej 	SCHED_UNLOCK(s);
    830  1.117  gmcgarry }
    831  1.117  gmcgarry 
    832  1.117  gmcgarry /*
    833  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    834  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    835  1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    836  1.117  gmcgarry  */
    837  1.117  gmcgarry void
    838  1.117  gmcgarry yield(void)
    839  1.117  gmcgarry {
    840  1.122   thorpej 	struct lwp *l = curlwp;
    841  1.117  gmcgarry 	int s;
    842  1.117  gmcgarry 
    843  1.117  gmcgarry 	SCHED_LOCK(s);
    844  1.122   thorpej 	l->l_priority = l->l_usrpri;
    845  1.122   thorpej 	l->l_stat = LSRUN;
    846  1.122   thorpej 	setrunqueue(l);
    847  1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    848  1.122   thorpej 	mi_switch(l, NULL);
    849  1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    850  1.117  gmcgarry 	splx(s);
    851   1.69   thorpej }
    852   1.69   thorpej 
    853   1.69   thorpej /*
    854   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    855   1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    856   1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    857   1.69   thorpej  * criteria.
    858   1.69   thorpej  */
    859  1.122   thorpej 
    860   1.69   thorpej void
    861  1.122   thorpej preempt(int more)
    862   1.69   thorpej {
    863  1.122   thorpej 	struct lwp *l = curlwp;
    864  1.122   thorpej 	int r, s;
    865   1.69   thorpej 
    866   1.83   thorpej 	SCHED_LOCK(s);
    867  1.122   thorpej 	l->l_priority = l->l_usrpri;
    868  1.122   thorpej 	l->l_stat = LSRUN;
    869  1.122   thorpej 	setrunqueue(l);
    870  1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    871  1.122   thorpej 	r = mi_switch(l, NULL);
    872   1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    873   1.69   thorpej 	splx(s);
    874  1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    875  1.122   thorpej 		sa_preempt(l);
    876   1.69   thorpej }
    877   1.69   thorpej 
    878   1.69   thorpej /*
    879   1.72   thorpej  * The machine independent parts of context switch.
    880   1.86   thorpej  * Must be called at splsched() (no higher!) and with
    881   1.86   thorpej  * the sched_lock held.
    882  1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    883  1.122   thorpej  * the next lwp.
    884  1.130   nathanw  *
    885  1.122   thorpej  * Returns 1 if another process was actually run.
    886   1.26       cgd  */
    887  1.122   thorpej int
    888  1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    889   1.26       cgd {
    890   1.76   thorpej 	struct schedstate_percpu *spc;
    891   1.71  augustss 	struct rlimit *rlim;
    892   1.71  augustss 	long s, u;
    893   1.26       cgd 	struct timeval tv;
    894  1.144      yamt 	int hold_count;
    895  1.122   thorpej 	struct proc *p = l->l_proc;
    896  1.122   thorpej 	int retval;
    897   1.26       cgd 
    898   1.83   thorpej 	SCHED_ASSERT_LOCKED();
    899   1.83   thorpej 
    900   1.90  sommerfe 	/*
    901   1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    902   1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    903   1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    904   1.90  sommerfe 	 */
    905  1.144      yamt 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    906   1.85  sommerfe 
    907  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    908  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    909  1.113  gmcgarry 
    910  1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    911   1.76   thorpej 
    912   1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    913   1.82   thorpej 	spinlock_switchcheck();
    914   1.82   thorpej #endif
    915   1.54       chs #ifdef LOCKDEBUG
    916   1.81   thorpej 	simple_lock_switchcheck();
    917   1.50      fvdl #endif
    918   1.81   thorpej 
    919   1.26       cgd 	/*
    920   1.26       cgd 	 * Compute the amount of time during which the current
    921  1.113  gmcgarry 	 * process was running.
    922   1.26       cgd 	 */
    923   1.26       cgd 	microtime(&tv);
    924  1.130   nathanw 	u = p->p_rtime.tv_usec +
    925  1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    926   1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    927   1.26       cgd 	if (u < 0) {
    928   1.26       cgd 		u += 1000000;
    929   1.26       cgd 		s--;
    930   1.26       cgd 	} else if (u >= 1000000) {
    931   1.26       cgd 		u -= 1000000;
    932   1.26       cgd 		s++;
    933   1.26       cgd 	}
    934  1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    935  1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    936   1.26       cgd 
    937   1.26       cgd 	/*
    938  1.141       wiz 	 * Check if the process exceeds its CPU resource allocation.
    939   1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    940   1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    941   1.26       cgd 	 */
    942   1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    943   1.26       cgd 	if (s >= rlim->rlim_cur) {
    944  1.100  sommerfe 		/*
    945  1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    946  1.100  sommerfe 		 * use sched_psignal.
    947  1.100  sommerfe 		 */
    948   1.26       cgd 		if (s >= rlim->rlim_max)
    949  1.100  sommerfe 			sched_psignal(p, SIGKILL);
    950   1.26       cgd 		else {
    951  1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    952   1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    953   1.26       cgd 				rlim->rlim_cur += 5;
    954   1.26       cgd 		}
    955   1.26       cgd 	}
    956   1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    957   1.77   thorpej 	    p->p_nice == NZERO) {
    958   1.39        ws 		p->p_nice = autoniceval + NZERO;
    959  1.122   thorpej 		resetpriority(l);
    960   1.26       cgd 	}
    961   1.69   thorpej 
    962   1.69   thorpej 	/*
    963   1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    964   1.69   thorpej 	 * scheduling flags.
    965   1.69   thorpej 	 */
    966   1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    967  1.109      yamt 
    968  1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    969  1.124      yamt 	kstack_check_magic(l);
    970  1.109      yamt #endif
    971   1.26       cgd 
    972  1.113  gmcgarry 	/*
    973  1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    974  1.113  gmcgarry 	 */
    975  1.114  gmcgarry #if PERFCTRS
    976  1.114  gmcgarry 	if (PMC_ENABLED(p))
    977  1.114  gmcgarry 		pmc_save_context(p);
    978  1.110    briggs #endif
    979  1.113  gmcgarry 
    980  1.113  gmcgarry 	/*
    981  1.114  gmcgarry 	 * Switch to the new current process.  When we
    982  1.114  gmcgarry 	 * run again, we'll return back here.
    983  1.113  gmcgarry 	 */
    984  1.114  gmcgarry 	uvmexp.swtch++;
    985  1.122   thorpej 	if (newl == NULL) {
    986  1.122   thorpej 		retval = cpu_switch(l, NULL);
    987  1.122   thorpej 	} else {
    988  1.122   thorpej 		remrunqueue(newl);
    989  1.122   thorpej 		cpu_switchto(l, newl);
    990  1.122   thorpej 		retval = 0;
    991  1.122   thorpej 	}
    992  1.110    briggs 
    993  1.110    briggs 	/*
    994  1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
    995   1.26       cgd 	 */
    996  1.114  gmcgarry #if PERFCTRS
    997  1.114  gmcgarry 	if (PMC_ENABLED(p))
    998  1.114  gmcgarry 		pmc_restore_context(p);
    999  1.114  gmcgarry #endif
   1000  1.110    briggs 
   1001  1.110    briggs 	/*
   1002  1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
   1003  1.114  gmcgarry 	 * resuming us.
   1004  1.110    briggs 	 */
   1005  1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
   1006   1.83   thorpej 
   1007   1.83   thorpej 	/*
   1008   1.76   thorpej 	 * We're running again; record our new start time.  We might
   1009   1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
   1010   1.76   thorpej 	 * schedstate_percpu pointer.
   1011   1.76   thorpej 	 */
   1012  1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
   1013  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
   1014  1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1015   1.85  sommerfe 
   1016   1.90  sommerfe 	/*
   1017   1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
   1018   1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
   1019   1.90  sommerfe 	 * we reacquire the interlock.
   1020   1.90  sommerfe 	 */
   1021  1.144      yamt 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1022  1.122   thorpej 
   1023  1.122   thorpej 	return retval;
   1024   1.26       cgd }
   1025   1.26       cgd 
   1026   1.26       cgd /*
   1027   1.26       cgd  * Initialize the (doubly-linked) run queues
   1028   1.26       cgd  * to be empty.
   1029   1.26       cgd  */
   1030   1.26       cgd void
   1031   1.26       cgd rqinit()
   1032   1.26       cgd {
   1033   1.71  augustss 	int i;
   1034   1.26       cgd 
   1035   1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
   1036   1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1037  1.122   thorpej 		    (struct lwp *)&sched_qs[i];
   1038   1.26       cgd }
   1039   1.26       cgd 
   1040  1.119   thorpej static __inline void
   1041  1.122   thorpej resched_proc(struct lwp *l, u_char pri)
   1042  1.119   thorpej {
   1043  1.119   thorpej 	struct cpu_info *ci;
   1044  1.119   thorpej 
   1045  1.119   thorpej 	/*
   1046  1.119   thorpej 	 * XXXSMP
   1047  1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
   1048  1.119   thorpej 	 * this gives us *very weak* processor affinity, in
   1049  1.119   thorpej 	 * that we notify the CPU on which the process last
   1050  1.119   thorpej 	 * ran that it should try to switch.
   1051  1.119   thorpej 	 *
   1052  1.119   thorpej 	 * This does not guarantee that the process will run on
   1053  1.119   thorpej 	 * that processor next, because another processor might
   1054  1.119   thorpej 	 * grab it the next time it performs a context switch.
   1055  1.119   thorpej 	 *
   1056  1.119   thorpej 	 * This also does not handle the case where its last
   1057  1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1058  1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1059  1.119   thorpej 	 * are ways to handle this situation, but they're not
   1060  1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1061  1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1062  1.119   thorpej 	 *
   1063  1.119   thorpej 	 * XXXSMP
   1064  1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1065  1.119   thorpej 	 * sched state, which we currently do not do.
   1066  1.119   thorpej 	 */
   1067  1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1068  1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1069  1.119   thorpej 		need_resched(ci);
   1070  1.119   thorpej }
   1071  1.119   thorpej 
   1072   1.26       cgd /*
   1073   1.26       cgd  * Change process state to be runnable,
   1074   1.26       cgd  * placing it on the run queue if it is in memory,
   1075   1.26       cgd  * and awakening the swapper if it isn't in memory.
   1076   1.26       cgd  */
   1077   1.26       cgd void
   1078  1.122   thorpej setrunnable(struct lwp *l)
   1079   1.26       cgd {
   1080  1.122   thorpej 	struct proc *p = l->l_proc;
   1081   1.26       cgd 
   1082   1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1083   1.83   thorpej 
   1084  1.122   thorpej 	switch (l->l_stat) {
   1085   1.26       cgd 	case 0:
   1086  1.122   thorpej 	case LSRUN:
   1087  1.122   thorpej 	case LSONPROC:
   1088  1.122   thorpej 	case LSZOMB:
   1089  1.122   thorpej 	case LSDEAD:
   1090   1.26       cgd 	default:
   1091  1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1092  1.122   thorpej 	case LSSTOP:
   1093   1.33   mycroft 		/*
   1094   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1095   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1096   1.33   mycroft 		 */
   1097   1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1098   1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1099  1.101   thorpej 			CHECKSIGS(p);
   1100   1.53   mycroft 		}
   1101  1.122   thorpej 	case LSSLEEP:
   1102  1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1103   1.26       cgd 		break;
   1104   1.26       cgd 
   1105  1.122   thorpej 	case LSIDL:
   1106  1.122   thorpej 		break;
   1107  1.122   thorpej 	case LSSUSPENDED:
   1108   1.26       cgd 		break;
   1109   1.26       cgd 	}
   1110  1.139        cl 
   1111  1.139        cl 	if (l->l_proc->p_sa)
   1112  1.139        cl 		sa_awaken(l);
   1113  1.139        cl 
   1114  1.122   thorpej 	l->l_stat = LSRUN;
   1115  1.122   thorpej 	p->p_nrlwps++;
   1116  1.122   thorpej 
   1117  1.122   thorpej 	if (l->l_flag & L_INMEM)
   1118  1.122   thorpej 		setrunqueue(l);
   1119  1.122   thorpej 
   1120  1.122   thorpej 	if (l->l_slptime > 1)
   1121  1.122   thorpej 		updatepri(l);
   1122  1.122   thorpej 	l->l_slptime = 0;
   1123  1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1124   1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1125  1.119   thorpej 	else
   1126  1.122   thorpej 		resched_proc(l, l->l_priority);
   1127   1.26       cgd }
   1128   1.26       cgd 
   1129   1.26       cgd /*
   1130   1.26       cgd  * Compute the priority of a process when running in user mode.
   1131   1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1132   1.26       cgd  * than that of the current process.
   1133   1.26       cgd  */
   1134   1.26       cgd void
   1135  1.122   thorpej resetpriority(struct lwp *l)
   1136   1.26       cgd {
   1137   1.71  augustss 	unsigned int newpriority;
   1138  1.122   thorpej 	struct proc *p = l->l_proc;
   1139   1.26       cgd 
   1140   1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1141   1.83   thorpej 
   1142  1.153      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1143  1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1144   1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1145  1.122   thorpej 	l->l_usrpri = newpriority;
   1146  1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1147  1.122   thorpej }
   1148  1.122   thorpej 
   1149  1.130   nathanw /*
   1150  1.122   thorpej  * Recompute priority for all LWPs in a process.
   1151  1.122   thorpej  */
   1152  1.122   thorpej void
   1153  1.122   thorpej resetprocpriority(struct proc *p)
   1154  1.122   thorpej {
   1155  1.122   thorpej 	struct lwp *l;
   1156  1.122   thorpej 
   1157  1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1158  1.122   thorpej 	    resetpriority(l);
   1159   1.55      ross }
   1160   1.55      ross 
   1161   1.55      ross /*
   1162   1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1163  1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1164   1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1165   1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1166   1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1167  1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1168   1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1169   1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1170   1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1171   1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1172   1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1173   1.56      ross  * processes.
   1174   1.55      ross  */
   1175   1.55      ross 
   1176   1.55      ross void
   1177  1.122   thorpej schedclock(struct lwp *l)
   1178   1.55      ross {
   1179  1.122   thorpej 	struct proc *p = l->l_proc;
   1180   1.83   thorpej 	int s;
   1181   1.77   thorpej 
   1182  1.153      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1183   1.83   thorpej 	SCHED_LOCK(s);
   1184  1.122   thorpej 	resetpriority(l);
   1185   1.83   thorpej 	SCHED_UNLOCK(s);
   1186  1.130   nathanw 
   1187  1.122   thorpej 	if (l->l_priority >= PUSER)
   1188  1.122   thorpej 		l->l_priority = l->l_usrpri;
   1189   1.26       cgd }
   1190   1.94    bouyer 
   1191   1.94    bouyer void
   1192   1.94    bouyer suspendsched()
   1193   1.94    bouyer {
   1194  1.122   thorpej 	struct lwp *l;
   1195   1.97     enami 	int s;
   1196   1.94    bouyer 
   1197   1.94    bouyer 	/*
   1198  1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1199  1.122   thorpej 	 * LSSUSPENDED.
   1200   1.94    bouyer 	 */
   1201   1.95   thorpej 	proclist_lock_read();
   1202   1.95   thorpej 	SCHED_LOCK(s);
   1203  1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1204  1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1205   1.94    bouyer 			continue;
   1206  1.122   thorpej 
   1207  1.122   thorpej 		switch (l->l_stat) {
   1208  1.122   thorpej 		case LSRUN:
   1209  1.122   thorpej 			l->l_proc->p_nrlwps--;
   1210  1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1211  1.122   thorpej 				remrunqueue(l);
   1212   1.97     enami 			/* FALLTHROUGH */
   1213  1.122   thorpej 		case LSSLEEP:
   1214  1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1215   1.97     enami 			break;
   1216  1.122   thorpej 		case LSONPROC:
   1217   1.97     enami 			/*
   1218   1.97     enami 			 * XXX SMP: we need to deal with processes on
   1219   1.97     enami 			 * others CPU !
   1220   1.97     enami 			 */
   1221   1.97     enami 			break;
   1222   1.97     enami 		default:
   1223   1.97     enami 			break;
   1224   1.94    bouyer 		}
   1225   1.94    bouyer 	}
   1226   1.94    bouyer 	SCHED_UNLOCK(s);
   1227   1.97     enami 	proclist_unlock_read();
   1228   1.94    bouyer }
   1229  1.113  gmcgarry 
   1230  1.113  gmcgarry /*
   1231  1.151      yamt  * scheduler_fork_hook:
   1232  1.151      yamt  *
   1233  1.151      yamt  *	Inherit the parent's scheduler history.
   1234  1.151      yamt  */
   1235  1.151      yamt void
   1236  1.151      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1237  1.151      yamt {
   1238  1.151      yamt 
   1239  1.151      yamt 	child->p_estcpu = parent->p_estcpu;
   1240  1.151      yamt }
   1241  1.151      yamt 
   1242  1.151      yamt /*
   1243  1.151      yamt  * scheduler_wait_hook:
   1244  1.151      yamt  *
   1245  1.151      yamt  *	Chargeback parents for the sins of their children.
   1246  1.151      yamt  */
   1247  1.151      yamt void
   1248  1.151      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1249  1.151      yamt {
   1250  1.151      yamt 
   1251  1.151      yamt 	/* XXX Only if parent != init?? */
   1252  1.151      yamt 	parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
   1253  1.151      yamt }
   1254  1.151      yamt 
   1255  1.151      yamt /*
   1256  1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1257  1.113  gmcgarry  * routines can override these.
   1258  1.113  gmcgarry  */
   1259  1.113  gmcgarry 
   1260  1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1261  1.115  nisimura 
   1262  1.130   nathanw /*
   1263  1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1264  1.134      matt  * than the traditional LSB ordering.
   1265  1.134      matt  */
   1266  1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1267  1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1268  1.134      matt #else
   1269  1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1270  1.134      matt #endif
   1271  1.134      matt 
   1272  1.134      matt /*
   1273  1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1274  1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1275  1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1276  1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1277  1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1278  1.115  nisimura  * available queues.
   1279  1.130   nathanw  */
   1280  1.113  gmcgarry 
   1281  1.146      matt #ifdef RQDEBUG
   1282  1.146      matt static void
   1283  1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1284  1.146      matt {
   1285  1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1286  1.146      matt 	struct lwp *l2;
   1287  1.146      matt 	int found = 0;
   1288  1.146      matt 	int die = 0;
   1289  1.146      matt 	int empty = 1;
   1290  1.146      matt 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1291  1.146      matt 		if (l2->l_stat != LSRUN) {
   1292  1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1293  1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1294  1.146      matt 		}
   1295  1.146      matt 		if (l2->l_back->l_forw != l2) {
   1296  1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1297  1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1298  1.146      matt 			    l2->l_back->l_forw);
   1299  1.146      matt 			die = 1;
   1300  1.146      matt 		}
   1301  1.146      matt 		if (l2->l_forw->l_back != l2) {
   1302  1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1303  1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1304  1.146      matt 			    l2->l_forw->l_back);
   1305  1.146      matt 			die = 1;
   1306  1.146      matt 		}
   1307  1.146      matt 		if (l2 == l)
   1308  1.146      matt 			found = 1;
   1309  1.146      matt 		empty = 0;
   1310  1.146      matt 	}
   1311  1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1312  1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1313  1.146      matt 		    whichq, rq);
   1314  1.146      matt 		die = 1;
   1315  1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1316  1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1317  1.146      matt 		    "run-queue %p\n", whichq, rq);
   1318  1.146      matt 		die = 1;
   1319  1.146      matt 	}
   1320  1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1321  1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1322  1.146      matt 		    whichq, l);
   1323  1.146      matt 		die = 1;
   1324  1.146      matt 	}
   1325  1.146      matt 	if (l != NULL && empty) {
   1326  1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1327  1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1328  1.146      matt 		die = 1;
   1329  1.146      matt 	}
   1330  1.146      matt 	if (l != NULL && !found) {
   1331  1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1332  1.146      matt 		    whichq, l, rq);
   1333  1.146      matt 		die = 1;
   1334  1.146      matt 	}
   1335  1.146      matt 	if (die)
   1336  1.146      matt 		panic("checkrunqueue: inconsistency found");
   1337  1.146      matt }
   1338  1.146      matt #endif /* RQDEBUG */
   1339  1.146      matt 
   1340  1.113  gmcgarry void
   1341  1.122   thorpej setrunqueue(struct lwp *l)
   1342  1.113  gmcgarry {
   1343  1.113  gmcgarry 	struct prochd *rq;
   1344  1.122   thorpej 	struct lwp *prev;
   1345  1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1346  1.113  gmcgarry 
   1347  1.146      matt #ifdef RQDEBUG
   1348  1.146      matt 	checkrunqueue(whichq, NULL);
   1349  1.146      matt #endif
   1350  1.113  gmcgarry #ifdef DIAGNOSTIC
   1351  1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1352  1.113  gmcgarry 		panic("setrunqueue");
   1353  1.113  gmcgarry #endif
   1354  1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1355  1.113  gmcgarry 	rq = &sched_qs[whichq];
   1356  1.113  gmcgarry 	prev = rq->ph_rlink;
   1357  1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1358  1.122   thorpej 	rq->ph_rlink = l;
   1359  1.122   thorpej 	prev->l_forw = l;
   1360  1.122   thorpej 	l->l_back = prev;
   1361  1.146      matt #ifdef RQDEBUG
   1362  1.146      matt 	checkrunqueue(whichq, l);
   1363  1.146      matt #endif
   1364  1.113  gmcgarry }
   1365  1.113  gmcgarry 
   1366  1.113  gmcgarry void
   1367  1.122   thorpej remrunqueue(struct lwp *l)
   1368  1.113  gmcgarry {
   1369  1.122   thorpej 	struct lwp *prev, *next;
   1370  1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1371  1.146      matt #ifdef RQDEBUG
   1372  1.146      matt 	checkrunqueue(whichq, l);
   1373  1.146      matt #endif
   1374  1.113  gmcgarry #ifdef DIAGNOSTIC
   1375  1.134      matt 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1376  1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1377  1.113  gmcgarry #endif
   1378  1.122   thorpej 	prev = l->l_back;
   1379  1.122   thorpej 	l->l_back = NULL;
   1380  1.122   thorpej 	next = l->l_forw;
   1381  1.122   thorpej 	prev->l_forw = next;
   1382  1.122   thorpej 	next->l_back = prev;
   1383  1.113  gmcgarry 	if (prev == next)
   1384  1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1385  1.146      matt #ifdef RQDEBUG
   1386  1.146      matt 	checkrunqueue(whichq, NULL);
   1387  1.146      matt #endif
   1388  1.113  gmcgarry }
   1389  1.113  gmcgarry 
   1390  1.134      matt #undef RQMASK
   1391  1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1392